Cutting elements are traditionally utilized for a variety of material removal processes, such as machining, cutting, and drilling. For example, tungsten carbide cutting elements have been used for machining metals and on drilling tools for drilling subterranean formations. Similarly, polycrystalline diamond compact (PDC) cutters have been used to machine metals (e.g., non-ferrous metals) and on subterranean drilling tools, such as drill bits, reamers, core bits, and other drilling tools.
Drill bit bodies to which cutting elements are attached are often formed of steel or of molded tungsten carbide. Drill bit bodies formed of molded tungsten carbide (so-called matrix-type bit bodies) are typically fabricated by preparing a mold that embodies the inverse of the desired topographic features of the drill bit body to be formed. Tungsten carbide particles are then placed into the mold and a binder material, such as a metal including copper and tin, is melted or infiltrated into the tungsten carbide particles and solidified to form the drill bit body. Steel drill bit bodies, on the other hand, are typically fabricated by machining a piece of steel to form the desired external topographic features of the drill bit body. Steel drill bit bodies may also be fabricated by casting or forging a steel part and then machining the part to have the desired topographic features.
In some situations, drill bits employing cutting elements may be used in subterranean mining to drill roof-support holes. For example, in underground mining operations, such as coal mining, tunnels must be formed underground. In order to make certain tunnels safe for use, the roofs of the tunnels must be supported in order to reduce the chances of a roof cave-in and/or to block various debris falling from the roof. In order to support a roof in a mine tunnel, boreholes are typically drilled into the roof using a drilling apparatus. The drilling apparatus typically includes a drill bit attached to a drilling rod (commonly referred to as a “drill steel”). Roof bolts are then inserted into the boreholes to support the roof and/or to anchor a support panel to the roof. The drilled boreholes may be filled with a hardenable resin prior to inserting the bolts, or the bolts may have self expanding portions, in order to anchor the bolts to the roof.
Various types of cutting elements, such as PDC cutters, have been employed for drilling boreholes for roof bolts. Although other configurations are known in the art, PDC cutters often comprise a substantially cylindrical or semi-cylindrical diamond “table” formed on and bonded under high-pressure and high-temperature (HPHT) conditions to a supporting substrate, such as a cemented tungsten carbide (WC) substrate. A cutting edge, such as a chamfered cutting edge, may be formed on the diamond table. The cutting edge may be exposed to various stresses as the cutting edge is forced against a subterranean formation that is being drilled. However, the PDC cutters may experience spalling, chipping, and/or partial fracturing during use.
The instant disclosure is directed to exemplary cutting elements for roof-bolt drill bits. In some embodiments, a roof-bolt drill bit may have a forward end, a rearward end, and a rotational axis extending between the forward end and the rearward end. A cutting element for the roof-bolt drill bit may comprise a cutting face and a peripheral surface extending around an outer periphery of the cutting face. In some embodiments, the periphery may be non-cylindrical. In additional embodiments, the periphery may be substantially cylindrical. At least one chamfer region may be located on the cutting element and a peripherally extending chamfer may extend from the at least one chamfer region along the outer periphery of the cutting face.
In at least one embodiment, a width of the at least one chamfer region of the cutting element may be greater than a width of the peripherally extending chamfer. For example, the width of the at least one chamfer region may be greater than twice the width of the peripherally extending chamfer. According to some embodiments, the at least one chamfer region and the peripherally extending chamfer may be defined by a first edge adjacent the cutting face and a second edge adjacent the peripheral surface. A width of the at least one chamfer region between the first edge and the second edge may be greater than a width of the peripherally extending chamfer between the first edge and the second edge. In one embodiment, the peripherally extending chamfer may exhibit a greater angle relative to the cutting face than the at least one chamfer region. In at least one embodiment, the at least one chamfer region may exhibit a greater depth than the peripherally extending chamfer.
According to various embodiments, the cutting element may further comprise a superabrasive table (e.g., a polycrystalline diamond table) bonded to a substrate. In various embodiments, the peripheral surface of the cutting element may comprise an arcuate surface, such as a partial-cylindrical surface.
In at least one embodiment, the at least one chamfer region may comprise a first chamfer region and a second chamfer region on a portion of the cutting element opposite the first chamfer region. The peripherally extending chamfer may extend from the first chamfer region to the second chamfer region. The cutting element may comprise a substantially symmetrical periphery about a plane extending through the cutting element. In at least one embodiment, the first chamfer region may comprise substantially the same shape as the second chamfer region. In various embodiments, the cutting element may comprise a plurality of chamfer regions, the plurality of chamfer regions including the at least one chamfer region.
The at least one cutting element may positioned on a roof-bolt drill bit with a back rake angle of between approximately 5° and approximately 45° and a side rake angle of between approximately 0° and approximately 20°. In at least one embodiment, the roof-bolt drill bit may comprise two cutting elements positioned circumferentially substantially 180° apart with substantially the same back rake angles and side rake angles. According to some embodiments, a roof-bolt drilling apparatus may comprise a drill steel and a drill bit mounted to the drill steel, the drill bit comprising the cutting element.
Features from any of the above-mentioned embodiments may be used in combination with one another in accordance with the general principles described herein. These and other embodiments, features, and advantages will be more fully understood upon reading the following detailed description in conjunction with the accompanying drawings and claims.
The accompanying drawings illustrate a number of exemplary embodiments and are a part of the specification. Together with the following description, these drawings demonstrate and explain various principles of the instant disclosure.
Throughout the drawings, identical reference characters and descriptions indicate similar, but not necessarily identical, elements. While the exemplary embodiments described herein are susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. However, the exemplary embodiments described herein are not intended to be limited to the particular forms disclosed. Rather, the instant disclosure covers all modifications, equivalents, and alternatives falling within the scope of the appended claims.
The instant disclosure is directed to exemplary drill bits, cutting elements for drill bits, and drilling apparatus for drilling formations in various environments. In at least one embodiment, a drill bit, such as a roof-bolt drill bit, may be coupled to a drill steel and rotated by a drilling apparatus configured to rotate the drill bit relative to a subterranean formation. Cutting elements for cutting the subterranean formation may be mounted to a bit body of the drill bit. For ease of use, the word “cutting,” as used in this specification and claims, refers broadly to machining processes, drilling processes, boring processes, or any other material removal process.
As illustrated
In at least one embodiment, an internal passage 30 may be defined within bit body 22. Internal passage 30 may extend from a rearward opening defined in rearward end 26 of bit body 22 to at least one debris opening 32 defined in a side portion of bit body 22. In some embodiments, drill bit 20 may be configured for use in dry-drilling environments where cutting debris is removed from a borehole by applying a vacuum to internal passage 30. A vacuum applied to vacuum hole 30 may generate suction near debris opening 32, thereby drawing cutting debris away from the borehole and through opening 32. A vacuum applied to vacuum hole 30 may also facilitate cooling of cutting elements 28 and/or other portions of drill bit 20 through convective heat transfer as air and debris are drawn over and around cutting elements 28. In at least one embodiment, one debris opening 32 may be defined in bit body 22 for each cutting element 28. For example, two debris openings 32 may be defined in bit body 22, with the two debris openings 32 corresponding to the two respective cutting elements 28 illustrated in
In various embodiments, bit body 22 may not include a debris opening for removing cutting debris. For example, drill bit 20 may be configured for use in wet-drilling environments where drilling fluids, such as drilling mud or water, are used to cool drill bit 20 and flush debris away from drill bit 20 and out of a borehole during drilling. In at least one example, ports for dispensing drilling fluids into the borehole may be defined in forward and/or side portions of bit body 22. Drilling fluids may be conveyed to such ports through one or more internal passages extending through bit body 22 and/or drill steel 34.
In some embodiments, drill bit 20 may be configured to be rotated about rotational axis 38. For example, as shown in
According to at least one embodiment, forces and/or torque may be applied by a drilling motor to drill bit 20 via drill steel 34, causing drill bit 20 to be forced against a subterranean formation in both rotational direction 37 and forward direction 35. As drill bit 20 is forced against a subterranean formation and rotated in rotational direction 37, cutting elements 28 may contact and cut into the subterranean formation, removing rock material from the formation in the form of rock cuttings and/or other debris. In at least one embodiment, cutting debris removed by cutting elements 28 may be drawn through internal passage 30 defined in bit body 22 by a vacuum applied to drill bit 20. According to some embodiments, drill steel 34 may comprise a hollow rod and a vacuum may be applied to a rearward end of drill steel 34 by a vacuum source. Cutting debris may be drawn by the vacuum through drill bit 20 and drill steel 34 toward the vacuum source.
In at least one embodiment, cutting element 28 may comprise a table 44 comprising polycrystalline diamond bonded to a substrate 46 comprising cobalt-cemented tungsten carbide. In at least one embodiment, after forming table 44, a catalyst material (e.g., cobalt or nickel) may be at least partially removed from table 44. A catalyst material may be removed from at least a portion of table 44 using any suitable technique, such as, for example, acid leaching. According to some embodiments, table 44 may formed to a thickness of at least about 0.030 inches. For example, table 44 may have a thickness of between about 0.030 inches and about 0.120 inches. In additional embodiments, table 44 may have a thickness less than 0.030 inches.
As shown in
According to various embodiments, cutting element 28 may comprise a peripherally extending chamfer 56 formed along at least a portion of a periphery of table 44 between cutting face 48 and peripheral surface 50, as illustrated in
The width W2 of the portion of chamfer region 58 shown in
According to some embodiments, widths along peripherally extending chamfer 56 may be substantially the same. For example, peripherally extending chamfer 56 may have a substantially constant width between first edge 60 and second edge 62 along the length of peripherally extending chamfer 56 from chamfer region 58 to rearward end 42. According to additional embodiments, peripherally extending chamfer 56 may vary in width at various locations along its length, without limitation. In at least one embodiment, chamfer region 58 may vary in width at different locations along its length. For example, as illustrated in
The widths of peripherally extending chamfer 56 and chamfer region 58 may be selected so as to optimize the cutting performance and/or structural stability of cutting elements 28. In at least one embodiment, the smaller width of peripherally extending chamfer 56 may optimize the cutting efficiency of cutting element 28. For example, peripherally extending chamfer 56 may be oriented on a drill bit (e.g., drill bit 20 illustrated in
Chamfer regions 58 of cutting elements 28 may be oriented so that at least a portion of each chamfer region 58 is in contact with a subterranean formation being drilled for a selected RPM and ROP. According to at least one example, forward ends 40 of cutting elements 28 may experience significant stresses in comparison to other portions of cutting elements 28 due to the significant thrust and tensile loads applied to forward ends 40. For example, during drilling, drill bit 20 may be forced against a subterranean formation in forward direction 35. Accordingly, forward ends 40 of cutting elements 28 mounted to bit body 22 may be subjected to greater stresses than other portions of cutting elements 28, and chamfer regions 58 on forward ends 40 of cutting elements 28 may be subjected to greater stresses than peripherally extending chamfers 56.
According to some embodiments, forward ends 40 of cutting elements 28 may be subjected to greater stresses due to the locations of forward ends 40 to a rotational axis 38 of drill bit 20 during drilling. For example, forward ends 40 of cutting elements 20 may form at least a portion of cutting tip 39 centered about rotational axis 38. Forward ends 40 may be disposed in closer proximity to rotational axis 38 than other portions of cutting elements 28 that are in contact with a subterranean formation during drilling. Because forward ends 40 are positioned closer to rotational axis 38 than other portions of cutting elements 28, forward ends 40 may travel shorter distances per revolution of drill bit 20 than other portions of cutting elements 28 that are located a greater distance from rotational axis 38. Accordingly, chamfer regions 58 on forward ends 40 of cutting elements 28 may travel shorter distances per revolution of drill bit 20 than portions of peripherally extending chamfers 56 that are in contact with a subterranean formation during drilling as drill bit 20 is directed in forward direction 35 and rotated about rotational axis 38 in rotational direction 37. Because the distances traveled by forward ends 40 are less than the distances traveled by the portions of peripherally extending chamfers 56 at an effective “depth of cut” (i.e., the distance the cutting edge is buried into the formation being drilled), a greater amount of force may be built up in chamfer regions 58 of cutting elements 28 in comparison with peripherally extending chamfers 56.
The greater width of chamfer region 58 on forward end 40 of each cutting element 28 may enable distribution of the higher stresses over a greater surface area in comparison with peripherally extending chamfer 56. Accordingly, chamfer region 58 may prevent spalling, chipping, and/or partial fracturing of cutting element 28 due to the pressure of excessive stresses in forward end 40. According to at least one embodiment, chamfer region 58 may vary along its length from greater widths at more forward locations to lesser widths at more rearward locations. For example, as illustrated in
Peripherally extending chamfer 56 and/or chamfer region 58 may be formed by any suitable process, such as grinding, lapping, and/or machining (e.g., electro-discharge machining “EDM”), without limitation. For example, peripherally extending chamfer 56 and/or chamfer region 58 may be formed by grinding cutting element 28 along an oblique path with respect to cutting face 48 and/or peripheral surface 50 of cutting element 28. In some embodiments, peripherally extending chamfer 56 and/or chamfer region 58 may also be formed by molding such features on cutting element 28 during an HPHT sintering process used to form cutting element 28.
Peripherally extending chamfer 56 and chamfer region 58 may be formed to different geometries using any suitable technique. For example, the depth and/or angle of peripherally extending chamfer 56 and/or chamfer region 58 may be selected so as to obtain a desired geometry. In at least one example, as illustrated in
According to some embodiments, as illustrated in
According to at least one embodiment, peripherally extending chamfer 56 and/or chamfer region 58 may be formed on table 44 of cutting element 28. For example, as illustrated in
Cutting element 128 may further comprise a peripherally extending chamfer 156 formed along at least a portion of a periphery of table 144 between cutting face 148 and peripheral surface 150. Additionally, cutting element 128 may comprise a chamfer region 158 located at forward portion 140 of the cutting element. Peripherally extending chamfer 156 may extend from chamfer region 158 toward rearward portion 142 of cutting element 128, as shown in
Cutting element 228 may comprise a first peripherally extending chamfer 256A and a second peripherally extending chamfer 256B formed along at least a portion of a periphery of table 244 between cutting face 248 and peripheral surface 250. Additionally, cutting element 228 may comprise a first chamfer region 258A located at forward portion 240 of cutting element 228 and a second chamfer region 258B located at rearward portion 242. In at least one embodiment, cutting element 228 may comprise a substantially symmetrical periphery about a plane extending through cutting element 228. For example, a border 247 may define a plane extending through cutting element 228. In at least one embodiment, the plane defined by border 247 may be substantially perpendicular to cutting face 248. As shown in
According to at least one embodiment, cutting element 228 may be configured to be removed and repositioned when a portion of cutting element 228, such as forward portion 240, becomes worn and/or damaged from drilling. For example, cutting element 228 may be initially oriented on a bit body (e.g. bit body 222 illustrated in
Cutting element 328 may comprise a first peripherally extending chamfer 356A and a second peripherally extending chamfer 356B formed along at least a portion of a periphery of table 344 between cutting face 348 and peripheral surface 350. Additionally, cutting element 328 may comprise a first chamfer region 358A located at forward portion 340 of the cutting element and a second chamfer region 358B located at rearward portion 342. In at least one embodiment, first chamfer region 358A may comprise substantially the same shape as second chamfer region 358B and first peripherally extending chamfer 356A may comprise substantially the same shape as second peripherally extending chamfer 356B. In some embodiments, cutting element 328 may comprise one or more cutting edges, such as portions of a first edge 360 and/or a second edge 362. First edge 360 and/or second edge 362 may define at least a portion of first peripherally extending chamfer 356A, second peripherally extending chamfer 356B, first chamfer region 358A, and/or second chamfer region 358B.
According to at least one embodiment, cutting element 328 may be configured to be removed and repositioned when a portion of cutting element 328, such as forward portion 340, becomes worn and/or damaged from drilling. For example, cutting element 328 may be removed and repositioned on the bit body when first chamfer region 358A and/or first peripherally extending chamfer 356A become worn and/or damaged. Following removal and repositioning of cutting element 328, the region of cutting element 328 that includes second chamfer region 358B becomes the forward portion (e.g., forward portion 340) of cutting element 328. Accordingly, cutting element 328 may continue to be used in drilling operations even after a portion of cutting element 328, such as first chamfer region 358A and/or first peripherally extending chamfer 356A, becomes worn and/or damaged.
According to at least one embodiment, as shown in
As shown in
Cutting element 428 may further comprise a peripherally extending chamfer 456 formed along at least a portion of a periphery of table 444 between cutting face 448 and peripheral surface 450. Additionally, cutting element 428 may comprise a plurality of chamfer regions located at forward portion 440 of the cutting element. For example, cutting element 428 may comprise a first chamfer region 458A and a second chamfer region 458B disposed at forward portion 440. Peripherally extending chamfer 456 may extend from first chamfer region 458A toward rearward portion 442 of cutting element 428, as shown in
In one embodiment, first chamfer region 458A and second chamfer region 458B may exhibit average widths that exceed an average width of peripherally extending chamfer 456. For example, second chamfer region 458B may include a width that is greater than a maximum width of first chamfer region 458A. In another embodiment, first chamfer region 458A may exhibit substantially the same average width as second chamfer region 458B. In at least one embodiment, cutting element 428 may comprise one or more cutting edges, such as portions of a first edge 460 and/or a second edge 462. First edge 460 and/or second edge 462 may define at least a portion of peripherally extending chamfer 456, first chamfer region 458A, and/or second chamfer region 458B.
Cutting element 528 may further comprise a peripherally extending chamfer 556 formed along at least a portion of a periphery of table 544 between cutting face 548 and peripheral surface 550. Additionally, cutting element 528 may comprise at least one chamfer region located at forward portion 540 of the cutting element. For example, cutting element 528 may comprise a first chamfer region 558A and a second chamfer region 558B disposed at forward portion 540. Peripherally extending chamfer 556 may extend from first chamfer region 558A and/or second chamfer region 558B toward rearward portion 542 of cutting element 528, as shown in
In at least one embodiment, cutting element 528 may comprise one or more cutting edges, such as portions of a first edge 560, a second edge 562, a third edge 564, and/or a fourth edge 566. First edge 560, second edge 562, third edge 564, and/or fourth edge 566 may define at least a portion of peripherally extending chamfer 556, first chamfer region 558A, and/or second chamfer region 558B. For example, first edge 560 and second edge 562 may define at least a portion of peripherally extending chamfer 556. According to various embodiments, third edge 564 and fourth edge 566 may define at least a portion of first chamfer region 558A, as shown in
First chamfer region 558A and second chamfer region 558B may be formed to different geometries using any suitable technique. For example, the depths and/or angles of first chamfer region 558A and/or second chamfer region 558B may be selected so as to obtain a desired geometry. In at least one example, as illustrated in
The angles, θ3 and θ4, of first chamfer region 558A and second chamfer region 558B with respect to cutting face 548 and/or peripheral surface 550 may be selected so as to obtain desired widths for first chamfer region 558A and second chamfer region 558B. According to some embodiments, the angles of first chamfer region 558A and second chamfer region 558B with respect to cutting face 548 and/or peripheral surface 550 may be different. For example, a portion of first chamfer region 558A may be formed at an angle θ3 with respect to cutting face 548 and a portion of second chamfer region 558B may be formed at an angle θ4 with respect to cutting face 548, the angle θ4 being greater than the angle θ3. More generally, angles θ3 and θ4, as well as depths D3 and D4 may be selected as desired.
First chamfer region 558A and/or second chamfer region 558B may exhibit average widths that individually exceed an average width of peripherally extending chamfer 556. In some embodiments, first chamfer region 558A and/or second chamfer region 558B may exhibit average widths that are individually less than an average width of peripherally extending chamfer 556 and a combined average width that exceeds an average width of peripherally extending chamfer 556. First chamfer region 558A may exhibit substantially the same average width or a different average width than second chamfer region 558B.
Cutting element 628 may further comprise a peripherally extending edge 668 formed along at least a portion of a periphery of table 644 between cutting face 648 and peripheral surface 650. Additionally, cutting element 628 may comprise a chamfer region 658 located at forward portion 640 of the cutting element. Peripherally extending edge 668 may extend from chamfer region 658 toward rearward portion 642 of cutting element 628, as shown in
The preceding description has been provided to enable others skilled the art to best utilize various aspects of the exemplary embodiments described herein. This exemplary description is not intended to be exhaustive or to be limited to any precise form disclosed. Many modifications and variations are possible without departing from the spirit and scope of the instant disclosure. It is desired that the embodiments described herein be considered in all respects illustrative and not restrictive and that reference be made to the appended claims and their equivalents for determining the scope of the instant disclosure.
Unless otherwise noted, the terms “a” or “an,” as used in the specification and claims, are to be construed as meaning “at least one of.” In addition, for ease of use, the words “including” and “having,” as used in the specification and claims, are interchangeable with and have the same meaning as the word “comprising.”
This application is a continuation of U.S. patent application Ser. No. 12/980,217 filed 28 Dec. 2010, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3132908 | Grotzinger | May 1964 | A |
3311431 | Hilliard | Mar 1967 | A |
3371970 | Beerli | Mar 1968 | A |
3442342 | McElya et al. | May 1969 | A |
3542441 | Nixon | Nov 1970 | A |
3625327 | Birdsey | Dec 1971 | A |
3745623 | Wentorf, Jr. et al. | Jul 1973 | A |
3858668 | Bell | Jan 1975 | A |
3858669 | Jeter | Jan 1975 | A |
4129343 | Janssen | Dec 1978 | A |
4226485 | Pruvot | Oct 1980 | A |
4240683 | Crase | Dec 1980 | A |
4256190 | Bodine | Mar 1981 | A |
4268094 | Greene | May 1981 | A |
4345798 | Cortes | Aug 1982 | A |
4386666 | Crase et al. | Jun 1983 | A |
4410054 | Nagel et al. | Oct 1983 | A |
4468138 | Nagel | Aug 1984 | A |
4506998 | Showalter | Mar 1985 | A |
4515486 | Ide | May 1985 | A |
4560014 | Geczy | Dec 1985 | A |
4604106 | Hall et al. | Aug 1986 | A |
4620601 | Nagel | Nov 1986 | A |
4629373 | Hall | Dec 1986 | A |
4639146 | Yoshioka et al. | Jan 1987 | A |
4657090 | Geczy | Apr 1987 | A |
4662348 | Hall et al. | May 1987 | A |
4708496 | McPherson | Nov 1987 | A |
4710036 | Geczy | Dec 1987 | A |
4720199 | Geczy et al. | Jan 1988 | A |
4729440 | Hall | Mar 1988 | A |
4732364 | Seger et al. | Mar 1988 | A |
4738322 | Hall et al. | Apr 1988 | A |
4756631 | Jones | Jul 1988 | A |
4764036 | McPherson | Aug 1988 | A |
4802539 | Hall et al. | Feb 1989 | A |
4818124 | Brandenstein et al. | Apr 1989 | A |
4997292 | Klimkovsky et al. | Mar 1991 | A |
5092687 | Hall | Mar 1992 | A |
5125754 | Ide | Jun 1992 | A |
5253939 | Hall | Oct 1993 | A |
5287936 | Grimes et al. | Feb 1994 | A |
5346026 | Pessier et al. | Sep 1994 | A |
5364192 | Damm et al. | Nov 1994 | A |
5368398 | Damm et al. | Nov 1994 | A |
5429199 | Sheirer et al. | Jul 1995 | A |
5437343 | Cooley | Aug 1995 | A |
5441347 | Ide | Aug 1995 | A |
5460233 | Meany et al. | Oct 1995 | A |
5467836 | Grimes et al. | Nov 1995 | A |
5480233 | Cunningham | Jan 1996 | A |
5498081 | Dennis et al. | Mar 1996 | A |
5655612 | Grimes et al. | Aug 1997 | A |
5706906 | Jurewicz | Jan 1998 | A |
5735668 | Klein | Apr 1998 | A |
5743654 | Ide et al. | Apr 1998 | A |
5795077 | Gozdawa | Aug 1998 | A |
5876125 | Wyndorps et al. | Mar 1999 | A |
5881830 | Cooley | Mar 1999 | A |
6000851 | Cohen et al. | Dec 1999 | A |
6050354 | Pessier et al. | Apr 2000 | A |
6091175 | Kinsinger | Jul 2000 | A |
6422754 | Dong et al. | Jul 2002 | B1 |
6424066 | Watson et al. | Jul 2002 | B1 |
6517246 | Blakley | Feb 2003 | B2 |
6793681 | Pope et al. | Sep 2004 | B1 |
D514131 | Brady | Jan 2006 | S |
7060641 | Qian et al. | Jun 2006 | B2 |
7163368 | Ide et al. | Jan 2007 | B2 |
7306059 | Ide | Dec 2007 | B2 |
7608333 | Eyre | Oct 2009 | B2 |
7703982 | Cooley | Apr 2010 | B2 |
7726420 | Shen et al. | Jun 2010 | B2 |
7798257 | Shen et al. | Sep 2010 | B2 |
7870913 | Sexton et al. | Jan 2011 | B1 |
7946768 | Cooley et al. | May 2011 | B2 |
8069933 | Sexton et al. | Dec 2011 | B2 |
20040241021 | Ide et al. | Dec 2004 | A1 |
20050247486 | Zhang et al. | Nov 2005 | A1 |
20060278439 | Ide | Dec 2006 | A1 |
20070046120 | Cooley et al. | Mar 2007 | A1 |
20070110561 | Ide et al. | May 2007 | A1 |
20070235230 | Cuillier et al. | Oct 2007 | A1 |
20080115976 | Ide | May 2008 | A1 |
20090057031 | Patel et al. | Mar 2009 | A1 |
20110174544 | Scott et al. | Jul 2011 | A1 |
20120160573 | Myers | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
4226986 AL | Feb 1994 | DE |
0543461 | May 1993 | EP |
WO 8001939 | Sep 1980 | WO |
Entry |
---|
Non-Final Office Action received in U.S. Appl. No. 11/212,232; Jul. 10, 2007. |
Final Office Action received in U.S. Appl. No. 11/212,232; Jan. 10, 2008. |
Non-Final Office Action received in U.S. Appl. No. 11/212,232; Jun. 17, 2008. |
Final Office Action received in U.S. Appl. No. 11/212,232; Dec. 4, 2008. |
Non-Final Office Action received in U.S. Appl. No. 11/212,232; Mar. 16, 2009. |
Final Office Action received in U.S. Appl. No. 11/212,232; Jul. 31, 2009. |
Non-Final Office Action received in U.S. Appl. No. 11/879,867; Dec. 1, 2009. |
Final Office Action received in U.S. Appl. No. 11/879,867; May 18, 2010. |
U.S. Appl. No. 11/879,867, filed Jul. 18, 2007, Sexton et al. |
U.S. Appl. No. 12/761,535, filed Apr. 16, 2010, Scott et al. |
International Search Report dated Dec. 19, 2006, for International Application No. PCT/US2006/033201 (2 pages). |
Restriction Requirement received in U.S. Appl. No. 11/212,232; Apr. 13, 2007. |
Search Report and Written Opinion received in related International Application No. PCT/US11/066314 on Apr. 13, 2012. |
Number | Date | Country | |
---|---|---|---|
20150059255 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12980217 | Dec 2010 | US |
Child | 14536559 | US |