Drill shoe

Information

  • Patent Grant
  • 7096982
  • Patent Number
    7,096,982
  • Date Filed
    Friday, February 27, 2004
    21 years ago
  • Date Issued
    Tuesday, August 29, 2006
    18 years ago
Abstract
A method and apparatus for a drilling with casing includes therewith a drill shoe configured for later drilling through thereof in situ, with cutters retainable thereon in response to the forces encountered during borehole drilling, yet moveable from the envelope through which the later drill shoe will pass when cutting through the in situ drill shoe. The drill shoe includes one or more profiles thereon, into which blades carrying the formation drilling cutters are disposed. The profiles include at least one projection thereon, which is received within a mating slot in the blades. The blades also may be configured to have opposed sections which are configured with respect to one another to have an included angle of less than ninety degrees.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Embodiments of the present invention generally relate to the field of well drilling, particularly to the field of well drilling for the extraction of hydrocarbons from sub-surface formations, wherein the drill string is used as the well casing.


2. Description of the Related Art


The drilling of wells to recover hydrocarbons from subsurface formations is typically accomplished by directing a rotatable drilling element, such as a drill bit, into the earth on the end of tubing known as a “drill string” through which drilling mud is directed to cool and clean the drilling face of the drill bit and remove drilled material or cuttings from the borehole as it is drilled. After the borehole has been drilled or bored to its desired depth and location, the borehole is typically cased, i.e., metal tubing is located along the length of the borehole and cemented in place to isolate the borehole from the surrounding earth, prevent the formation from caving into the borehole, and to isolate the earth formations from one another. The casing is then perforated at specific locations where hydrocarbons are expected to be found, to enable their recovery through the borehole.


It is known to use casing as the drill string, and, when drilling is completed to a desired depth, to cement the casing in place and thereby eliminate the need to remove the drill string from the borehole. However, when casing is used in place of the drill string, any equipment or tooling used in the drilling of the well must be removed from the interior of the casing to allow an additional, smaller diameter casing and drill bit to drill the borehole further into the earth. Thus, the drill bit or drill shoe located at the end of the drill string must be eliminated as an obstacle, without pulling the casing from the borehole. Removal of the drill shoe is typically accomplished by drilling through the drill shoe with a second drill shoe or drill bit extended into the previously cemented casing, and thence into the earth beyond the just drilled drill shoe. Thus the drill shoe needs to be configured of a drillable material, which limits the loading which can be placed on the drill shoe during drilling and thus limits the efficiency of drilling with the drillable drill shoe. Typically a “drillable” drill shoe is configured of a relatively soft metal, such as aluminum, with relatively hard inserts of materials such as synthetic diamond located thereon to serve as the cutting material. Additionally, although the main body of the drillable drill shoe is configured of a readily drilled material, the hard cutters of the drill shoe tend to cause rapid wear and physical damage to the drill shoe being used to drill through the previous drill shoe, thus reducing the life of the drill bit, and thus the depth of formation the drill shoe can penetrate before it too must be drilled through by an additional drill shoe directed through the casing.


It is also known to provide a drill shoe having a relatively soft metal body, within which a plurality of stronger metal blades are received, upon which blades are supplied the cutters for cutting into the earth as the borehole progresses and which blades may be moved out of the area through which the drill shoe is drilled and subsequent casing penetrates, as is disclosed in U.S. Pat. No. 6,443,247, assigned to the assignee of the present invention and incorporated by reference herein in its entirety. This drill shoe includes an integral piston assembly therein, which, upon actuation by a drilling operator, pushes through the drill shoe and physically presses the harder metal blades, with the cutters thereon, into the annular area and/or the adjacent formation and out of the area through which the next drill shoe will pass. Thereafter, an additional drill shoe is passed down the existing casing to remove the remaining, relatively soft, metal mass of the drill shoe, and into the formation beyond the just drilled through drill shoe. Although this drill shoe configuration solves the problem encountered when the drill shoe would otherwise need to engage and grind up hard metal parts, the drill shoes still suffer from limited lifetimes because the blades will extrude or otherwise become separated from the relatively soft metal body of the drill shoe if the loading thereon exceeds a certain threshold. Thus, although this style of drill shoe has gained a high degree of commercial acceptance, the capability of the drill shoe remains limited.


SUMMARY OF THE INVENTION

The present invention generally provides methods and apparatus for drilling of boreholes, wherein the drill string is used as the casing for the borehole, wherein the drill shoe used for drilling the borehole includes an integral displacement element whereby the cutting elements of the drill shoe are displaceable into the formation surrounding the drill shoe when the well is completed. The drill shoe includes one or more blades having cutters thereon, and each of the blades includes an engagement profile for secure engagement with the body of the drill shoe during drilling operation yet is readily deformed to be embedded into the formation adjacent the drill shoe when drilling is completed.


In one embodiment, the blades include an outer axial section, a transverse section, and a generally axial base section that are received in a continuous slot formed within the body of the drill shoe. The slot and the blade include complementary profiles for maintaining the blades in position against the loading of the blades caused by the engagement thereof with the formation being drilled, while allowing the blades to be displaced into the formation after drilling is completed.


To enable displacement of the blades into the formation, the drill shoe preferably includes a passageway therein through which the drilling mud is flowed, and which is selectively blocked while the drilling mud is continued to be pumped into the drill string. The blocking of the mud passages completes a piston structure, which is actuated through the drill shoe and thereby pushes the blades into the adjacent formation.


In another aspect, the present invention provides an earth removal apparatus comprising a first body portion and a second body portion at least partially receivable within the first body portion. A profile is formed on an outer surface of the second body portion and a cutting member is engaged with the profile, wherein the profile is adapted to maintain the cutting member on the profile during operation.


In another aspect, the present invention provides an earth removal apparatus comprising a drillable body portion and at least one profile formed on an outer surface of the drillable body portion. The at least one profile including at least two intersecting faces, wherein one of the faces includes a projection thereon. A blade is matingly engageable with the at least one profile.


In another aspect, the present invention provides a drill bit comprising a first body portion and a drillable second body portion. At least one profile is formed integral with at least one of the first body portion and the drillable second body portion, the at least one profile having at least two opposed segments having a discernable orientation. A cutting member is received in the at least one profile and having the discernable orientation and the discernable orientation including an included angle between the opposed segments of less than ninety degrees.


In another aspect, the present invention provides a method of drilling with casing, wherein a drillable drill bit is provided, comprising providing a drill bit support at a lower end of the casing, locating a drillable body portion within the drill bit support, and providing a blade receiving member integral with at least one of the drill bit support and the body portion. The receiving member including a profile. The method also includes positioning a blade having a mating profile on the receiving member and using the drill bit to form a wellbore, wherein the profile is adapted to substantially maintain the blade on the blade receiving member during drilling.


In another aspect, the present invention provides a method of completing a wellbore comprising providing an earth removal apparatus at a lower of a drill string. The earth removal apparatus having a first body portion and a drillable portion disposed in the first body portion, the drillable portion including a bore. The method also includes forming the wellbore, blocking the bore from fluid communication, moving the drillable portion relative the first sleeve portion, and re-establishing fluid communication between an inner portion of the earth removal apparatus and the wellbore.


In another aspect, the present invention provides a downhole valve comprising a first body portion, a bore disposed through the first body portion, and an obstruction member retainer at least partially disposed in the bore, wherein the obstruction member retainer is adapted to cooperate with an obstruction member to provide selective fluid communication through the bore.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.



FIG. 1 is a perspective view of a drill shoe of the present invention;



FIG. 2 is a sectional view of the drill shoe of FIG. 1 in a downhole location;



FIG. 3 is a sectional view of the drill shoe of FIG. 2, after the drill shoe has reached total depth and the drill shoe is prepared to be drilled through;



FIG. 4 is a perspective view of a blade portion of the drill shoe of FIG. 1;



FIG. 5 is a sectional view of the blade portion disposed on the notch of the drill shoe;



FIG. 6 is a further sectional view of the blade portion disposed on the notch of the drill shoe;



FIG. 7 is a sectional view of the drill shoe as shown in FIG. 2, after having been drilled through



FIG. 8 shows another embodiment of a drill shoe according to aspects of the present invention;



FIG. 9 shows yet another embodiment of a drill shoe according to aspects of the present invention; and



FIG. 10 shows the drill shoe of FIG. 9 after the ball has extruded though the ball seat to re-establish circulation.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring initially to FIG. 1, there is shown in perspective an earth removal apparatus such as a drill shoe 10 of the present invention, for placement on the end of a string of casing for drilling a borehole into the earth, primarily for the recovery or potential recovery of hydrocarbons from sub-surface locations. The drill shoe 10 generally includes a support, such as a sleeve portion 20, into which is received a drillable member, such as a body portion 30, and over which are secured a plurality of cutting members or blades 26 (only four of a total of six to be so located) in notches 70 formed on the exterior of the drill shoe 10. The drill shoe 10 is specifically configured to enable the drilling of a borehole with the drill shoe 10, with subsequent cementing of the casing into the borehole, and then subsequent drilling through of the drill shoe 10 with a subsequent drill shoe 10.


Referring now to FIGS. 2 and 3, there is shown, in cross section, the drill shoe 10 of the present invention, suspended upon casing 12 located within a borehole 14, which casing 12 is rotated by a drilling table, top drive, or similar apparatus (not shown) at the earth's surface to enable the drill shoe 10 to drill or cut into the formations encountered thereby and thus form the borehole 14. The drill shoe 10 generally includes an outer, tubular sleeve 20 upon which a plurality of blades 26 are secured, and within which is positioned a body portion 30 of a drillable material, such as aluminum. In operation, the body portion 30 provides rigidity to prevent deformation of the sleeve 20 and maintain the drill shoe 10 on a threaded connection on the lower most extension of the casing in the wellbore as drilling operations are carried out, and also provides an extrusion element which may be pushed through the sleeve 20 and thereby push the blades 26 into the adjacent formation in the annular area and/or sides of the borehole 14 to enable drilling through of the drill shoe 10 during subsequent operations in the borehole 14.


Sleeve 20 is generally configured as a tubular or cylindrical element, and includes a first, threaded end 22 for threaded receipt upon the lowermost extension of the casing 12, an outer, cylindrical face 24 upon which a plurality of blades 26 (preferably 6) are disposed, and a lower open end 28. The inner cylindrical face of sleeve 20 includes a first, major diameter bore 34 extending from first end 22, and a second smaller diameter bore 36 extending from a ledge 38 formed at the intersection of these two, collinear, bores. Within sleeve 20 is received the body portion 30 of a drillable material, such as aluminum, which forms a mass within the sleeve to maintain the shape of sleeve 20 as the drill shoe 10 is pushed against the bottom 16 of the borehole 14 and rotated. Sleeve 20 further includes a plurality of mud vents 37, disposed radially through the sleeve 20 at the major diameter bore 34.


Body portion 30 is a generally right circular mass of drillable material, having features formed therein such as by machining, to provide a mass of material to back up the relatively thin wall of the sleeve 20 during drilling, to enable the extrusion of the body portion 30 through any potentially borehole interfering sections of the sleeve 20 and the blades 26 when the drilling is completed with the drill shoe 10, and to provide a readily drillable material for removal of the mass from the borehole 14. Body portion 30 generally includes a main counterbore 40 extending inwardly of the first end 42 thereof, and ending at a generally conically concave base 44 from which a mud bore 46 extends inwardly of the backup portion of body portion forming backup mass to limit the deformation of the sleeve 20 and the blades 26 during drilling operations. Mud bore 46 splits into a plurality of mud passages 50, which terminate at the lower surface of the body portion 30. Mud bore 46 also includes a tapered seat portion 52, into which a ball 51 (FIG. 2) may be seated, as will be further described herein. The outer surface of body portion 30 includes a generally right circular outer face 54, and an end portion 56 which is profiled and machined to receive a portion of the blades 26 therein, as will be described further herein. Outer face 54 includes, at the opening of the counterbore 40, a outwardly extending lip 58 which sealingly, or at least is substantially closely, fits to the inner face of major diameter bore 34, as well as at least one axial slot 60, extending along the outer face 54 from the end portion 56. A pin 62 is secured within sleeve 20 and extends into slot 60, and serves to prevent rotation of the body portion 30 within sleeve 20 when a different drill bit introduced down the casing interior drills the body portion 30 out.


To retain the body portion 30 within sleeve 20, the sleeve 20 includes a retainer ring 64, located within major diameter bore 34 generally above the body portion 30 and secured thereto with pins or the like, which prevents retraction of the body portion 30 from the sleeve 20, and an inwardly projecting lip 66, extending inwardly at the lower open end thereof, which is received into an annular recess 68 machined or cast into the face of body portion 30 about its perimeter (best shown in FIG. 3). Lip 66 may be a continuous inward projection on the end of the sleeve 20, or may be a separate retainer ring which is affixed at its inboard end to the end of sleeve 20.


Referring again to FIG. 1, a general overview of the structure of the blades 26, as well as their attachment to the drill shoe 10, is shown. Generally, the blades 26 are received within a profile which extends along the outer surface of the sleeve 20 and the base of body portion 30. An exemplary profile is a notch 70 configured to interact with the blade 26 to keep the blade 26 in position on the sleeve 20 during drilling operation. Each blade 26 is formed of a single length of steel, or similar material having both relatively high strength, rigidity and ductility, bent to form opposed first and second linear sections 72, 74, which are interconnected by curved shoulder segment 76. A plurality of cutters 78 are located on the outer face of the blades 26, to be engaged with, and cut into, the formation as the borehole extends therein. Although six blades 6 are shown in the Figures, it is contemplated that any suitable number of blades 26 may be disposed on the drill shoe 10. For example, the drill shoe 10 may include four blades or five blades.


The interface and interconnection of the blade 26 and notch 70 is shown in detail in FIGS. 5 and 6, wherein the blade 26 is generally rectangular in cross section, and includes a multifaceted base 80 which contacts a multifaceted first face 82 of the notch 70, and a sidewall 84 which abuts against a second face 86 of the notch 70. Multifaceted base 80 includes a centrally located, generally rectangular, slot 88 extending therein over the length thereof, into which a mating rectangular projection 90 of the notch 70 extends, along the entire length of the blade 26. Projection 90, being generally rectangular in cross section, forms in conjunction with multifaceted first face 82 a first compression face 104 extended upwardly on projection 90, and first and second lower compression faces 106, 108, disposed to either side of first compression face 104, an anti-rotation flank 100 in facing relationship to second face 86 of notch 70, and a secondary abutment face 93, on the opposed flank of the projection from anti rotation flank 100 and generally parallel thereto and to second face 86 of the notch 70.


Referring again to FIG. 1, to create the multifaceted notch 70, a continuous groove (not shown) is cut into the outer face of both the sleeve 20 and body 30, into which preforms 112 and 114, having the specific geometry of the notch 70 provided therein, are inserted and welded into place. Alternatively, the preform 114 in body portion 30 may be created by directly molding a boss into the body portion 30 when the body portion 30 is initially configured such as by aluminum casting, and then machining the specific geometry of the notch 70 therein. Alternatively still, the preforms 112, 114 may be formed into both the sleeve 20 and the body portion 30 by machining. Additionally, the outer surface of the sleeve 20 includes stabilizers or standoffs 132, positioned at the uppermost terminus of the notch 70, having a height corresponding generally to the height of the cutters 78 on the first linear section 72 of the blades 26, to center or stabilize the drill shoe 10 in the borehole 14.


Referring now to FIGS. 5 and 6, the blade 26 includes geometry complimentary to the notch 70, such that slot 88 projecting into multifaceted base 80 creates a multi level engagement surface, including a recessed face 91 and two extended faces 92, 94, generally parallel thereto and extended therefrom by the depth of the slot 88, as well as first projecting face 96 and second projecting face 98, formed as the flanks of the slot in a facing, generally parallel relationship to one another and to the sidewall 84. The depth of slot 88 is variable, such that the slot 88 is deeper, and thus the area of faces 96 and 98 are greater, in second linear section 74 of the blade 26 which, in use, is located within the notch 70 received in the body portion 30 of the drill shoe 10. Likewise, as shown in FIG. 5, the height of sidewall 84 is increased to maintain a larger area for full depth contact between sidewall 84 and second face 86. As it is specifically contemplated that the body portion 30 is configured from an easily drillable material, which will likely have a lower shear or yield resistance than the material used for the sleeve 20, this larger area of the faces (and correspondingly of sidewall 84) helps distribute the load in the notch 70 over a greater area in the body portion 30 as compared to the sleeve 20, and thereby reduce the likelihood of plastic failure of the notch 70 as it extends in the body portion 30 under drilling conditions. As shown in FIGS. 5 and 6, the aspect ratio of the slot 88 (and correspondingly in the mating surfaces of the notch 70), and likewise of the projection 90, defined as the height of the projection (or depth of slot) to its width, ranges in the embodiment shown from slightly over 1:1 at the first linear section 72 of the blade 26, to approximately 2:1 at the second linear section 74 of the blade 26. It is contemplated that higher aspect ratios are appropriate, for example, where the blade is very large in width, i.e., the circumferential direction of the sleeve 20, for example on the order of 5 inches wide, a slot depth of only 0.010 inches may be appropriate, resulting in an aspect ratio of 0.002:1. Likewise, were the blade made relatively tall, a high aspect ratio on the order of 500:1 may be appropriate.


Received upon the outer surface of the blade 26 are a plurality of cutters 78, typically hardened synthetic diamond compacts, which are attached thereto using welding, high strength adhesives, threaded engagement into bores in the blade 26, or the like. To secure the blade 26 and fill the gaps or clearances between the blade 26 in the notch 70, adhesive or filler, such as Tubelok available from Weatherford Corporation of Houston, Tex., is applied to the blade 26 and notch 70, and the blade 26 pushed therein. It is specifically contemplated that the fit of the blade 26 in the notch 70 not be an interference fit at ambient temperatures, and that a clearance on the order of a few thousands of an inch between the slot 88 and projection 90 is allowable as long as the fit is snug.


During drilling operation, the drill shoe 10 rotates generally about axis 120 (FIG. 2) such that, as shown in FIG. 5, the blade 26 moves in the direction of arrow 122 into engagement with the formation. As a result, force will be imparted against the blade 26 as shown by arrow 124, tending to cause the blade 26 to rotate (or load in the notch 70) as shown by arrow 126. The configuration of the blade 26 and notch 70 are specifically provided to prevent such motion. Thus, as this loading occurs, sidewall 84 is pushed against second face 86 of the groove, and first projecting face 96 bears against secondary abutment face 93 of groove, to provide lateral or direct support against the primary load of the formation, simultaneously, second projecting face 98 is coupled, by the moment caused by the loading of the blade 26 at the cutters 78, against anti-rotation flank 100, and each of the faces 91, 92 and 94 of the blade 26 are loaded by the moment against their respective compression faces 104, 106 and 108, thereby preventing significant movement of the blade 26 in the notch 70. Thus, as force is imparted against the blade 26 in the direction of the arrow 126, any tipping or rotation of the blade 26 will be absorbed by the notch 70. To secure the blade 26 on the sleeve 20, the blade 26 is welded thereto at one or more locations along its length.


The blade geometry, in addition to the blade profile helps maintain the blade 26 on the sleeve 20. During drilling operations, it is unlikely that the entire length of a blade 26 will be simultaneously engaged against the formation. Furthermore, the presence of standoffs 132 on the sidewall of the sleeve 20 limits the penetration of the cutters 78 on the first linear section 72 of the blade 26. Thus, when the drill shoe 10 is pushing against the bottom of the borehole 14, the second linear section 74 of the blade 26 will be engaged with the formation, whereas the other portions may not. Thus, force will be imparted against the second linear section 74 of the blade 26, tending to cause it to tip or rotate in the notch 70 in the direction of arrow 126 (FIG. 5). However, it can be seen from FIG. 4 that the geometry of the blade 26 results in the first linear section 72 and curved segment 76 being levers, with respect to the second linear section 74, and the placement of these portions of the blade 26 within the notch 70 will cause these portions of the blade 26, along with the structural rigidity of the blade 26, to help the blade 26 resist rotating out of the notch 70. Additionally, the included angle 136 between the two linear sections 72, 74, is preferably maintained below 90 degrees, which further enhances the likelihood of maintaining the blade 26 in the notch 70. As the outer face 138 of the blade 26 is preferably parallel with the recessed face 91 and two extended faces 92, 94 of the blade 26 which rest at compression faces 104, 106 and 108 of the notch 70, the included angle 136 is repeated between these faces as well.


Referring again to FIGS. 2 and 3, the operation of the drill shoe 10 for using the casing 12 as drill string is shown. Specifically, when the borehole 14 has reached total depth for the specific drill shoe 10 in use, which is a function of the wear of the drill shoe 10, the casing 12 is pulled upwardly in the borehole 14, to leave a space between the drill shoe 10 and the bottom of the hole 14 as shown in FIG. 2. In this position, drilling mud continues to flow down the middle of the casing 12, and thence outwardly through the mud passages 50 in the drill shoe 10 and thence to the surface through the space between the drill shoe 10 and casing 12 and the borehole 14.


To begin the operation ultimately leading to the elimination of the drill shoe 10 as an obstacle in the borehole 14, a ball 51 is dropped through the casing 12 into the mud bore 52 from a remote location, which can include the earth's surface. When the ball 51 enters the mud bore 52, it seals the mud bore 52 causing the mud to press down upon the body portion 30, and causes the body portion 30 to slide within sleeve 20 from the position of FIG. 2 and FIG. 3. As the body portion 30 begins to slide, it deforms the base of sleeve 20 outwardly, and also deforms the second section 74 about the angled portion 76 of the blade 26 such that the blades 26 are bent into a generally linear condition as shown in FIG. 3. In one embodiment, the second section 74 may be embedded within the walls of the borehole along with the likewise deformed base of the sleeve 20. In another embodiment, it may that a clearance exists between the wall of the borehole and the second section 74. Movement of the body portion 30 within the sleeve 20 to the position shown in FIG. 3 also exposes the mud vents 37 to the drilling mud, thereby providing a new path for mud flow to re-establish circulation. In this respect, the new path may be used to introduce cement into the borehole to cement the casing 10. In one embodiment, cement may be supplied through the mud vents 37 to cement at least a portion of the casing 10 into place. Additionally, re-establishing the new path also causes a pressure drop in the mud column, which indicates to the operator that the body portion 30 successfully moved within the sleeve 20 to bend the blades 26 outwardly. Thereafter, a subsequent drill bit or drill shoe is passed down the casing 12, and is engaged into body portion 30 to drill through body portion and continue the drilling of the borehole 14 to further depth as shown in FIG. 7.



FIG. 8 presents another embodiment of the drill shoe according to aspects of the present invention. The drill shoe 10 includes a sleeve 220 having a body portion 230 disposed therein. The body portion 230 comprises a support sleeve 235 and an inner portion 240. The inner portion 240 may include components such as the ball seat 252 and the inner core 245. In one embodiment, the ball seat 252 and the inner core 245 may be two separate components, as shown in the Figure. In another embodiment, the inner portion 240, e.g., the ball seat 252 and the inner core 245, may be manufactured in one piece, as shown in FIG. 2. Preferably, the inner portion 240 comprises a drillable material such as aluminum, and the support sleeve 235 comprises steel or other composite material of sufficient strength to provide rigidity to the body portion 230.



FIG. 9 presents another embodiment of the drill shoe 10 according to aspects of the present invention. As shown, the drill shoe 10 provides an alternative method of re-establishing circulation. The drill shoe 10 includes a body portion 330 disposed in an outer sleeve 320. One or more blades are disposed on the outer surface of the outer sleeve 320 and the lower surface of the body portion 330. The body portion 330 includes a bore 346 which splits into one or more passages for fluid communication with the borehole 14. The bore 346 may include an obstruction member retainer for retaining an obstruction member. For example, the bore 346 may include a ball seat 352 for receiving a ball 351. Preferably, the ball seat 352 comprises a flexible material such that the ball 351 may be pumped through the ball seat 352 when a predetermined pressure is reached. The bore 346 also includes a biasing member 360 such as a spring 360 disposed below the ball seat 352. The spring 360 may be used to bias the ball 351 against the ball seat 352 to act as a valve to regulate fluid flow in the bore 346. Although a ball seat is disclosed, other types of obstruction member retainer known to a person of ordinary skill in the art are contemplated, for example, an obstruction member retainer having a seating surface for receiving an obstruction member to regulate fluid flow.



FIG. 9 shows the drill shoe 10 after drilling has completed and the body portion 330 has deformed the base of the sleeve 320 outwardly. Particularly, a ball 351 landed in the ball seat 352 to allow pressure build up, thereby causing the body portion 330 to slide downward relative to the sleeve 320. As a result, the second section of the blades is bent into a generally linear condition.


To re-establish circulation, pressure above the ball 351 is increased further to pump the ball 351 to through the flexible ball seat 352, as shown in FIG. 10. The ball 351 lands on the spring 360, which biases the spring 360 against the lower portion of the ball seat 352, which acts as a second seating surface for the ball 351. In this respect, a seal is formed between the ball 351 and the ball seat 352, thereby closing off fluid communication.


When the pressure of the cement or other fluid in the casing 12 is greater than the biasing force of the spring 360, the ball 351 may be caused to disengage the ball seat 352, thereby opening up the bore 346 for fluid communication with the borehole 14. In this manner, cement may be supplied to cement the casing 12 in the borehole 14. After the cementing operation is completed, pressure in the casing 12 is relieved. In turn, the spring 360 is again allowed to bias the ball 351 against the ball seat 352, thereby closing off the bore 346 for fluid communication. In this respect, the ball 351 and the ball seat 352 may act as a check valve to prevent cement or other fluid to re-enter the casing 12.


Although the invention has been described herein with respect to a specific embodiment, these embodiments may be modified without affecting the scope of the claims herein. In particular, the groove and slot configuration may be modified. For example, the slot may be positioned in the groove and the blade may include the projection, or alternatively, several slots and mating projections may be provided.


While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Claims
  • 1. An earth removal apparatus, comprising: a first body portion;a second body portion at least partially to receivable within the first body portion;a profile formed on an outer surface of the second body portion; anda cutting member releasably connectable with the profile, wherein the connection is releaseable along at least two axis and the profile is adapted to maintain the cutting member on the profile during operation.
  • 2. The earth removal apparatus of claim 1, wherein the profile comprises at least two intersecting faces, wherein one of the faces provides a support against rotation of the cutting member.
  • 3. The earth removal apparatus of claim 1, wherein the profile substantially prevents movement of the cutting member in the profile.
  • 4. The earth removal apparatus of claim 1, wherein the cutting member comprises a first end and a second end, wherein the second end is selectively detachable from the profile.
  • 5. The earth removal apparatus of claim 4, wherein the second end is attached to the second body portion.
  • 6. An earth removal apparatus, comprising: a drillable body portion;at least one profile formed on an outer surface of the drillable body portion, the at least one profile includes a projection formed on a portion thereof; anda blade releasably connectable with the at least one profiles wherein the connection is releasable along at least two axis.
  • 7. The earth removal apparatus of claim 6, further comprising a sleeve disposed around a portion of the drillable body portion.
  • 8. The earth removal apparatus of claim 7, wherein the at least one profile extends into an outer surface of the sleeve, the blade additionally received in the at least one profile in the sleeve.
  • 9. The earth removal apparatus of claim 6, wherein the projection is rectangular in cross section, and the blade includes a slot therein for receiving the projection.
  • 10. The earth removal apparatus of claim 6, wherein the at least one profile is machined into the drillable body portion.
  • 11. The earth removal apparatus of claim 6, wherein the blade is bonded to the at least one profile.
  • 12. The earth removal apparatus of claim 6, further comprising a filler disposed between the blade and the at least one profile.
  • 13. The earth removal apparatus of claim 6, wherein the at least one profile includes opposed linear sections thereof, the linear sections offset from one another by an included angle of less than 90 degrees.
  • 14. The earth removal apparatus of claim 6, further including a preform disposed in the drillable body portion, the preform having the at least one profile therein.
  • 15. The earth removal apparatus of claim 6, further including a passage closure member for closing one or more passages in the drillable body portion.
  • 16. The earth removal apparatus of claim 6, wherein the profile comprises a notch.
  • 17. The earth removal apparatus of claim 6, further comprising a sleeve.
  • 18. The earth removal apparatus of claim 17, wherein the drillable body portion comprises aluminum.
  • 19. A drill bit, comprising: a first body portion;a drillable second body portion;at least one profile formed integral with at least one of the first body portion and the drillable second body portion, the at least one profile having at least two opposed segments having a discernable orientation;a cutting member received in the at least one profile and having the discernable orientation; andthe discernable orientation including an included angle between the opposed segments of less than ninety degrees.
  • 20. The drill bit of claim 19, wherein: the cutting member includes a segmented profile having a slot therein;the at least one profile having a projection engageable with the slot; andwherein the cutting member is positioned in the at least one profile such that the projection is received in the slot.
  • 21. The drill bit of claim 19, wherein the at least one profile extends within the drillable second body portion and the first body portion.
  • 22. The drill bit of claim 19, wherein the at least one profile is machined into the drillable second body portion.
  • 23. The drill bit of claim 19, wherein the first body portion comprises a sleeve.
  • 24. A method of drilling with casing, wherein a drillable drill bit is provided, comprising: providing a drill bit support at a lower end of the casing;locating a drillable body portion within the drill bit support;providing a blade receiving member, integral with at least one of the drill bit support and the body portion, the receiving member including a profile;positioning a blade having a mating profile on the receiving member; andusing the drill bit to form a wellbore, wherein the profile is adapted to substantially maintain the blade on the blade receiving member during drilling.
  • 25. The method of claim 24, further including configuring the blade with at least a first and a second opposed portion, the first and second portions being positioned, relative to one another, by an included angle of less than ninety degrees.
  • 26. The method of claim 25, wherein providing the blade receiving member comprises machining a preform to provide the profile thereon.
  • 27. The method of claim 25, wherein providing the blade receiving member comprises disposing a preform on at least one of the drill bit support and the body portion to provide the profile thereon.
  • 28. The method of claim 25, further comprising moving at least a portion of the drillable body portion out of the drill bit support.
  • 29. The method of claim 28, further comprising bending the first portion relative to the second to increase the included angle to greater than ninety degrees.
  • 30. A method of completing a wellbore, comprising: providing an earth removal apparatus at a lower of a drill string, the earth removal apparatus having: first body portion; anda drillable portion disposed in the first body portion, the drillable portion including a bore;forming the wellbore;blocking the bore from fluid communication;moving the drillable portion relative the first sleeve portion; andre-establishing fluid communication between an inner portion of the earth removal apparatus and the wellbore.
  • 31. The method of claim 30, wherein blocking the bore comprises landing a ball in a ball seat disposed in the bore.
  • 32. The method of claim 31, wherein establishing communication comprises pumping the ball through the ball seat.
  • 33. The method of claim 30, further comprising preventing a fluid in the wellbore from entering the drill string.
  • 34. The method of claim 30, further comprising forming a receiving profile on a bottom surface of the drillable portion.
  • 35. The method of claim 34, further comprising providing a blade with a mating profile formed thereon by engaging receiving profile with the mating profile.
  • 36. The method of claim 35, wherein the receiving profile includes a projection formed thereon.
  • 37. A downhole valve, comprising: a first body portion;a bore disposed through the first body portion; andan obstruction member retainer at least partially disposed in the bore, the obstruction member retainer including a first seating surface and a second seating surface adapted to cooperate with an obstruction member that is movable from engagement with the first seating surface into engagement with the second seating surface, wherein the obstruction member retainer and the obstruction member interact to provide selective fluid communication through the bore.
  • 38. The downhole valve of claim 37, further comprising a biasing member disposed inside the bore and below the obstruction member retainer.
  • 39. The downhole valve of claim 37, wherein the obstruction member is urged into engagement with the second seating surface by the biasing member.
  • 40. The downhole valve of claim 37, wherein the body portion comprises aluminum.
  • 41. The downhole valve of claim 37, wherein the obstruction member retainer comprises a flexible material.
  • 42. A downhole valve, comprising: an obstruction member having a first position engagable with a first seating surface in an obstruction member retainer and a second position engagable with a second seating surface in the obstruction member retainer; anda biasing member biasing the obstruction member to the second position.
  • 43. The downhole valve of claim 42, wherein the obstruction member is passable through the obstruction member retainer to the second position.
CROSS REFERENCE TO RELATED APPLICATION

This application claims benefit of co-pending U.S. Provisional Patent Application Ser. No. 60/450,432, filed on Feb. 27, 2003, which application is herein incorporated by reference in its entirety.

US Referenced Citations (510)
Number Name Date Kind
1185582 Bignell May 1916 A
1301285 Leonard Apr 1919 A
1342424 Cotten Jun 1920 A
1842638 Wigle Jan 1932 A
1880218 Simmons Oct 1932 A
1917135 Littell Jul 1933 A
2017451 Wickersham Oct 1935 A
2049450 Johnson Aug 1936 A
2060352 Stokes Nov 1936 A
2167338 Murcell Jul 1939 A
2214429 Miller Sep 1940 A
2216895 Stokes Oct 1940 A
2228503 Boyd et al. Jan 1941 A
2295803 O'Leary Sep 1942 A
2370832 Baker Mar 1945 A
2379800 Hare Jul 1945 A
2414719 Cloud Jan 1947 A
2499630 Clark Mar 1950 A
2522444 Grable Sep 1950 A
2610690 Beatty Sep 1952 A
2621742 Brown Dec 1952 A
2627891 Clark Feb 1953 A
2641444 Moon Jun 1953 A
2650314 Hennigh et al. Aug 1953 A
2663073 Bieber et al. Dec 1953 A
2668689 Cormany Feb 1954 A
2692059 Bolling, Jr. Oct 1954 A
2720267 Brown Oct 1955 A
2738011 Mabry Mar 1956 A
2741907 Genender et al. Apr 1956 A
2743087 Layne et al. Apr 1956 A
2743495 Eklund May 1956 A
2764329 Hampton Sep 1956 A
2765146 Williams Oct 1956 A
2805043 Williams Sep 1957 A
2978047 DeVaan Apr 1961 A
3006415 Burns et al. Oct 1961 A
3041901 Knights Jul 1962 A
3054100 Jones Sep 1962 A
3087546 Wooley Apr 1963 A
3090031 Lord May 1963 A
3102599 Hillburn Sep 1963 A
3111179 Albers et al. Nov 1963 A
3117636 Wilcox et al. Jan 1964 A
3122811 Gilreath Mar 1964 A
3123160 Kammerer Mar 1964 A
3124023 Marquis et al. Mar 1964 A
3131769 Rochemont May 1964 A
3159219 Scott Dec 1964 A
3169592 Kammerer Feb 1965 A
3191677 Kinley Jun 1965 A
3191680 Vincent Jun 1965 A
3193116 Kenneday et al. Jul 1965 A
3353599 Swift Nov 1967 A
3380528 Timmons Apr 1968 A
3387893 Hoever Jun 1968 A
3392609 Bartos Jul 1968 A
3419079 Current Dec 1968 A
3489220 Kinley Jan 1970 A
3545936 Kilgore et al. Dec 1970 A
3552507 Brown Jan 1971 A
3552508 Brown Jan 1971 A
3552848 Van Wagner Jan 1971 A
3559739 Hutchinson Feb 1971 A
3575245 Cordary et al. Apr 1971 A
3602302 Kluth Aug 1971 A
3603411 Link Sep 1971 A
3603412 Kammerer, Jr. et al. Sep 1971 A
3603413 Grill et al. Sep 1971 A
3606664 Weiner Sep 1971 A
3624760 Bodine Nov 1971 A
3635105 Dickmann et al . Jan 1972 A
3656564 Brown Apr 1972 A
3669190 Sizer et al. Jun 1972 A
3680412 Mayer et al. Aug 1972 A
3691624 Kinley Sep 1972 A
3691825 Dyer Sep 1972 A
3692126 Rushing et al. Sep 1972 A
3696332 Dickson, Jr. et al. Oct 1972 A
3700048 Desmoulins Oct 1972 A
3729057 Werner Apr 1973 A
3747675 Brown Jul 1973 A
3760894 Pitifer Sep 1973 A
3776320 Brown Dec 1973 A
3776991 Marcus Dec 1973 A
3785193 Kinley et al. Jan 1974 A
3808916 Porter et al. May 1974 A
3838613 Wilms Oct 1974 A
3840128 Swoboda, Jr. et al. Oct 1974 A
3848684 West Nov 1974 A
3857450 Guier Dec 1974 A
3870114 Pulk et al. Mar 1975 A
3881375 Kelly May 1975 A
3885679 Swoboda, Jr. et al. May 1975 A
3901331 Djurovic Aug 1975 A
3913687 Gyongyosi et al. Oct 1975 A
3934660 Nelson Jan 1976 A
3945444 Knudson Mar 1976 A
3964556 Gearhart et al. Jun 1976 A
3980143 Swartz et al. Sep 1976 A
4049066 Richey Sep 1977 A
4082144 Marquis Apr 1978 A
4083405 Shirley Apr 1978 A
4085808 Kling Apr 1978 A
4095865 Denison et al. Jun 1978 A
4100968 Delano Jul 1978 A
4100981 Chaffin Jul 1978 A
4127927 Hauk et al. Dec 1978 A
4133396 Tschirky Jan 1979 A
4142739 Billingsley Mar 1979 A
4173457 Smith Nov 1979 A
4175619 Davis Nov 1979 A
4186628 Bonnice Feb 1980 A
4189185 Kammerer, Jr. et al. Feb 1980 A
4194383 Huzyak Mar 1980 A
4221269 Hudson Sep 1980 A
4227197 Nimmo et al. Oct 1980 A
4241878 Underwood Dec 1980 A
4257442 Claycomb Mar 1981 A
4262693 Giebeler Apr 1981 A
4274777 Scaggs Jun 1981 A
4274778 Putnam et al. Jun 1981 A
4280380 Eshghy Jul 1981 A
4281722 Tucker et al. Aug 1981 A
4287949 Lindsey, Jr. Sep 1981 A
4311195 Mullins, II Jan 1982 A
4315553 Stallings Feb 1982 A
4320915 Abbott et al. Mar 1982 A
4384627 Ramirez-Jauregui May 1983 A
4392534 Miida Jul 1983 A
4396076 Inoue Aug 1983 A
4407378 Thomas Oct 1983 A
4408669 Wiredal Oct 1983 A
4413682 Callihan et al. Nov 1983 A
4427063 Skinner Jan 1984 A
4437363 Haynes Mar 1984 A
4440220 McArthur Apr 1984 A
4445734 Cunningham May 1984 A
4446745 Stone et al. May 1984 A
4449596 Boyadjieff May 1984 A
4460053 Jurgens et al. Jul 1984 A
4463814 Horstmeyer et al. Aug 1984 A
4466498 Bardwell Aug 1984 A
4470470 Takano Sep 1984 A
4472002 Beney et al. Sep 1984 A
4474243 Gaines Oct 1984 A
4483399 Colgate Nov 1984 A
4494424 Bates Jan 1985 A
4529045 Boyadjieff et al. Jul 1985 A
4544041 Rinaldi Oct 1985 A
4545443 Wiredal Oct 1985 A
4570706 Pugnet Feb 1986 A
4580631 Baugh Apr 1986 A
4583603 Dorleans et al. Apr 1986 A
4589495 Langer et al. May 1986 A
4592125 Skene Jun 1986 A
4595058 Nations Jun 1986 A
4604724 Shaginian et al. Aug 1986 A
4604818 Inoue Aug 1986 A
4605077 Boyadjieff Aug 1986 A
4605268 Meador Aug 1986 A
4620600 Persson Nov 1986 A
4625796 Boyadjieff Dec 1986 A
4630691 Hooper Dec 1986 A
4646827 Cobb Mar 1987 A
4649777 Buck Mar 1987 A
4651837 Mayfield Mar 1987 A
4652195 McArthur Mar 1987 A
4655286 Wood Apr 1987 A
4667752 Berry et al. May 1987 A
4671358 Lindsey, Jr. et al. Jun 1987 A
4676312 Mosing et al. Jun 1987 A
4681158 Pennison Jul 1987 A
4683962 True Aug 1987 A
4686873 Lang et al. Aug 1987 A
4691587 Farrand et al. Sep 1987 A
4699224 Burton Oct 1987 A
4709599 Buck Dec 1987 A
4709766 Boyadjieff Dec 1987 A
4735270 Fenyvesi Apr 1988 A
4738145 Vincent et al. Apr 1988 A
4742876 Barthelemy et al. May 1988 A
4759239 Hamilton et al. Jul 1988 A
4760882 Novak Aug 1988 A
4762187 Haney Aug 1988 A
4765401 Boyadjieff Aug 1988 A
4765416 Bjerking et al. Aug 1988 A
4773689 Wolters Sep 1988 A
4775009 Wittrisch et al. Oct 1988 A
4781359 Matus Nov 1988 A
4788544 Howard Nov 1988 A
4791997 Krasnov Dec 1988 A
4793422 Krasnov Dec 1988 A
4800968 Shaw et al. Jan 1989 A
4806928 Veneruso Feb 1989 A
4813495 Leach Mar 1989 A
4825947 Mikolajczyk May 1989 A
4832552 Skelly May 1989 A
4836064 Slator Jun 1989 A
4836299 Bodine Jun 1989 A
4838366 Jones Jun 1989 A
4842081 Parant Jun 1989 A
4843945 Dinsdale Jul 1989 A
4848469 Baugh et al. Jul 1989 A
4854386 Baker et al. Aug 1989 A
4867236 Haney et al. Sep 1989 A
4878546 Shaw et al. Nov 1989 A
4880058 Lindsey et al. Nov 1989 A
4901069 Veneruso Feb 1990 A
4904119 Legendre et al. Feb 1990 A
4921386 McArthur May 1990 A
4936382 Thomas Jun 1990 A
4962579 Moyer et al. Oct 1990 A
4962819 Bailey et al. Oct 1990 A
4962822 Pascale Oct 1990 A
4997042 Jordan et al. Mar 1991 A
5009265 Bailey et al. Apr 1991 A
5027914 Wilson Jul 1991 A
5036927 Willis Aug 1991 A
5049020 McArthur Sep 1991 A
5052483 Hudson Oct 1991 A
5060542 Hauk Oct 1991 A
5060737 Mohn Oct 1991 A
5069297 Krueger Dec 1991 A
5074366 Karlsson et al. Dec 1991 A
5109924 Jurgens et al. May 1992 A
5111893 Kvello-Aune May 1992 A
5127482 Rector, Jr. Jul 1992 A
5141063 Quesenbury Aug 1992 A
RE34063 Vincent et al. Sep 1992 E
5148875 Karlsson et al. Sep 1992 A
5160925 Dailey et al. Nov 1992 A
5168942 Wydrinski Dec 1992 A
5172765 Sas-Jaworsky et al. Dec 1992 A
5176518 Hordijk et al. Jan 1993 A
5181571 Mueller et al. Jan 1993 A
5186265 Henson et al. Feb 1993 A
5191932 Seefried et al. Mar 1993 A
5191939 Stokley Mar 1993 A
5197553 Leturno Mar 1993 A
5233742 Gray et al. Aug 1993 A
5234052 Coone et al. Aug 1993 A
5245265 Clay Sep 1993 A
5251709 Richardson Oct 1993 A
5255741 Alexander Oct 1993 A
5255751 Stogner Oct 1993 A
5271468 Streich et al. Dec 1993 A
5271472 Leturno Dec 1993 A
5282653 LaFleur et al. Feb 1994 A
5285008 Sas-Jaworsky et al. Feb 1994 A
5285204 Sas-Jaworsky Feb 1994 A
5291956 Mueller et al. Mar 1994 A
5294228 Willis et al. Mar 1994 A
5297833 Willis et al. Mar 1994 A
5305839 Kalsi et al. Apr 1994 A
5318122 Murray et al. Jun 1994 A
5322127 McNair et al. Jun 1994 A
5332043 Ferguson Jul 1994 A
5332048 Underwood et al. Jul 1994 A
5343950 Hale et al. Sep 1994 A
5343951 Cowan et al. Sep 1994 A
5348095 Worrall et al. Sep 1994 A
5351767 Stogner et al. Oct 1994 A
5353872 Wittrisch Oct 1994 A
5354150 Canales Oct 1994 A
5355967 Mueller et al. Oct 1994 A
5361859 Tibbitts Nov 1994 A
5368113 Schulze-Beckinghausen Nov 1994 A
5375668 Hallundbaek Dec 1994 A
5379835 Streich Jan 1995 A
5386746 Hauk Feb 1995 A
5388651 Berry Feb 1995 A
5394823 Lenze Mar 1995 A
5402856 Warren et al. Apr 1995 A
5433279 Tessari et al. Jul 1995 A
5435400 Smith Jul 1995 A
5452923 Smith Sep 1995 A
5456317 Hood, III et al. Oct 1995 A
5458209 Hayes et al. Oct 1995 A
5472057 Winfree Dec 1995 A
5494122 Larsen et al. Feb 1996 A
5497840 Hudson Mar 1996 A
5501286 Berry Mar 1996 A
5503234 Clanton Apr 1996 A
5520255 Barr et al. May 1996 A
5526880 Jordan, Jr. et al. Jun 1996 A
5535824 Hudson Jul 1996 A
5535838 Keshavan et al. Jul 1996 A
5540279 Branch et al. Jul 1996 A
5542472 Pringle et al. Aug 1996 A
5542473 Pringle et al. Aug 1996 A
5547029 Rubbo et al. Aug 1996 A
5551521 Vail, III Sep 1996 A
5553679 Thorp Sep 1996 A
5560437 Dickel et al. Oct 1996 A
5560440 Tibbitts Oct 1996 A
5575344 Wireman Nov 1996 A
5582259 Barr Dec 1996 A
5584343 Coone Dec 1996 A
5613567 Hudson Mar 1997 A
5615747 Vail, III Apr 1997 A
5645131 Trevisani Jul 1997 A
5661888 Hanslik Sep 1997 A
5662170 Donovan et al. Sep 1997 A
5662182 McLeod et al. Sep 1997 A
5667023 Harrell et al. Sep 1997 A
5667026 Lorenz et al. Sep 1997 A
5706894 Hawkins, III Jan 1998 A
5706905 Barr Jan 1998 A
5711382 Hansen et al. Jan 1998 A
5717334 Vail, III et al. Feb 1998 A
5720356 Gardes Feb 1998 A
5732776 Tubel et al. Mar 1998 A
5735348 Hawkins, III Apr 1998 A
5743344 McLeod et al. Apr 1998 A
5746276 Stuart May 1998 A
5785132 Richardson et al. Jul 1998 A
5785134 McLeod et al. Jul 1998 A
5787978 Carter et al. Aug 1998 A
5791410 Castille et al. Aug 1998 A
5803191 Mackintosh Sep 1998 A
5803666 Keller Sep 1998 A
5826651 Lee et al. Oct 1998 A
5828003 Thomeer et al. Oct 1998 A
5829520 Johnson Nov 1998 A
5833002 Holcombe Nov 1998 A
5839330 Stokka Nov 1998 A
5839515 Yuan et al. Nov 1998 A
5839519 Spedale, Jr. Nov 1998 A
5842530 Smith et al. Dec 1998 A
5845722 Makohl et al. Dec 1998 A
5850877 Albright et al. Dec 1998 A
5860474 Stoltz et al. Jan 1999 A
5878815 Collins Mar 1999 A
5887655 Haugen et al. Mar 1999 A
5887668 Haugen et al. Mar 1999 A
5890537 Lavaure et al. Apr 1999 A
5894897 Vail, III Apr 1999 A
5907664 Wang et al. May 1999 A
5908049 Williams et al. Jun 1999 A
5909768 Castille et al. Jun 1999 A
5913337 Williams et al. Jun 1999 A
5921285 Quigley et al. Jul 1999 A
5921332 Spedale, Jr. Jul 1999 A
5931231 Mock Aug 1999 A
5947213 Angle et al. Sep 1999 A
5950742 Caraway Sep 1999 A
5957225 Sinor Sep 1999 A
5971079 Mullins Oct 1999 A
5971086 Bee et al. Oct 1999 A
5984007 Yuan et al. Nov 1999 A
5988273 Monjure et al. Nov 1999 A
6000472 Albright et al. Dec 1999 A
6012529 Mikolajczyk et al. Jan 2000 A
6024169 Haugen Feb 2000 A
6026911 Angle et al. Feb 2000 A
6035953 Rear Mar 2000 A
6056060 Abrahamsen et al. May 2000 A
6059051 Jewkes et al. May 2000 A
6059053 McLeod May 2000 A
6061000 Edwards May 2000 A
6062326 Strong et al. May 2000 A
6065550 Gardes May 2000 A
6070500 Dlask et al. Jun 2000 A
6070671 Cumming et al. Jun 2000 A
6079498 Lima et al. Jun 2000 A
6079509 Bee et al. Jun 2000 A
6098717 Bailey et al. Aug 2000 A
6119772 Pruet Sep 2000 A
6135208 Gano et al. Oct 2000 A
6142545 Penman et al. Nov 2000 A
6155360 McLeod Dec 2000 A
6158531 Vail, III Dec 2000 A
6170573 Brunet et al. Jan 2001 B1
6172010 Argillier et al. Jan 2001 B1
6173777 Mullins Jan 2001 B1
6186233 Brunet Feb 2001 B1
6189616 Gano et al. Feb 2001 B1
6189621 Vail, III Feb 2001 B1
6196336 Fincher et al. Mar 2001 B1
6199641 Downie et al. Mar 2001 B1
6206112 Dickinson, III et al. Mar 2001 B1
6216533 Woloson et al. Apr 2001 B1
6217258 Yamamoto et al. Apr 2001 B1
6220117 Butcher Apr 2001 B1
6223823 Head May 2001 B1
6227587 Terral May 2001 B1
6234257 Ciglenec et al. May 2001 B1
6237684 Bouligny, Jr. et al. May 2001 B1
6263987 Vail, III Jul 2001 B1
6275938 Bond et al. Aug 2001 B1
6290432 Exley et al. Sep 2001 B1
6296066 Terry et al. Oct 2001 B1
6305469 Coenen et al. Oct 2001 B1
6309002 Bouligny Oct 2001 B1
6311792 Scott et al. Nov 2001 B1
6315051 Ayling Nov 2001 B1
6349764 Adams et al. Feb 2002 B1
6357485 Quigley et al. Mar 2002 B1
6359569 Beck et al. Mar 2002 B1
6360633 Pietras Mar 2002 B1
6367566 Hill Apr 2002 B1
6371203 Frank et al. Apr 2002 B1
6374506 Schuttle et al. Apr 2002 B1
6374924 Hanton et al. Apr 2002 B1
6378627 Tubel et al. Apr 2002 B1
6378630 Ritorto et al. Apr 2002 B1
6378633 Moore Apr 2002 B1
6392317 Hall et al. May 2002 B1
6397946 Vail, III Jun 2002 B1
6405798 Barrett et al. Jun 2002 B1
6408943 Schultz et al. Jun 2002 B1
6412554 Allen et al. Jul 2002 B1
6412574 Wardley et al. Jul 2002 B1
6419014 Meek et al. Jul 2002 B1
6419033 Hahn et al. Jul 2002 B1
6427776 Hoffman et al. Aug 2002 B1
6429784 Beique et al. Aug 2002 B1
6431626 Bouligny Aug 2002 B1
6443241 Juhasz et al. Sep 2002 B1
6443247 Wardley Sep 2002 B1
6457532 Simpson Oct 2002 B1
6458471 Lovato et al. Oct 2002 B1
6464004 Crawford et al. Oct 2002 B1
6464011 Tubel Oct 2002 B1
6484818 Alft et al. Nov 2002 B1
6497280 Beck et al. Dec 2002 B1
6527047 Pietras Mar 2003 B1
6527064 Hallundbaek Mar 2003 B1
6536520 Snider et al. Mar 2003 B1
6536522 Birckhead et al. Mar 2003 B1
6536993 Strong et al. Mar 2003 B1
6543552 Metcalfe et al. Apr 2003 B1
6547017 Vail, III Apr 2003 B1
6554064 Restarick et al. Apr 2003 B1
6585040 Hanton et al. Jul 2003 B1
6591471 Hollingsworth et al. Jul 2003 B1
6634430 Dawson et al. Oct 2003 B1
6648075 Badrak et al. Nov 2003 B1
6651737 Bouligny Nov 2003 B1
6655460 Bailey et al. Dec 2003 B1
6666274 Hughes Dec 2003 B1
6668684 Allen et al. Dec 2003 B1
6668937 Murray Dec 2003 B1
6688394 Ayling Feb 2004 B1
6691801 Juhasz et al. Feb 2004 B1
6698595 Norell et al. Mar 2004 B1
6702040 Sensenig Mar 2004 B1
6708769 Haugen et al. Mar 2004 B1
6725924 Davidson et al. Apr 2004 B1
6725938 Pietras Apr 2004 B1
6742596 Haugen Jun 2004 B1
6742606 Metcalfe et al. Jun 2004 B1
6745834 Davis et al. Jun 2004 B1
6752211 Dewey et al. Jun 2004 B1
6840322 Haynes Jan 2005 B1
6848517 Wardley Feb 2005 B1
6854533 Galloway Feb 2005 B1
6857486 Chitwood et al. Feb 2005 B1
6857487 Galloway et al. Feb 2005 B1
20010042625 Appleton Nov 2001 A1
20020040787 Cook et al. Apr 2002 A1
20020066556 Goode et al. Jun 2002 A1
20020108748 Keyes Aug 2002 A1
20020189863 Wardley Dec 2002 A1
20030029641 Meehan Feb 2003 A1
20030034177 Chitwood et al. Feb 2003 A1
20030056947 Cameron Mar 2003 A1
20030056991 Hahn et al. Mar 2003 A1
20030070841 Merecka et al. Apr 2003 A1
20030070842 Bailey et al. Apr 2003 A1
20030111267 Pia Jun 2003 A1
20030141111 Pia Jul 2003 A1
20030146023 Pia Aug 2003 A1
20030164250 Wardley Sep 2003 A1
20030164251 Tulloch Sep 2003 A1
20030173090 Cook et al. Sep 2003 A1
20030213598 Hughes Nov 2003 A1
20030217865 Simpson et al. Nov 2003 A1
20030221519 Haugen et al. Dec 2003 A1
20040000405 Fournier, Jr. et al. Jan 2004 A1
20040003490 Shahin et al. Jan 2004 A1
20040003944 Vincent e tal. Jan 2004 A1
20040011534 Simonds et al. Jan 2004 A1
20040016575 Shahin et al. Jan 2004 A1
20040060697 Tilton et al. Apr 2004 A1
20040069500 Haugen Apr 2004 A1
20040069501 Haugen et al. Apr 2004 A1
20040079533 Buytaert et al. Apr 2004 A1
20040108142 Vail, III Jun 2004 A1
20040112646 Vail Jun 2004 A1
20040118613 Vail Jun 2004 A1
20040118614 Galloway et al. Jun 2004 A1
20040123984 Vail Jul 2004 A1
20040124010 Galloway et al. Jul 2004 A1
20040124011 Gledhill et al. Jul 2004 A1
20040124015 Vaile et al. Jul 2004 A1
20040129456 Vail Jul 2004 A1
20040140128 Vail Jul 2004 A1
20040173358 Haugen Sep 2004 A1
20040216892 Giroux et al. Nov 2004 A1
20040216924 Pietras et al. Nov 2004 A1
20040226751 McKay et al. Nov 2004 A1
20040244992 Carter et al. Dec 2004 A1
20040245020 Giroux et al. Dec 2004 A1
20040251025 Giroux et al. Dec 2004 A1
20040251050 Shahin et al. Dec 2004 A1
20040251055 Shahin et al. Dec 2004 A1
20040262013 Tilton et al. Dec 2004 A1
20050000691 Giroux et al. Jan 2005 A1
Foreign Referenced Citations (137)
Number Date Country
2 335 192 Nov 2001 CA
3 213 464 Oct 1983 DE
3 523 221 Feb 1987 DE
3 918 132 Dec 1989 DE
4 133 802 Oct 1992 DE
0 087 373 Aug 1983 EP
0 162 000 Nov 1985 EP
0 171 144 Feb 1986 EP
0 235 105 Sep 1987 EP
0 265 344 Apr 1988 EP
0 285 386 Oct 1988 EP
0 426 123 May 1991 EP
0 462 618 Dec 1991 EP
0 474 481 Mar 1992 EP
0479583 Apr 1992 EP
0 525 247 Feb 1993 EP
0 554 568 Aug 1993 EP
0 589 823 Mar 1994 EP
0 659 975 Jun 1995 EP
0 790 386 Aug 1997 EP
0 881 354 Apr 1998 EP
0 571 045 Aug 1998 EP
0 961 007 Dec 1999 EP
0 962 384 Dec 1999 EP
WO 0011311 Mar 2000 EP
1 006 260 Jun 2000 EP
1 050 661 Nov 2000 EP
1148206 Oct 2001 EP
1 256 691 Nov 2002 EP
2053088 Jul 1970 FR
2741907 Jun 1997 FR
2 841 293 Dec 2003 FR
540 027 Oct 1941 GB
709 365 May 1954 GB
716 761 Oct 1954 GB
7 928 86 Apr 1958 GB
8 388 33 Jun 1960 GB
881 358 Nov 1961 GB
9 977 21 Jul 1965 GB
1 277 461 Jun 1972 GB
1 448 304 Sep 1976 GB
1 459 661 Apr 1977 GB
1 582 392 Jan 1981 GB
2 053 088 Feb 1981 GB
2 115 940 Sep 1983 GB
2170528 Aug 1986 GB
2 201 912 Sep 1988 GB
2 216 926 Oct 1989 GB
2 224 481 Sep 1990 GB
2 275 486 Apr 1993 GB
2 294 715 Aug 1996 GB
2 313 860 Feb 1997 GB
2 320 270 Jun 1998 GB
2 333 542 Jul 1999 GB
2 335 217 Sep 1999 GB
2 348 223 Sep 2000 GB
2347445 Sep 2000 GB
2 349 401 Nov 2000 GB
2 350 137 Nov 2000 GB
2 357 101 Jun 2001 GB
2 357 530 Jun 2001 GB
2 352 747 Jul 2001 GB
2 365 463 Feb 2002 GB
2 372 765 Sep 2002 GB
2 382 361 May 2003 GB
2381809 May 2003 GB
1618870 Jan 1991 RU
2 079 633 May 1997 RU
112631 Jan 1956 SU
659260 Apr 1967 SU
247162 May 1967 SU
395557 Dec 1971 SU
415346 Mar 1972 SU
481689 Jun 1972 SU
461218 Apr 1973 SU
501139 Dec 1973 SU
585266 Jul 1974 SU
583278 Aug 1974 SU
601390 Jan 1976 SU
581238 Feb 1976 SU
655843 Mar 1977 SU
781312 Mar 1978 SU
899820 Jun 1979 SU
955765 Feb 1981 SU
1304470 Aug 1984 SU
WO 9006418 Jun 1990 WO
WO 9116520 Oct 1991 WO
WO 9201139 Jan 1992 WO
WO 9218743 Oct 1992 WO
WO 9220899 Nov 1992 WO
WO 9307358 Apr 1993 WO
WO 9324728 Dec 1993 WO
WO 9510686 Apr 1995 WO
WO 9618799 Jun 1996 WO
WO 9628635 Sep 1996 WO
WO 9705360 Feb 1997 WO
WO 9708418 Mar 1997 WO
WO 790 386 Aug 1997 WO
WO 9805844 Feb 1998 WO
WO 9809053 Mar 1998 WO
WO 9811322 Mar 1998 WO
WO 9832948 Jul 1998 WO
WO 9855730 Dec 1998 WO
WO 9904135 Jan 1999 WO
WO 9911902 Mar 1999 WO
WO 9923354 May 1999 WO
WO 9935368 Jul 1999 WO
WO 9937881 Jul 1999 WO
WO 9941485 Aug 1999 WO
WO 9950528 Oct 1999 WO
WO 9958810 Nov 1999 WO
WO 9964713 Dec 1999 WO
WO 9965713 Dec 1999 WO
WO 0005483 Feb 2000 WO
WO 0008293 Feb 2000 WO
WO 0011309 Mar 2000 WO
WO 0011310 Mar 2000 WO
WO 0028188 May 2000 WO
WO 0037766 Jun 2000 WO
WO 0037771 Jun 2000 WO
WO 0039429 Jul 2000 WO
WO 0039430 Jul 2000 WO
WO 0046484 Aug 2000 WO
WO 0050730 Aug 2000 WO
WO 0066879 Nov 2000 WO
WO 0112946 Feb 2001 WO
WO 0146550 Jun 2001 WO
WO 0179650 Oct 2001 WO
WO 0181708 Nov 2001 WO
WO 0183932 Nov 2001 WO
WO 0194738 Dec 2001 WO
WO 0194739 Dec 2001 WO
WO 0244601 Jun 2002 WO
WO 02081863 Oct 2002 WO
WO 02086287 Oct 2002 WO
WO 03074836 Sep 2003 WO
WO 03087525 Oct 2003 WO
Related Publications (1)
Number Date Country
20040226751 A1 Nov 2004 US
Provisional Applications (1)
Number Date Country
60450432 Feb 2003 US