This invention relates in general to completion of oil and gas wells, and in particular to a system and method for estimating orientation of a casing hanger in a wellhead housing.
Wellheads used in the production of hydrocarbons extracted from subterranean formations typically comprise a wellhead assembly attached at the upper end of a wellbore formed into a hydrocarbon producing formation. An annular wellhead housing typically makes up the outermost member where wellhead assemblies connect to a wellbore. A production tree usually connects to the upper end of a wellhead assembly for controlling flow in and out of the wellbore and allowing access into the wellbore. Support hangers are generally included within the wellhead housing for suspending production tubing and casing into the wellbore. The casing lines the wellbore, thereby isolating the wellbore from the surrounding formation. The tubing typically lies concentric within the casing and provides a conduit therein for producing the hydrocarbons entrained within the formation.
When assembling a wellhead assembly subsea, a running tool is often employed for lowering the components of the wellhead to the seafloor, such as wellhead housings and support hangers. The running tool is generally deployed from a rig and suspended from drilling pipe. After anchoring the wellhead housing to the seafloor, the support hanger is then typically lowered and inserted within the wellhead housing the running tool. After landing the support hangers, the running tool may deploy a seal between the support hanger and wellhead housing. The running tool can then be removed from the wellbore and the seal pressure tested. In some instances, if the support hanger is not landed in the wellhead housing at a specified axial location, the annular space between the support hanger and wellhead housing cannot be properly sealed. A misaligned support hanger can be corrected, but requires redeploying the running tool into the well after the step of pressure testing.
The running tool is typically powered by pressurized fluid pumped down the drill string from the surface. Prior to pressurizing the string, a ball or dart is dropped down inside the drill string and lands in a dart sub or ball sub set below the running tool. This allows pressure to build up inside the stem of the tool that is ported through drilled holes to a piston that drives the energizing ring into the seal.
The present disclosure concerns a system and method for verifying positioning of a support hanger within a wellhead housing. Described herein is a running tool for inserting a support hanger into a wellhead housing that has a profiled inner surface. In an example embodiment, the running tool includes a body, a support hanger deployment device coupled with the body and selectively attached to the support hanger, and an impression assembly that is strategically located at a designated position with respect to the support hanger. In an example embodiment the impression assembly includes a member selectively moveable from a retracted position that is substantially within the body, to an extended position where it projects radially outward from the body towards the wellhead housing inner surface. A deformable impression element is included on an end of the member, so that when the member is moved into the extended position, the impression element is pressed against the wellhead housing inner surface and an impression of the wellhead housing inner surface is on the impression element. The support hanger can be a casing hanger, a tubing hanger, or a bridging hanger. Strategically positioning the impression assembly places the impression assembly in a location so that the impression is of the profiled inner surface of the wellhead housing when the support hanger is set at a designated depth within the wellhead housing.
The apparatus and method of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. This subject of the present disclosure may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout. For the convenience in referring to the accompanying figures, directional terms are used for reference and illustration only. For example, the directional terms such as “upper”, “lower”, “above”, “below”, and the like are being used to illustrate a relational location.
It is to be understood that the subject of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments of the subject disclosure and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation. Accordingly, the subject disclosure is therefore to be limited only by the scope of the appended claims.
An example embodiment of a running tool 10 in accordance with the present disclosure is shown in a side sectional view in
Still referring to
Set coaxially within the bore 28 is a generally cylindrical impression rod or member 30 and having a portion projecting through the open end of the bore 28. A lead element 32 is shown provided on the end of the impression rod 30 outside of the bore 28. The lead element 32 can be formed of any substantially malleable material, such as a soft metal, including lead. The impression rod 30 abruptly narrows on the end opposite the lead element 32 where it threadingly attaches to a piston 34. The outer surface of the piston 34 is substantially cylindrical and formed to sealingly engage the inner circumference of the bore 28 and freely reciprocate therein. A closed end is provided in the piston 34 where its outer surface projects radially inward proximate the closed end of the bore 28 and then extends axially outward away from the closed end of the bore 28. The piston 34 of
An annular space is provided lengthwise in the piston 34 that runs from the closed end and to the open end of the piston 34. A spring 36 is shown set within the annular space retained between the closed end of the piston 34 and a lip 37 that projects radially inward into the open side of the bore 28. As shown, the spring 36 exerts a biasing force on the piston 34 to retain the lead block assembly 24 within the bore 28. A seal 38 is shown circumscribing the outer surface of the piston 34 thereby providing a seal between the piston 34 and inner surface of the bore 28. In the embodiment of
Referring now to
Shown in
In one example of operation, the running tool 10 is lowered on drill pipe 52 (
After obtaining an impression 50, the running tool 10 can be removed from within the wellhead housing 40 so that the impressions 50 may be analyzed for assessing whether or not the casing hanger 14 is at a proper axial elevation within the wellhead housing 40. In one example embodiment of use of the running tool 10, the lead block assembly 24 is strategically positioned an axial distance from the casing hanger 14 so that the lead element 32 contacts the groove 48 when the casing hanger 14 is at its design or specified elevation in the wellhead housing 40. Accordingly, if the impression 50 reflects contact with the groove 48, casing hanger 14 alignment within the wellhead housing 40 (
Strategically positioning the lead block assembly 24 within the body 25 can set the lead block assembly 24 at a relative distance between the casing hanger 14 and groove 48 so that analyzing the impression 50 of a strategically positioned lead block assembly 24 indicates whether or not the casing hanger 14 is set at a designated depth within the wellhead housing. For the purposes of discussion herein, a designated depth describes a depth wherein the casing hanger 14 is designed and/or otherwise desired to be set within the wellhead housing 40. Accordingly, verification of the casing hanger 14 at a designated axial location within the wellhead housing 40 can be obtained without the need for pressure testing within the wellhead housing 40. As such, an operational step can be avoided by use of the running tool in casing hanger as disclosed herein.
Optionally, as shown in a side partial sectional view in
While the invention has been shown or described in only some of its forms, it should be apparent to those skilled in the art that it is not so limited, but is susceptible to various changes without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4616987 | Boyers et al. | Oct 1986 | A |
4770248 | Houlgrave et al. | Sep 1988 | A |
4880061 | Ahlstone | Nov 1989 | A |
4969516 | Henderson | Nov 1990 | A |
5249629 | Jennings | Oct 1993 | A |
5372201 | Milberger | Dec 1994 | A |
5655606 | Ferguson | Aug 1997 | A |
6719044 | Ford | Apr 2004 | B2 |
6823938 | Milberger | Nov 2004 | B1 |
7743832 | Shaw | Jun 2010 | B2 |
20090195647 | Lynde | Aug 2009 | A1 |
20100212890 | Lund | Aug 2010 | A1 |
Entry |
---|
Search Report from corresponding GB Application No. GB1112556.4 dated Oct. 25, 2011. |
Number | Date | Country | |
---|---|---|---|
20120024541 A1 | Feb 2012 | US |