In many oilfield operations (e.g., drilling, running casing, etc.) a tubular is run into the wellbore. During run-in, the tubular is typically connected to (i.e., made-up to) one or more tubulars that have already been run-in, thus providing an end-on-end connection forming a tubular string. In some cases, elevators are employed to position the tubular above the wellbore, allowing the tubular to be made-up to the subjacent, already-run tubular. The elevator then supports the weight of the tubular string through its engagement with the tubular, and lowers the tubular string into the wellbore.
There are several different types of elevators, which employ different structures to engage the tubular and support its weight depending on the type of tubular. For more robust tubulars (e.g., casings), elevators generally employ slips that engage the outer radial surface of the casing. Slip-type elevators generally use the weight of the casing to provide the gripping force, and may include gripping structures or the like that bite into the casing. Slip-type elevators may crush or otherwise damage less robust tubulars (e.g., drill pipes) in deep sea or other applications where the tubular strings can become extremely heavy. As such, a different type of elevator, referred to as a load bushing elevator, is oftentimes used for less robust tubulars (e.g., drill pipes). The load bushing catches an upset of the drill pipe or a lift nubbin connected to the top of the drill pipe. Load bushing elevators, by contrast, provide a collar or landing surface upon which that the upset bears.
An apparatus for handling one or more tubulars is disclosed. The apparatus may include a body defining at least a portion of a tapered bowl. A plurality of slips may be disposed at least partially within the bowl and configured to slide along a surface of the bowl. Each of the slips may include a radial engaging surface and a tapered engaging surface. The radial engaging surface may have a plurality of gripping structures extending inwardly therefrom that are configured to engage an outer surface of a first tubular having a substantially constant outer diameter. The tapered engaging surface may be configured to engage a tapered outer surface of a second tubular.
An elevator for handling one or more tubulars is also disclosed. The elevator may include a body defining a first portion of a tapered bowl and one or more doors pivotally coupled with the body. The one or more doors may define a second portion of the bowl. A plurality of slips may be disposed at least partially within the bowl and circumferentially-offset from one another about a longitudinal centerline through the body. The slips are configured to slide along a surface of the bowl. Each of the slips may include a radial engaging surface and a tapered engaging surface. The radial engaging surface may have a plurality of gripping structures extending inwardly therefrom that are configured to engage an outer surface of a first tubular having a substantially constant outer diameter. The tapered engaging surface may be configured to engage a tapered outer surface of a second tubular. A plurality of pipe guides may be coupled to the body and positioned below the slips. Each of the pipe guides may be configured to pivot between a first position and a second position when contacted by one of the slips. A distance between an end of each pipe guide and the longitudinal centerline may be less than a distance between the gripping structures on the radial engaging surface and the longitudinal centerline when the pipe guides are in the second position.
A method for handling one or more tubulars is also disclosed. The method may include inserting a first tubular having a substantially constant outer diameter into a body of an elevator. The body may define at least a portion of a tapered bowl. A plurality of slips may be disposed at least partially within the bowl. The slips may move along a surface of the bowl until a radial engaging surface of each slip engages an outer surface of the first tubular. The slips may move along the surface of the bowl to disengage the radial engaging surface of each slip from the outer surface of the first tubular. A second tubular may be inserted into the elevator. The slips may move along the surface of the bowl until a tapered engaging surface of each slip engages a tapered outer surface of the second tubular.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the present teachings, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate an embodiment of the present teachings and together with the description, serve to explain the principles of the present teachings. In the figures:
It should be noted that some details of the figures have been simplified and are drawn to facilitate understanding of the embodiments rather than to maintain strict structural accuracy, detail, and scale.
Reference will now be made in detail to embodiments of the present teachings, examples of which are illustrated in the accompanying drawings. In the drawings, like reference numerals have been used throughout to designate identical elements, where convenient. In the following description, reference is made to the accompanying drawing that forms a part thereof, and in which is shown by way of illustration a specific exemplary embodiment in which the present teachings may be practiced. The following description is, therefore, merely exemplary.
In particular, according to an embodiment, the elevator 100 may include a body 102 having the doors 104, 106 coupled therewith. The body 102 may include a top 107 and a bottom 109 and may form at least a portion of a cylindrical structure. In some cases, the doors 104, 106 may be omitted, with the body 102 providing the entire cylindrical structure. In other cases, a single door, or three or more doors, may be employed. In the illustrated embodiment, the doors 104, 106 may be coupled with the body 102 so as to pivot with respect thereto. For example, the doors 104, 106 may be coupled with the body 102 via pins 108-1, 108-2 (pin 108-2 is not visible in
The elevator 100 may also include the slips 122 (eight are shown) that are at least partially disposed within the bowl 115. As shown, the slips 122 are circumferentially-offset from one another about a longitudinal centerline 103 through the body 102. Although eight slips 122 are shown in the illustrated embodiment, it will be appreciated that additional or fewer slips may be employed. As shown, one or more of the slips 122 may be coupled with each door 104, 106. Accordingly, these slips 122 may be configured to swing or pivot with the doors 104, 106.
Each slip 122 may include a carrier 160 and an insert 162. The carrier 160 may include an outer surface 164 that is shaped and sized to conform to the tapered inner surface 121 of the bowl 115. As such, the outer surface 164 of the carrier 160 may be tapered, and a thickness (measured radially from the longitudinal centerline 103) may increase from the bottom of the carrier 160 to the top of the carrier 160.
The insert 162 may be coupled with the carrier 160 via a dovetail connection 166 or any other suitable connection. As shown, the insert 162 includes the male portion of the dovetail connection 166, and the carrier 160 includes the female portion of the dovetail connection 166, but in other embodiments, this configuration may be reversed.
Each insert 162 may include a first or “lower” portion 168 and a second or “upper” portion 170. The lower portion 168 may include a radial engaging surface 172 that faces the longitudinal centerline 103. The radial engaging surface 172 may be curved, e.g., partially around the longitudinal centerline 103. However, the radial engaging surface 172 may be generally straight in the axial direction, in cross-section, such that the radial engaging surface 172 may extend generally parallel to the longitudinal centerline 103.
The radial engaging surface 172 of the lower portion 168 may include a plurality of gripping structures 174, which may be teeth extending inwardly therefrom (i.e., toward the longitudinal centerline 103) that are adapted to engage and grip a tubular. The gripping structures 174 may be conical, frustoconical, or any other shape suitable to grip (e.g., by gouging into) the tubular. The gripping structures 174 may be arranged in two or more substantially parallel rows, as shown, or the gripping structures 174 may be arranged in any other suitable orientation.
The upper portion 170 of each insert 162 may include a tapered engaging surface 176 that faces the longitudinal centerline 103. The tapered engaging surface 176 of the upper portion 170 may be inclined at an angle to the longitudinal centerline 103 in radial cross-section. The angle may be from a low of about 1° to about 10°, about 10° to about 20°, about 20° to about 30°, about 30° to about 40°, about 10° to about 30°, or about 15° to about 25°. As such, the tapered engaging surface 176 may form a shoulder such that a distance between the bottom of the tapered engaging surface 176 and the longitudinal centerline 103 is less than a distance between the top of the tapered engaging surface 176 and the longitudinal centerline 103. As discussed in greater detail below with respect to
The slips 122 may be connected together via a timing ring (not shown). The timing ring may be coupled with or extend through one or more linkages 178 extending from the carrier 160 of each slip 122. One or more hydraulic or pneumatic cylinders (not shown) may be coupled with and disposed between the body 102 and the timing ring. The hydraulic cylinders may be extensible upward and downward with respect to the body 102, so as to drive the timing ring away from or toward the body 102. As the timing ring moves the slips 122 upward (e.g., away from) the body 102, the slips 122 may slide up along the surface 121 of the bowl 115, thereby increasing their radial distances from the longitudinal centerline 103, because the surface 121 of the bowl 115 is frustoconical. This moves the slips 122 into the first or “upper” position, as shown in
The body 102 may also include ears 148, 150 (ear 150 is not visible in
The casing 400 may be inserted into the elevator 100 when the doors 104, 106 of the elevator 100 are open, and then the doors 104, 106 may be closed and latched. In other cases, the doors 104, 106 may be and remain closed, and the casing 400 may be inserted axially (e.g., upward or downward as shown) into the elevator 100 in a direction parallel to the longitudinal centerline 103. Once the casing 400 is in place within the elevator 100, the timing ring may move the slips 122 downward with respect to the body 102 causing the slips 122 to simultaneously move radially-inward. When this occurs, the gripping structures 174 on the radial engaging surfaces 172 of the inserts 162 (see
The elevator 100 may be employed regardless of the starting orientation of the drill pipe 500. That is, the drill pipe 500 may begin in a horizontal orientation, a vertical or “racked back” orientation, or at any angle in between. The drill pipe 500 may be inserted into the elevator 100 when the doors 104, 106 of the elevator 100 are open, and then the doors 104, 106 may be closed and latched. In other cases, the doors 104, 106 may be and remain closed, and the drill pipe 500 may be inserted axially (e.g., upward or downward as shown) into the elevator 100 in a direction parallel to the longitudinal centerline 103. Once the drill pipe 500 is in place within the elevator 100, the timing ring (not shown) may move the slips 122 upward or downward with respect to the body 102 causing the slips 122 to move radially-inward or radially-outward. The slips 122 may be moved to cause the tapered engaging surfaces 176 on the upper portions 170 of the inserts 162 (see
When the slips 122 are in the second, lower position, the slips 122 may contact a landing surface 118. The landing surface 118 may prevent the slips 122 from continued downward travel in the bowl 115, providing for load transfer while preventing the slips 122 from moving radially-inward against the drill pipe 500. As shown, the landing surface 118 may be reverse tapered, meaning that the landing surface 118 may slope downward as it proceeds radially-outward. If the drill pipe 500 started in a horizontal orientation, the elevator 100 may hoist the drill pipe 500 into a vertical position prior to use.
In at least one embodiment, the inserts 162 may be switched out or replaced with inserts having a different size, depending on the size of the drill pipe 500, to better fit the outer surface 502 of the drill pipe 500. This may provide additional flexibility to the elevator 100.
Once the casing 400 and/or the drill pipe 500 are engaged and supported by the slips 122, the weight of the casing 400 and/or the drill pipe 500 may be transferred to the body 102 through the slips 122 engaging the bowl 115. In turn, the elevator 100 may transmit the force through the ears 148, 150 to bails attached to a lifting mechanism, so as to control the position of the casing 400 and/or the drill pipe 500 (e.g., to lower the casing 400 and/or the drill pipe 500 into a wellbore).
The method may begin by inserting a first tubular (e.g., casing 400) into the body 102 of the elevator 100, as at 1002. As discussed above, the first tubular 400 may be inserted into the body 102 either laterally (e.g., through the open doors 104, 106) or axially. The slips 122 may move along the surface 121 of the bowl 115 until the radial engaging surface 172 of each slip 122 engages the outer surface 402 of the first tubular 400, as at 1004. Once engaged, the elevator 100 may move the first tubular 400. In at least one embodiment, the elevator 100 may lower the first tubular 400 into a wellbore. The slips 122 may then move in an opposing direction to disengage the radial engaging surface 172 of each slip 122 from the outer surface 402 of the first tubular 400, as at 1006.
The method 1000 may also include inserting a second tubular (e.g., drill pipe 500) into the elevator 100, as at 1008. The slips 122 may move along the surface 121 of the bowl 115 until the tapered engaging surface 176 of each slip 122 engages the tapered outer surface 502 of the second tubular 500, as at 1010. Once engaged, the elevator 100 may move (e.g., lower) the second tubular 500.
It will be appreciated that terms implying an orientation, such as “above,” “below,” “top,” “bottom,” “up,” “down,” “left,” “right,” and the like, are used for convenience in referring to the Figures. Such terms are merely indicative of relative position and are not to be considered as limiting the elevator 100 to any particular orientation.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the disclosure are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all sub-ranges subsumed therein.
While the present teachings have been illustrated with respect to one or more implementations, alterations and/or modifications may be made to the illustrated examples without departing from the spirit and scope of the appended claims. In addition, while a particular feature of the present teachings may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular function. Furthermore, to the extent that the terms “including,” “includes,” “having,” “has,” “with,” or variants thereof are used in either the detailed description and the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.” Further, in the discussion and claims herein, the term “about” indicates that the value listed may be somewhat altered, as long as the alteration does not result in nonconformance of the process or structure to the illustrated embodiment. Finally, “exemplary” indicates the description is used as an example, rather than implying that it is an ideal.
Other embodiments of the present teachings will be apparent to those skilled in the art from consideration of the specification and practice of the present teachings disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the present teachings being indicated by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1674144 | Traves | Jun 1928 | A |
6644413 | Adams et al. | Nov 2003 | B2 |
6920931 | Webre et al. | Jul 2005 | B1 |
7337853 | Buytaert et al. | Mar 2008 | B2 |
8082997 | Webre et al. | Dec 2011 | B2 |
20040182611 | Ramey et al. | Sep 2004 | A1 |
20090252589 | Sonneveld et al. | Oct 2009 | A1 |
20090272542 | Begnaud | Nov 2009 | A1 |
20100059231 | Thomas et al. | Mar 2010 | A1 |
20110147011 | Thibodeaux, Jr. | Jun 2011 | A1 |
20120067649 | Wlson | Mar 2012 | A1 |
20130228339 | Adams | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
1470353 | Aug 2007 | EP |
2005003504 | Jan 2005 | WO |
Entry |
---|
Jin Ho Kim (Authorized Officer) International Search Report and Written Opinion dated May 22, 2015, International Application No. PCT/US2015/015714, filed Feb. 12, 2015, pp. 1-15. |
Number | Date | Country | |
---|---|---|---|
20150240575 A1 | Aug 2015 | US |