Drill guide

Information

  • Patent Grant
  • 10219812
  • Patent Number
    10,219,812
  • Date Filed
    Thursday, November 3, 2011
    13 years ago
  • Date Issued
    Tuesday, March 5, 2019
    5 years ago
Abstract
The present invention relates to a drill guide for use in drilling an acetabular tunnel. The drill guide comprises a cannulated shaft having a handle towards a proximal end, and an offset arm towards a distal end. The arm is flexible or pivotable and has a distal tip for engaging the articular surface of the acetabulum, and is offset from a projected path of the shaft cannulation.
Description

The present invention relates to a drill guide. In particular, the present invention relates to a drill guide for use in hip arthroscopy.


In many joints, when the bones forming the joint are operated at the extremes in their range of motion, damage can occur through trauma and also interference between the bones. In the hip, for example, when the femur is flexed upwards it may collide with the rim of the socket or acetabulum, of the pelvis. When this occurs, any soft tissue which is caught between the colliding bones may be damaged and cause pain to the individual. The soft tissue that is caught in this manner is usually the labrum, which is a ring-like structure formed from cartilage that surrounds the acetabular rim.


The labrum improves stability of the hip joint by effectively deepening the hip socket to provide extra structural support to the joint. It also helps to create a negative intra-articular pressure which partially seals the joint and acts to prevent it from being distracted. In addition, the cartilage tissue of the labrum acts as a buffer between adjacent bone surfaces of the hip joint and provides an articular surface which permits the joint to move fluidly. This helps to prevent wear and tear on the joint by stopping the bones of the joint from directly grinding against one another.


The acetabular labrum has an irregular shape and comprises essentially three parts. The first connects the labrum to the acetabular rim. The second is an extension of the articular surface of the acetabulum, and provides an internal articular surface, and the third is an external surface where the hip joint capsule attaches.


Cartilage tissue only has a very limited capacity for repair as it does not contain any blood vessels, and so where damage has occurred the growth of new tissue is extremely slow, if at all.


Due to advances in arthroscopic surgical procedures on the hip, the number of labral tears being identified has markedly increased. Such tears can be caused by injury through a specific trauma or repetitive movements, or by degeneration. Femoral acetabular impingement, interference caused by naturally occurring irregularities on the generally spherical head of the femur with the rim of the acetabulum, can also lead to such tears. Often, an individual will be completely unaware of a tear in their labrum and will not display any symptoms. Such cases will not generally require treatment. However, in more severe cases an affected individual may experience pain and stiffness, or limited range of motion in their hip joint or groin. They may also notice a locking, clicking or catching sensation in the affected hip.


Arthroscopic repair of a torn hip labrum can be approached in several ways, depending on the severity of the tear. The damaged tissue may be removed by debridement to relieve pain for flap tears. Where the tear is more severe, bioabsorbable suture can be utilised to hold the tear together whilst the cartilage tissue heals. This is generally only successful in regions where there is a good blood supply. Where the damage is severe and the labrum has become detached from the acetabular rim, reattachment is often necessary and this typically requires the use of one or more bone anchors.


In surgical repairs where suture anchors are required in the reattachment of a torn labrum back to the bony rim of the acetabulum, it is necessary to drill bone tunnels within the acetabulum. Due to the inherent anatomy of the hip, and the restriction on the arthroscopic trajectories which are available to a surgeon, the procedure for drilling bone tunnels to accommodate the suture anchors is challenging. Placement and pitch of the tunnels relative to the acetabular rim is critical in order to avoid a ‘blow-out’ of the acetabular cartilage, or the back of the acetabulum itself


Previously, this issue has typically been dealt with in one of two ways. The surgeon may force a drill guide into what is deemed to be the correct trajectory by using brute force, and then visually determine whether the projected drill path would cause the a blow-out of the acetabulum or acetabular cartilage.


Alternatively, a curved drill guide can be used to enable standard portals and trajectories to be used. Using a curved guide allows the drill to bend and enter the acetabulum at an angle which minimises any potential blow-out.


However, during surgery and in the aqueous environment of the joint space, both of these approaches suffer from lens distortion with the wide angled arthroscope necessary for performing hip arthroscopy, and the high angle (70°) of the direction of view to the camera axis. Operating under these conditions, it is extremely difficult to mentally project a straight drill path through the bone with any accuracy.


A more convenient arthroscopic approach could have considerable advantages over open surgical procedures if these obstacles were overcome. In particular, it would help to reduce the number of instances acetabular blow-out. Accordingly, there exists a need for a better arthroscopic approach.


The present invention seeks to address at least some of these problems by providing a drill guide which allows bone tunnels to be drilled in the acetabulum, whilst reducing the risk of a blow-out of the acetabulum or acetabular cartilage occurring.


In its broadest sense the present invention provides a drill guide having a flexible or pivotable offset arm.


According to the present invention there is provided a drill guide for use in drilling an acetabular tunnel, comprising a cannulated shaft having a handle towards a proximal end, and an offset arm towards a distal end, wherein the arm is flexible or pivotable and comprises a distal tip for engaging the articular surface of the acetabulum, and which is offset from a projected path of the shaft cannulation.


Suitably, the arm is resiliently flexible. Suitably, the arm is formed from a Nitinol wire or plate, a Nitinol tube, or a plastics material.


Alternatively, the arm is rigid and is pivotally connected at or near the distal end of the shaft. Suitably, the pivotal connection is a hinge. Suitably, the pivotal connection a living hinge. Preferably, the pivotal connection includes biasing means. Suitably, the biasing means is a spring. All of these arrangements allow the arm to bend, flex or pivot within a single plane if a surgeon chooses a trajectory other than the default provided by the natural state of the arm.


Preferably, the drill guide includes an obturator for supporting and protecting the offset arm whilst the instrument is packaged and/or when the instrument is being introduced into a surgical site. Suitably, the obturator is a curved or flattened member, or a hollow tubular member. Preferably, the obturator is a tubular member, or at least partially tubular, coaxially mounted with the shaft. Suitably, the obturator includes an opening at a distal end. Preferably, the obturator is slidably or rotatably mounted within the shaft and interlocks with the offset arm such that it may be held substantially rigidly.


Alternatively, the obturator is an outer sheath, mounted on the outer surface of the shaft. Preferably, the outer sheath at least partly surrounds a portion of the outer surface of the shaft. Suitably, the outer sheath is slidably mounted or rotatably mounted on the shaft, or is removable. In embodiments in which the outer sheath is rotatably mounted on the shaft, the rotatable movement arises from a thread and complementary groove arrangement—for example the outer surface of the shaft may include a helical thread.


Preferably, the drill guide includes a lock. The lock helps locking the obturator when it is engaged with the offset arm and in a position for transit. The lock may be any suitable locking means, such as a twist-lock, button or catch.


Preferably, the distal end of shaft includes bone engaging means. Suitably, the bone engaging means are one or more teeth or spikes which, in use, act to prevent the distal end of the shaft from slipping when engaged with a bone surface.


Preferably, the proximal end of the shaft, or handle, includes a depth stop to prevent over-drilling of the bone tunnels. This feature helps to prevent over-drilling of the bone tunnels, by ensuring that the bone tunnels are only drilled to a depth required for the particular anchor which is being used. Suitably, the depth stop is adjustable. An adjustable depth stop allows anchors of different sizes to be used in conjunction with the drill guide—the depth stop being set according to the particular anchor size being used in the procedure.


Preferably, the offset arm includes one or more marks to define a preferred region of contact of the offset arm with the acetabular surface, during use of the instrument. Suitably, the one or more marks are at or towards the distal end of the offset arm. The mark or markings assist the surgeon in the correct usage of the instrument.


Suitably, the offset arm includes one or more bends. Bends may advantageously be incorporated into the offset arm so that only a preferred region of the arm comes into contact with tissue during use of the instrument. Alternatively, the arm may be curved, or be straight and include one or more hinges. This helps to minimise the extent of contact of the instrument with the labral tissue, to prevent damage to the tissue.


Another general aspect of the invention features a method for positioning a bone tunnel in the acetabulum using the guide discussed above. In use, the bone engaging means at the distal end of the instrument shaft are located against a surface of the acetabular rim, and the pitch of the instrument relative to the acetabulum is adjusted, and thus the trajectory of the guide, until the offset arm comes into contact with the acetabular surface. Next, a drill bit is inserted through the drill guide and the bone drilled to a depth stop. A suture anchor is then delivered down the guide and into the previously drilled bone hole. The guide is subsequently removed from the patient. Among other advantages, the invention provides an efficient and accurate way of positioning a bone tunnel, and helps to prevent a blow-out of the acetabulum or acetabular cartilage.


The current invention provides an arthroscopic instrument that uses the curved surface of the acetabular socket to guide a drill for placement of anchor tunnels in procedure for reattaching the labrum to the acetabulum. The instrument provides an offset position which allows a safe drill trajectory to be chosen before drilling takes place.





The above and other aspects of the invention will now be described with reference to the following drawings in which:



FIG. 1 is a partial view of a distracted hip joint including a first embodiment of an instrument according to the invention;



FIG. 2 is a side-view of the distal end of the instrument of FIG. 1;



FIG. 3 is a close-up side-view of the distal end of the instrument of FIG. 1, with the hip joint shown in a partial sectional view;



FIG. 4 is a close-up side-view of the distal end of the instrument of FIG. 1, in which a blow-out has occurred;



FIG. 5 is a surgical view illustrating a blow-out of the acetabulum;



FIGS. 6A & B are, respectively, side views of the embodiment of FIG. 1 in which the offset arm is flexible and bent; and rigid and hinged.



FIG. 7 is a perspective view from the side and below of the distal end of an alternative embodiment, in which the offset arm has an alternative mounting arrangement;



FIG. 8 is a sectional view of the embodiment of FIG. 7;



FIG. 9 is a partial sectional view, from below, of the embodiment of FIG. 7; and



FIG. 10 is a perspective view from the side and above of the distal, end of the instrument of FIG. 1 which includes an internal obturator.





Referring to FIG. 1, there is shown a partially distracted hip, or acetabulofemoral joint 10, formed from the femur 12 and acetabulum of the pelvis 11. Femur 12 includes a substantially spherical head 13, which locates in the cup-like acetabulum of the pelvis 11. The joint is lubricated with synovial fluid and its surfaces are lined with cartilage to cushion movement and allow it to move freely (not shown). The acetabulum is lined with the acetabular labrum, which is a ring-shaped fibrocartilaginous lip. The labrum extends beyond the acetabulum, forming a tight sliding connection with the femoral head and providing a stable joint. Also shown is a drill guide 14 for assisting a surgeon when conducting drilling procedures of the acetabulum.


The drill guide comprises a shaft 15, having a handle 20 towards a proximal end, and an offset arm 21 towards a distal end. The shaft 15 is cannulated to allow the passage of a drill (not shown) during a drilling procedure. The drill guide assists a surgeon in judging where to drill the acetabulum and helps to keep the drill piece steady during the drilling process.


As shown in FIGS. 2 and 3, the offset arm 21 helps to maintain a minimum wall thickness of bone between a bone tunnel and the articular surface of the acetabular cartilage 23, when the arm 21 remains in contact with the acetabulum during the drilling process. In the preferred embodiment of FIG. 2, the distal end or tip 22 of the offset arm 21 is shorter in length than the tunnel to be drilled. According to this illustration, the position of the anchor 19 is intended to depict its final position once it has been inserted within the drilled tunnel, and relative to the positioning of the drill guide. In alternative embodiments (not shown), the distal end or tip of the offset arm is intended to roughly correlate with the bottom of the tunnel to be drilled. To this end, a depth stop (not shown) for preventing over-drilling of the bone tunnel is provided. The depth stop may be any suitable means and can be a shoulder within the cannulated shaft or a similar such feature at the point of entry of the drill piece to the cannulated shaft, to serve the purpose of preventing over-advancement of the drill piece. Accordingly, the risk of a drill passing directly through the acetabulum and out the medial side is reduced.


The offset arm can be designed with any offset desired, and to some extent will be determined by the anatomy of a particular patient, with a larger offset resulting in a thicker the bone wall between tunnel and acetabular cartilage.


In FIG. 3, with the tip 22 of the offset arm 21 held against the acetabular cartilage 23, a bone tunnel 24 resulting from drilling using the guide is shown with hashed lines. As can be seen, the drill guide provides for a minimal bone thickness between the tunnel and acetabular cartilage 23, helping to prevent a blow-out of the acetabular cartilage.


If the drill guide is not correctly aligned, and the tip 22 of the offset arm 21 is not abutted against the surface of the acetabular cartilage 23 of the acetabular socket during drilling, or lifts away, as shown in FIG. 4, the thickness of bone between the subsequently drilled hole and the socket or cartilage will be reduced, and a blow-out of the acetabulum may occur.


An actual blow-out of the acetabular cartilage is shown in FIG. 5, where the distal tip of the offset-arm is not in contact with the articular surface of the acetabular cartilage. As a result, the drill has passed through the bone and cartilage of the acetabulum and into the joint space of the socket.


A key feature of the offset arm is that it is designed to pivot, flex or bend if the surgeon chooses a trajectory other than the minimum indicated by the arm.


Typically in this condition, the offset arm is curved or bent, as depicted in FIG. 6A. The arm is also resiliently flexible, and preferably formed from a material having memory properties, such as Nitinol or a suitable plastics material. In the illustrated embodiment, the offset arm is made of Nitinol that allows it to be bent yet return to its original position once the force is removed. The Nitinol arm can be screwed, pinned, riveted or welded to the cannulated shaft.


Alternatively, as shown in FIG. 6B, the offset arm may be rigid and include a pivot ‘A’ in a region where offset arm connects or couples with the shaft of the drill guide. The pivot can be a hinge. In such embodiments, the drill guide may include a biasing means (not shown), for example a spring, to bias the offset arm in a minimal bone thickness indicating position. The provision of a pivot permits the arm to bend only within a single plane. This is advantageous if a surgeon chooses a trajectory other than the minimum provided by the arm.


It is known to be difficult to weld Nitinol directly to stainless steel. In the embodiments of FIGS. 1 to 4, a Nitinol offset arm is attached to the cannulated shaft of the drill guide by means of a screw or pin. However, stress concentrations at the point of attachment, and the precision required in fixing the arm to the shaft mean that it can be difficult to manufacture drill guides in this manner. FIGS. 7 to 9 illustrate an alternative means of attaching the Nitinol arm to the cannulated shaft. In this alternative embodiment, the drill guide has a Nitinol offset arm which is formed with and trapped within a stainless steel cap. According to this construction, the stainless steel cap is welded to the cannulated shaft, which itself is preferably also formed from stainless steel. The offset arm is cantilevered relative to the shaft and steel cap. As a result, some of the difficulties of manufacture may be alleviated.



FIG. 7 shows the distal end of a drill guide 14′ having an offset arm 21′ formed from a resiliently flexible Nitinol finger and cap 30. In this embodiment the cap is formed from stainless steel and is welded to the cannulated shaft 15′, which is also formed from stainless steel. In alternative embodiments, the cap is formed from other suitable materials.


Additionally, the distal end of cannulated shaft 15′ features bone engaging means 31 to help prevent slippage of the guide once it has been placed for, and during, drilling.


As is more clearly shown in FIGS. 8 to 10, cap 30 includes various supports 32, 32′ and lip 34 for fixing the Nitinol finger within a channel of the cap, and preventing it from moving. In addition, one or more ‘bumps’ or projections 33 are provided on cap 30 to prevent the Nitinol finger from translating out of channel.


The distal region of the offset arm 21 also includes one or more marks 35 which define a preferred region of contact for the offset arm with the acetabular surface. The mark or marks help the surgeon to correctly position the drill guide and assist it usage of the instrument.


An obturator may also be used with the drill guide to protect the offset arm. This prevents tissue catching on the offset arm, particularly during the introduction of the drill guide into the body and joint region, and can stabilize the offset arm during insertion.


In the embodiment shown in FIG. 10, drill guide 14 includes an obturator 25 which projects from the distal end of shaft 15. The obturator may be a generally tubular member coaxially mounted with the shaft which supports and protects the offset arm 21 whilst the instrument is packaged and/or when the instrument is being introduced into a surgical site. In the embodiment shown, the obturator is retractable and moveable between a deployed position, in which the offset arm is engaged for storage or insertion into a surgical site, and a retracted position In which the obturator is housed within the shaft of the drill guide. In such embodiments, the drill guide is formed of an inner tube and an outer tube. The inner tube provides the channel through which a drill may be guided, and the region between the inner and outer tubes houses the obturator. In alternative embodiments, not shown, the obturator may simply be removed once the instrument has been inserted into the surgical site.


The obturator may be slidably or rotatably attached to the instrument, or may be removable.


In alternative embodiments, not shown, the obturator is a sheath mounted on the outer surface of the shaft of the drill guide. The sheath includes an opening at a distal end and can be moved in an axial direction for deployment or retraction. The outer sheath may be advanced and retracted by means of complementary axial threads on the outer surface of the shaft and inner surface of outer sheath. Alternatively, the outer sheath may be slid up and down the shaft, or may include a combination of both—for example, it may be advanced and retracted in a sliding manner that incorporates a twisting or screwing action at or towards the extreme ends of its desired motion in order to lock the sheath in position.


The surgical instrument may also include a lock (not shown) for locking the instrument in the stowed position for storage or passage into, or out of, the body. The lock may be any suitable locking means, such as a twist-lock, button or catch.


The drill guide also includes a depth stop (not shown). The depth-stop can be set, by suitable means, to a depth required to safely deploy a bone anchor, and acts to prevent a drill from being inserted too deeply, which would result in over-drilling of the acetabulum. For example, the depth stop may be an internal shoulder in the cannulated shaft of the drill guide or a portion of the handle. The depth stop may also be adjustable to account for bone anchors of differing sizes, or alternatively, to allow a surgeon to drill shallower/deeper bone tunnels where deemed appropriate.


The described drill guide provides an advantage over standard known straight guides because a safe drill trajectory may be chosen before drilling of an anchor hole, and also because, the estimation of a safe trajectory is eliminated. Further, it provides an advantage over existing curved guides since it eliminates any unseen trajectory changes within the joint which are sometimes difficult to comprehend when viewed through an endoscope, for the reasons mentioned previously.

Claims
  • 1. A drill guide for use in drilling a tunnel in bone, comprising: a cannulated shaft having a lumen, proximal and distal ends, and a first axis defining a projected path of the lumen, the shaft being open at its distal end;bone-engaging means defining one or more points of engagement at the distal end of the shaft for engaging a bone surface at the one or more points of engagement;a handle towards the proximal end of the shaft, andan offset arm formed separately from and attached to a first surface of the shaft towards the distal end of the shaft,wherein the offset arm is resiliently flexible and extends distally beyond the distal end of the shaft, the offset arm comprising: a proximal region spaced apart from the shaft having a second axis parallel to and offset from the first axis;a non-spherical distal tip having a blunt surface that faces and is adapted to be brought into contact with a tissue surface via a curve or bend in the offset arm toward the first axis such that the blunt surface is located between and offset from the first axis and the second axis; anda distal region extending between the proximal region and the distal tip;wherein the resilience of the offset arm is sufficient to enable a pitch of the shaft relative to the bone to be increased while maintaining the distal tip of the offset arm biased into contact with the tissue surface.
  • 2. A drill guide according to claim 1, wherein the drill guide includes an obturator having a distal end adapted to extend beyond the distal end of the shaft and engage the offset arm at a location exteriorally of and beyond the distal end of the shaft to protect the offset arm prior to its use, the obturator being removable when the device is to be used.
  • 3. A drill guide according to claim 2, wherein the obturator is a curved or flattened member, or a hollow tubular member.
  • 4. A drill guide according to claim 3, wherein the obturator is a tubular member, or at least partially tubular, coaxially mounted within the shaft.
  • 5. A drill guide according to claim 2, wherein the obturator is slidably or rotatably mounted within the shaft and interlocks with the offset arm so as to enable maintaining the offset arm in a rigid position.
  • 6. A drill guide according to claim 1 wherein the bone engaging means comprises a plurality of teeth or spikes extending from a second surface of the shaft which, in use, act to prevent the distal end of the shaft from slipping when engaged with the bone surface, the second surface of the shaft being opposite the first surface of the shaft.
  • 7. A drill guide according to claim 1, wherein the proximal end of the shaft, or handle, comprises an adjustable depth stop to prevent over-drilling of the bone tunnels.
  • 8. A drill guide according to claim 1, wherein the offset arm is configured to flex only in a single plane.
  • 9. A drill guide according to claim 1, wherein a minimum acceptable drilling trajectory relative to the bone is predefined and wherein the drill guide is configured so that the drill guide is angled at and aligned with the minimum acceptable trajectory when the bone engaging means at the distal end of the drill guide are positioned against the bone surface.
  • 10. A drill guide according to claim 9, wherein the offset arm is configured to define a range of acceptable trajectories for the drill guide.
  • 11. A drill guide according to claim 1, wherein the distal portion of the offset arm is bent such that only the blunt surface of the distal tip of the offset arm comes into contact with the tissue surface.
  • 12. A drill guide according to claim 11, wherein the offset arm includes one or more marks to define the preferred region for contacting the tissue surface.
  • 13. A drill guide according to claim 1, wherein the shaft comprises a first material and the offset arm comprises a second material selected to be more resiliently flexible than the first material.
  • 14. A drill guide according to claim 13, wherein the second material is Nitinol or a plastics material.
  • 15. A method for positioning and drilling a bone tunnel in bone, comprising the steps of: locating a bone engaging means at a distal end of a drill guide against a bone surface, the drill guide comprising: a cannulated shaft having a lumen, proximal and distal ends, and an axis defining a projected path of the lumen, the shaft being open at its distal end; the bone-engaging means defining one or more points of engagement at the distal end of the shaft for engaging the bone surface at the one or more points of engagement;a handle towards the proximal end of the shaft, andan offset arm formed separately from and attached to a first surface of the shaft towards the distal end of the shaft, wherein the offset arm is resiliently flexible and extends distally beyond the distal end of the shaft, the offset arm comprising:a proximal region spaced apart from the shaft having a second axis parallel to and offset from the first axis;a non-spherical distal tip having a blunt surface that faces and is adapted to be brought into contact with a tissue surface via a curve or bend in the offset arm toward the first axis such that the blunt surface is located between and offset from the first axis and the second axis; anda distal region extending between the proximal region and the distal tip;wherein the resilience of the offset arm is sufficient to enable a pitch of the shaft relative to the bone to be increased while maintaining the distal tip of the offset arm biased into contact with the tissue surface;positioning the drill guide relative to the bone so that the offset arm is in contact with the tissue surface;inserting a drill bit into the drill guide; andwhile maintaining the offset arm in contact with the tissue surface, drilling into the bone to a desirable depth.
  • 16. The method as defined in claim 15 further comprising delivering a suture anchor into the drilled hole, and removing the drill guide, leaving the suture anchor in place.
  • 17. The method as defined in claim 15 further comprising the step of, while the offset arm is in contact with the tissue surface, increasing the pitch of the shaft against the resilience of the offset arm.
  • 18. The method as defined in claim 15 wherein the steps are performed arthroscopically.
  • 19. The method as defined in claim 15, further comprising pivoting the drill guide relative to the bone about a pivot so as to bias the offset arm against the tissue surface thereby causing the offset arm to flex.
  • 20. The method as defined in claim 15, wherein a minimum acceptable drilling trajectory relative to the bone is predefined and wherein the drill guide is configured so that the drill guide is angled at and aligned with the minimum acceptable trajectory when the bone engaging means at the distal end of the drill guide are positioned against the bone surface.
US Referenced Citations (244)
Number Name Date Kind
86016 Howell Jan 1869 A
3347234 Voss Oct 1967 A
3508334 Weissman Apr 1970 A
3604487 Gilbert Sep 1971 A
3867932 Huene Feb 1975 A
4039266 O'Connell Aug 1977 A
4159716 Borchers Jul 1979 A
4363250 Suga Dec 1982 A
4580563 Gross Apr 1986 A
4708139 Dunbar Nov 1987 A
4712547 Bonnet Dec 1987 A
4721116 Schintgen Jan 1988 A
4722331 Fox Feb 1988 A
4739751 Sapega et al. Apr 1988 A
4830023 de Toledo et al. May 1989 A
4896663 Vandewalls Jan 1990 A
4917699 Chervitz Apr 1990 A
4960134 Webster Oct 1990 A
5152764 Goble Oct 1992 A
5152790 Rosenberg et al. Oct 1992 A
5176515 Andrews Jan 1993 A
5197971 Bonutti Mar 1993 A
5207753 Badrinath May 1993 A
5231989 Middleman et al. Aug 1993 A
5250055 Moore et al. Oct 1993 A
RE34502 Webster, Jr. Jan 1994 E
5289963 McGarry et al. Mar 1994 A
5292330 Shutt Mar 1994 A
5320626 Schmieding Jun 1994 A
5345937 Middleman et al. Sep 1994 A
5356064 Green et al. Oct 1994 A
5364002 Green et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5409490 Ethridge Apr 1995 A
5458602 Goble et al. Oct 1995 A
5484095 Green et al. Jan 1996 A
5497933 DeFonzo et al. Mar 1996 A
5514144 Bolton May 1996 A
5520693 McGuire et al. May 1996 A
5545175 Abidin et al. Aug 1996 A
5549617 Green Aug 1996 A
5562664 Durlacher Oct 1996 A
5562689 Green et al. Oct 1996 A
5573538 Laboureau Nov 1996 A
5575801 Habermeyer et al. Nov 1996 A
5584839 Gieringer Dec 1996 A
5601550 Esser Feb 1997 A
5609596 Pepper Mar 1997 A
5613971 Lower et al. Mar 1997 A
5637112 Moore et al. Jun 1997 A
5643273 Clark Jul 1997 A
5643294 Tovey et al. Jul 1997 A
5645549 Boyd et al. Jul 1997 A
5667509 Westin Sep 1997 A
5667513 Torrie et al. Sep 1997 A
5681320 McGuire Oct 1997 A
5716360 Baldwin et al. Feb 1998 A
5720753 Sander et al. Feb 1998 A
5776075 Palmer Jul 1998 A
5817109 McGarry et al. Oct 1998 A
5820630 Lind Oct 1998 A
5843108 Samuels Dec 1998 A
5865361 Milliman et al. Feb 1999 A
5885300 Tokuhashi et al. Mar 1999 A
5891150 Chan Apr 1999 A
6004332 Yoon et al. Dec 1999 A
6022356 Noyes et al. Feb 2000 A
6024708 Bales et al. Feb 2000 A
6048354 Lawrence Apr 2000 A
6079606 Milliman et al. Jun 2000 A
6120511 Chan Sep 2000 A
6123678 Palmer Sep 2000 A
6129683 Sutton Oct 2000 A
6136010 Modesitt et al. Oct 2000 A
6200322 Branch et al. Mar 2001 B1
6210415 Bester Apr 2001 B1
6241139 Milliman et al. Jun 2001 B1
6254605 Howell Jul 2001 B1
6254606 Carney et al. Jul 2001 B1
6267763 Castro Jul 2001 B1
6330965 Milliman et al. Dec 2001 B1
6342057 Brace et al. Jan 2002 B1
6375658 Hangody et al. Apr 2002 B1
6450948 Matsuura et al. Sep 2002 B1
6491645 Gaber Dec 2002 B1
6508496 Huang Jan 2003 B1
6582451 Marucci Jun 2003 B1
6656205 Manhes Dec 2003 B1
6669073 Milliman et al. Dec 2003 B2
6701812 Sawamura Mar 2004 B1
6716228 Tal Apr 2004 B2
6840932 Lang Jan 2005 B2
6918916 Gobel et al. Jul 2005 B2
6929647 Cohen Aug 2005 B2
6953139 Milliman et al. Oct 2005 B2
6964668 Modesitt et al. Nov 2005 B2
7001400 Modesitt et al. Feb 2006 B1
7090680 Bonati et al. Aug 2006 B2
7112208 Morris et al. Sep 2006 B2
7192431 Hangody et al. Mar 2007 B2
7201756 Ross et al. Apr 2007 B2
7204839 Dreyfuss et al. Apr 2007 B2
7235087 Modesitt et al. Jun 2007 B2
7264622 Michelson Sep 2007 B2
7303107 Milliman et al. Dec 2007 B2
7341564 Zwiefel Mar 2008 B2
7341596 Heppler Mar 2008 B2
7351201 Ouchi Apr 2008 B2
7422594 Zander Sep 2008 B2
7481824 Boudreaux et al. Jan 2009 B2
7488327 Rathbun et al. Feb 2009 B2
7565993 Milliman et al. Jul 2009 B2
7594917 Whittaker et al. Sep 2009 B2
7624902 Marczyk et al. Dec 2009 B2
7624903 Green et al. Dec 2009 B2
7625378 Foley Dec 2009 B2
7681772 Green et al. Mar 2010 B2
7828187 Green et al. Nov 2010 B2
7842042 Reay-Young Nov 2010 B2
7871422 Shibata Jan 2011 B2
7985239 Suzuki Jul 2011 B2
8197482 Stone Jun 2012 B2
8282647 Re Oct 2012 B2
8317862 Troger et al. Nov 2012 B2
8343161 Re Jan 2013 B2
8523872 Ek Sep 2013 B2
8617168 Bourque et al. Dec 2013 B2
8685033 Johnson et al. Apr 2014 B2
8690885 Smith Apr 2014 B2
8771273 Homan et al. Jul 2014 B2
8790352 Smith et al. Jul 2014 B2
8840615 Bourque Sep 2014 B2
20010016746 McGuire et al. Aug 2001 A1
20010053934 Schmieding Dec 2001 A1
20020019649 Sikora et al. Feb 2002 A1
20020117533 Milliman et al. Aug 2002 A1
20020117534 Green et al. Aug 2002 A1
20020133165 Whittaker et al. Sep 2002 A1
20020143342 Hangody et al. Oct 2002 A1
20020143354 Lang Oct 2002 A1
20030009173 McGuire et al. Jan 2003 A1
20030009218 Boucher et al. Jan 2003 A1
20030083688 Simonson May 2003 A1
20030083695 Morris May 2003 A1
20030093093 Modessitti et al. May 2003 A1
20030216742 Wetzler et al. Nov 2003 A1
20040015170 Tallarida et al. Jan 2004 A1
20040049195 Singhatat et al. Mar 2004 A1
20040073227 Dreyfuss et al. Apr 2004 A1
20040147932 Burkinshaw et al. Jul 2004 A1
20040181246 Heppler Sep 2004 A1
20040193172 Ross et al. Sep 2004 A1
20040220588 Kermode et al. Nov 2004 A1
20040267276 Camino et al. Dec 2004 A1
20050027299 Metzger Feb 2005 A1
20050033365 Courage Feb 2005 A1
20050113841 Sheldon May 2005 A1
20050149045 Elliott Jul 2005 A1
20050165420 Cha Jul 2005 A1
20050177179 Baynham et al. Aug 2005 A1
20050222601 Erhard Oct 2005 A1
20050228399 Kubo et al. Oct 2005 A1
20050245924 Tuke et al. Nov 2005 A1
20050245934 Tuke Nov 2005 A1
20050261692 Carrison et al. Nov 2005 A1
20060041263 Chu et al. Feb 2006 A1
20060069394 Weiler et al. Mar 2006 A1
20060085006 Ek et al. Apr 2006 A1
20060106398 Lauryssan et al. May 2006 A1
20060119014 Towers et al. Jun 2006 A1
20060155290 Shino Jul 2006 A1
20060195106 Jones et al. Aug 2006 A1
20060195112 Ek Aug 2006 A1
20060271059 Reay-Young Nov 2006 A1
20070118136 Ek May 2007 A1
20070152014 Gillujm et al. Jul 2007 A1
20070179340 Jorgenson Aug 2007 A1
20070191852 Shimko et al. Aug 2007 A1
20070191853 Stone Aug 2007 A1
20070233128 Schmieding et al. Oct 2007 A1
20070233136 Wozencroft Oct 2007 A1
20070233151 Chudik Oct 2007 A1
20070233241 Graf et al. Oct 2007 A1
20070244508 Weizman Oct 2007 A1
20070270804 Chudik Nov 2007 A1
20070276370 Altarac et al. Nov 2007 A1
20070282356 Remiszewski et al. Dec 2007 A1
20070282358 Remiszewski et al. Dec 2007 A1
20080027435 Zucherman et al. Jan 2008 A1
20080027457 Dienst et al. Jan 2008 A1
20080097453 Stone Apr 2008 A1
20080103506 Volpi et al. May 2008 A1
20080140748 Lada Jun 2008 A1
20080188859 Reitzig et al. Aug 2008 A1
20080221581 Shoham Sep 2008 A1
20080306485 Coon et al. Dec 2008 A1
20080306487 Hart Dec 2008 A1
20090018654 Schmieding et al. Jan 2009 A1
20090048673 Le Huec Feb 2009 A1
20090069845 Frushell et al. Mar 2009 A1
20090076512 Ammann et al. Mar 2009 A1
20090143784 Petersen et al. Jun 2009 A1
20090157081 Homan et al. Jun 2009 A1
20090157110 Muto et al. Jun 2009 A1
20090163766 Torrie Jun 2009 A1
20090163935 McCarthy et al. Jun 2009 A1
20090171355 Amis et al. Jul 2009 A1
20090171360 Whelan Jul 2009 A1
20090216236 Re Aug 2009 A1
20090216243 Re Aug 2009 A1
20090222013 Graf et al. Sep 2009 A1
20090228031 Ritter et al. Sep 2009 A1
20090254093 White Oct 2009 A1
20090281545 Stubbs Nov 2009 A1
20090306675 Wong et al. Dec 2009 A1
20100016984 Trabish Jan 2010 A1
20100030029 Markham Feb 2010 A1
20100030116 Chana Feb 2010 A1
20100042106 Bryant et al. Feb 2010 A1
20100049200 Re Feb 2010 A1
20100049201 Re Feb 2010 A1
20100057077 Ducharme Mar 2010 A1
20100068233 Bangera et al. Mar 2010 A1
20100121337 Pandya May 2010 A1
20100137872 Kam et al. Jun 2010 A1
20100137924 Tuke Jun 2010 A1
20100249930 Myers Sep 2010 A1
20100256645 Zajac et al. Oct 2010 A1
20100268241 Flom et al. Oct 2010 A1
20100292743 Singhal Nov 2010 A1
20110087258 Sluss Apr 2011 A1
20110251621 Sluss Oct 2011 A1
20110282350 Kowarsch et al. Nov 2011 A1
20110313478 Herdrich et al. Dec 2011 A1
20120046526 Boettner Feb 2012 A1
20120059382 Paulos Mar 2012 A1
20120059469 Myers et al. Mar 2012 A1
20120109136 Bourque et al. May 2012 A1
20120116402 Schneider May 2012 A1
20120150301 Gamache et al. Jun 2012 A1
20120197261 Rocci et al. Aug 2012 A1
20130085494 Weisenburgh et al. Apr 2013 A1
20140107657 Norton et al. Apr 2014 A1
20140303635 Smith et al. Oct 2014 A1
Foreign Referenced Citations (41)
Number Date Country
1069644 Mar 1993 CN
1625370 Jun 2005 CN
201182625 Jan 2009 CN
201612662 Oct 2010 CN
102007057075 May 2009 DE
0643945 Mar 1995 EP
1444959 Aug 2004 EP
1882456 Jan 2008 EP
1917921 May 2008 EP
2311394 Apr 2011 EP
2716364 Aug 1995 FR
2906452 Apr 2008 FR
2911264 Jul 2008 FR
2918554 Jan 2009 FR
2230453 Oct 1990 GB
H10-174689 Jun 1998 JP
2002102236 Apr 2002 JP
2003531676 Oct 2003 JP
2005507697 Mar 2005 JP
2009195705 Sep 2009 JP
2009261812 Nov 2009 JP
2010527705 Aug 2010 JP
2011507639 Mar 2011 JP
2011520475 Jul 2011 JP
201275604 Apr 2012 JP
2125844 Feb 1999 RU
2241394 Dec 2004 RU
46642 Jul 2005 RU
8800458 Jan 1988 WO
9929237 Jun 1999 WO
9956628 Nov 1999 WO
0140748 Jun 2001 WO
200182838 Nov 2001 WO
0236020 May 2002 WO
2003037163 May 2003 WO
2005037065 Apr 2005 WO
2005037150 Apr 2005 WO
2006088452 Aug 2006 WO
2009082497 Jul 2009 WO
2012103535 Aug 2012 WO
2014107729 Jul 2014 WO
Non-Patent Literature Citations (12)
Entry
Kayvani, K. “Analysis and Design of Cable Supponed Roof Structures.” <https://books.google.com/books?id=xlgyl_U1lTkC&pg=PA59&lpg=PA59&dq=high+tensile+strength+steel+characteristics+flexibility&source=bl&ots=l2WZYv2_LR&sig=wdmKuugAPuSRTQjyyuqJ7AKqutl&hl=en&sa=X&ei=Ke0eVYS4G8z3sAWPvYC4CA&ved=0CE4Q6AEwBw#v=onepage&q&f=true> accessed May 14, 2015.
International search report and written opinion regarding International patent application PCT/US2011/059216 dated Feb. 14, 2012.
International search report and written opinion regarding International patent application PCT/US2011/059219 dated Feb. 10, 2012.
International Preliminary Report on Patentability from corresponding International application No. PCT/US2011/059216 dated May 16, 2013.
Communication pursuant to Article 94(3) for EP11781969.8 dated May 27, 2015.
Office Action from related European Application No. 11781969.8-1654 dated May 23, 2016.
Kayvani, K., “Analysis and Esign of Cable Supported Roof Structures,” <https://books.google.com/books?id=xlgyl_U1lTkC&pg=PA59&lpg=PA59&dq=high+tensile+strangth+steel+characteristics+flexibility&source=bl&ots=l2WZYv2_LR&sig=wdmKuugAPuSRTQjyvuqJ7AKqutl&hl=en&sa=X&ei=Ke0eVYS4G8z3sAWPvYC4CA&ved=0CE4Q6AEwBw#v=one page&q&f=true> accessed May 14, 2015.
Matsuda, D.K.,“FAI: An emerging problem in orthopedics,” Orthopedics Today, Jul. 2009, Retrieved from www.healio.com on Jan. 11, 2013.
Shino, Konsei, “Triple Bundle ACL Reconstruction Using the Smith and Nephew ENDOBUTTON CL Fixation System” Knee Series. Technique Guide. Andover, Massachusetts: 2007.
Office Action from related Mexican Application No. MX/a/2013/003496 dated Jun. 6, 2017.
Communication from related EP Application No. 08729966.5-1659 dated Jul. 7, 2017.
Notice of Reasons for Rejection from related Japanese Application No. 2013-557915 (Appeal No. 2016-12398) dated Jul. 14, 2017.
Related Publications (1)
Number Date Country
20120136357 A1 May 2012 US
Provisional Applications (1)
Number Date Country
61409560 Nov 2010 US