This application is a 35 U.S.C. § 371 National Stage Application of PCT/EP2010/060318, filed on Jul. 16, 2010, which claims the benefit of priority to Serial No. DE 10 2009 029 055.9, filed on Sep. 1, 2009 in Germany, the disclosures of which are incorporated herein by reference in their entirety.
A drill hammer and chipping hammer device with a hammer percussion mechanism and with a gear unit for transmitting a drive torque from an electric motor to the hammer percussion mechanism is known. The gear unit has in this case spur wheels which are in engagement with one another.
A drill hammer and/or chipping hammer device with a hammer percussion mechanism which has a drive unit, and with a gear unit for transmitting a drive torque from a motor to the hammer percussion mechanism, the gear unit comprising at least one planetary gear, and a drive element of the drive unit being arranged on a gear element of the planetary gear, is proposed. In this context, a “hammer percussion mechanism” is to be understood, in particular, to mean a percussion mechanism with a beater which can be accelerated over a travel in the beating direction before it impinges onto a component in order to trigger a beating pulse, such as, preferably, a pneumatic percussion mechanism in which a beater can be driven by a piston via a gas cushion, or a mechanical percussion mechanism in which a beater can be accelerated by a mechanical arrangement, such as, in particular, a spring arm. A “planetary gear” is to be understood, in particular, to mean a gear which has at least one planet which is connected to a planet carrier and which is coupled outwardly in the radial direction to a ring wheel and/or inwardly in the radial direction to a sun wheel and therefore has, in particular, a plurality of coaxial shafts. The sun wheel, the planet and/or the ring wheel may be formed by round gear wheels or by mutually coordinated nonround gear wheels. A plurality of planetary gears may be connected one behind the other and/or a plurality of steps may be interposed between planet wheel and ring wheel. The drive unit may be formed by various units which seem expedient to a person skilled in the art, such as by a wobble bearing unit in which a wobble element is mounted in a bearing plane which is tilted to an axis of rotation by an angle greater than zero, such as, in particular, in a bearing plane spanned by a rolling body raceway, a drive unit formed by a cam track unit and/or, especially advantageously, by an eccentric unit which has, in particular, an eccentrically arranged drive element, such as, in particular, an eccentrically arranged drive bolt. An especially simple and robust construction can be achieved by means of an eccentric unit. The drive unit serves particularly for converting a rotational movement into an axial beating movement. Furthermore, “arranged on a gear element” is to be understood in this context to mean, in particular, that the drive element, such as, in particular, a bearing element with a tilted bearing track of a wobble bearing unit or, especially advantageously, an eccentric bolt of an eccentric unit, is connected fixedly to a gear element of the planetary gear, such as, in particular, to a ring wheel, a planet carrier and/or to a planet of the planetary gear.
By means of a corresponding configuration, an advantageous step-up can be achieved by means of an especially space-saving construction, specifically, in particular, when the planetary gear has an input element, such as, in particular, a sun wheel, the axis of rotation of which is arranged at least essentially coaxially to an axis of rotation of a drive element of the hammer percussion mechanism. The term “essentially coaxially” is to be understood, in particular, to mean that the shafts form an angle of less than 30° and preferably of less than 10°. In this case, an “input element” is to be understood, in particular, to mean an element, via which a torque is introduced into the gear unit and the axis of rotation of which is arranged, in particular, coaxially to an axis of rotation of the motor. Furthermore, as a result of the structural configuration, the gear unit can advantageously be designed as a premountable subassembly, and a small load upon a motor shaft can be achieved, and the motor shaft can be designed with a smaller diameter, with the result that the motor can also be made smaller.
In a further refinement of the disclosure, it is proposed that an axis of rotation of the planetary gear and a beating axis of the hammer percussion mechanism form an angle unequal to zero, that is to say have an orientation deviating from a parallel or coaxial orientation, as a result of which, in particular, even larger motors can advantageously be integrated, specifically, in particular, when the axis of rotation of the planetary gear and the beating axis of the hammer percussion mechanism, in which a beating pulse is transmitted during operation, form an angle greater than 10° and preferably greater than 20°. Especially advantageously, an L form of construction can be achieved, in which the axis of rotation of the planetary gear and the beating axis of the hammer percussion mechanism form at least essentially, that is to say with a deviation of less than 10° and preferably of less than 5°, an angle of 90°.
If at least one gear element of the planetary gear is formed in one piece with a drive element of the hammer percussion mechanism, such as, in particular, with an eccentric element and/or a wobble bearing element, additional components, construction space, weight, outlay in assembly terms and costs can be saved. In this context, “in one piece” is to be understood, in particular, to mean produced in one casting. Basically, however, a multipart form may also be envisaged, in which parts are connected by means of a riveted, welded and/or brazed joint, etc.
In a further refinement of the disclosure, it is proposed that the drill hammer and/or chipping hammer device has at least one lockup clutch, with the result that undesirably high torques can advantageously be avoided.
Furthermore, it is proposed that the lockup clutch be arranged in the force flux between a planet carrier and an element of the gear unit and/or between a ring wheel and an element of the gear unit, with the result that the lockup clutch can advantageously be integrated simply and in a space-saving way.
In a further refinement of the disclosure, it is proposed that a ring wheel and a planet carrier of the planetary gear are connected via a bearing connection, that is to say, in particular, at least one ring wheel is mounted via a planet carrier, so that bearing forces of the ring wheel are supported via the planet carrier, and/or at least one planet carrier is mounted via a ring wheel, so that bearing forces of the planet carrier are supported via the ring wheel. By virtue of a corresponding configuration, construction space can advantageously be saved.
In a further refinement of the invention, it is proposed that a ring wheel and a planet carrier of the planetary gear are connected via a bearing connection, that is to say, in particular, at least one ring wheel is mounted via a planet carrier, so that bearing forces of the ring wheel are supported via the planet carrier, and/or at least one planet carrier is mounted via a ring wheel, so that bearing forces of the planet carrier are supported via the ring wheel. By virtue of a corresponding configuration, construction space can advantageously be saved.
Furthermore, it is proposed that the gear element of the planetary gear on which the drive element is arranged be driven, in at least one operating mode, with a superposed rotational movement, so that the drive element executes a linear movement along a beating axis of the hammer percussion mechanism. As a result of a corresponding configuration, components, such as, in particular, pivotably mounted connecting rod elements, weight, construction space and costs can be saved. In particular, the drive element can advantageously be connected directly to a piston of the hammer percussion mechanism. In this case, various gear elements of the planetary gear which seem to be expedient to a person skilled in the art may be acted upon with a superposed rotational movement, but a corresponding configuration can be achieved especially advantageously in a simple way when the gear element is formed by a planet and the drive element of the drive unit is arranged on a planet of the planetary gear.
Further advantages may be gathered from the following drawing description. The drawing illustrates exemplary embodiments of the disclosure. The drawing, description and claims contain numerous features in combination. A person skilled in the art will expediently also consider the features individually and combine them into appropriate further combinations.
In the drawing,
The drill hammer and chipping hammer device comprises a gear unit 12a for transmitting a drive torque from an electric motor 14a arranged in the housing 54a to the hammer percussion mechanism 10a or to the drive element 28a. The gear unit 12a has a planetary gear 16a. The planetary gear 16a has an input element 20a which is formed by a sun wheel and the axis of rotation 24a of which is arranged coaxially to an axis of rotation 26a of the drive element 28a of the hammer percussion mechanism 10a. The sun wheel is formed in one piece with a motor shaft of the electric motor 14a. The axis of rotation 24a of the planetary gear or of the sun wheel is arranged coaxially to an axis of rotation of the electric motor 14a. The axis of rotation 24a and a beating axis 30a of the hammer percussion mechanism 10a form an angle 32a of 90°. Basically, however, other angles may also be envisaged. A ring wheel 42a of the planetary gear 16a forms an output element of the gear unit 12a. The drive element 28a is arranged on the ring wheel 42a, specifically, the ring wheel 42a is formed in one piece with the drive element 28a (
In order to achieve advantageous lubrication, a planetary gear inner space 52a in which, in particular, the planets 74a are arranged is filled with lubricant. The planetary gear inner space 52a is sealed off by means of a sealed-off needle bearing 86a between the input element 20a and the planet carrier 46a and also by means of a sealing means 50a formed by a brushing seal. The annular sealing means 50a is fastened with its radially inner region to the planet carrier 46a and with its radially outer region lies, loaded by an internal tension force, on an end face of the ring wheel 42a.
The planet carrier 40d of the planetary gear 16d has a driven element 92d on a side facing away from the sun wheel. The driven element 92d is arranged eccentrically to the axis of rotation 24d. The driven element 92d is formed by a bolt formed in one piece with the planet carrier 40d. A planet 75d of the planetary gear 16d is mounted rotatably on the driven element 92d and meshes outwardly in the radial direction with the ring wheel 42d. The drive element 28d is arranged on the planet 75d on a side facing away from the planet carrier 40d.
The drive element 28d is arranged eccentrically to an axis of rotation 94d of the planet 75d about which the planet 75d is mounted rotatably on the driven element 92d. During operation, the planet 75d on which the drive element 28d is arranged is driven with a superposed rotational movement, so that the drive element 28d executes a linear movement along a beating axis 30d. The drive element 28d has a longitudinal axis 96d which runs through a reference circle 98d of the planet 74d and parallel to the axis of rotation 94d of the planet 75d. The reference circle 98d has a diameter which is half as large as a reference circle diameter of a reference circle 100d of the ring wheel 42d in which the planet 75d can roll. By means of the single ring wheel 42d, in which both the planets 74d and the planet 75d mesh, an especially space-saving construction can be achieved. Basically, however, two separate ring wheels could also be provided.
To pick up a torque for driving a hammer tube in rotation, the planet carrier 40d could be connected to a gear wheel or a gear wheel could be integrally formed onto the planet carrier 40d. The planet carrier 40d is mounted rotatably in the ring wheel 42d of the planetary gear 16d by means of a bearing connection 69d formed by a rolling bearing 70d. In order to ensure a lockup function, the ring wheel 42d could be mounted in the housing of the drill hammer and chipping hammer via a lockup clutch, and/or a lockup clutch could be arranged between the planet carrier 40d and the hammer tube.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 029 055 | Sep 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/060318 | 7/16/2010 | WO | 00 | 4/11/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/026683 | 3/10/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2342540 | Hale | Feb 1944 | A |
3022683 | Simon | Feb 1962 | A |
4034833 | Jeter | Jul 1977 | A |
4041729 | Bilz | Aug 1977 | A |
4460078 | Heide et al. | Jul 1984 | A |
4579019 | Gabriele | Apr 1986 | A |
5295925 | Hirabayashi | Mar 1994 | A |
5480362 | Tanaka | Jan 1996 | A |
6223833 | Thurler | May 2001 | B1 |
6733414 | Elger | May 2004 | B2 |
7037200 | Dorrie et al. | May 2006 | B2 |
7059425 | Ikuta | Jun 2006 | B2 |
7395876 | Walker | Jul 2008 | B1 |
7407460 | Eisenhardt | Aug 2008 | B2 |
7537540 | Baumann et al. | May 2009 | B2 |
7794355 | Pusateri | Sep 2010 | B2 |
8235137 | Walker | Aug 2012 | B2 |
20040226969 | Shew | Nov 2004 | A1 |
20060000624 | Hara | Jan 2006 | A1 |
20060048958 | Ikuta | Mar 2006 | A1 |
20060086514 | Aeberhard | Apr 2006 | A1 |
20060162945 | Soderlund | Jul 2006 | A1 |
20060237205 | Sia | Oct 2006 | A1 |
20060243468 | Meixner | Nov 2006 | A1 |
20060289182 | Tsai | Dec 2006 | A1 |
20070114050 | Baumann | May 2007 | A1 |
20080173459 | Kuroyanagi | Jul 2008 | A1 |
20100224033 | Yeoh | Sep 2010 | A1 |
20120305359 | Sato et al. | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
1332062 | Jan 2002 | CN |
1333100 | Jan 2002 | CN |
1367067 | Sep 2002 | CN |
1761553 | Apr 2006 | CN |
201053482 | Apr 2008 | CN |
101 03 141 | Jul 2002 | DE |
103 30 180 | Jan 2005 | DE |
10 2006 020 172 | Nov 2007 | DE |
0 200 844 | Nov 1986 | EP |
1 172 180 | Jan 2002 | EP |
1 174 213 | Jan 2002 | EP |
2 099 174 | Dec 1997 | RU |
Entry |
---|
EPO translation of EP1172180A2, Translation was retrieved on Apr. 29, 2015, 12 pages. |
International Search Report corresponding to PCT Application No. PCT/EP2010/060318, dated Nov. 10, 2010 (German and English language document) (5 pages). |
Number | Date | Country | |
---|---|---|---|
20120186842 A1 | Jul 2012 | US |