This disclosure generally relates to drill string flow control valves and more particularly, drill string flow control valves for prevention of u-tubing of fluid flow in drill strings and well drilling systems.
Managed Pressure Drilling (MPD) and Dual Gradient Drilling are oilfield drilling techniques that often utilize a higher density of drilling mud inside the drill string and a lower density return mud path on the outside of the drill string.
In Dual Gradient Drilling, an undesirable condition called “u-tubing” can result when the mud pumps for a drilling system are stopped. Mud pumps are commonly used to deliver drilling mud into the drill string and to extract return mud from the wellbore and a return riser (or risers). In a typical u-tubing scenario, fluid flow inside a drill string may continue to flow, even after the mud pumps have been powered down, until the pressure inside the drill string is balanced with the pressure outside the drill string, e.g., in the wellbore and/or a return riser (or risers). This problem is exacerbated in those situations where a heavier density fluid precedes a lighter density fluid in a drill string. In such a scenario, the heavier density fluid, by its own weight, can cause continued flow in the drill string even after the mud pumps have shut off. This u-tubing phenomenon, can result in undesirable well kicks, which can cause damage to a drilling system. For this reason, it is desirable that when mud pumps in a drilling system are turned off, the forward fluid flow be discontinued quickly.
Drill string flow control valves or flow stop valves are sometimes used to control flow in a downhole tubular, which may be, or form part of, a drill string. Some drill string flow control valves utilize the pressure differential between certain pressure ports positioned along the primary flow path of the valve to apply pressure to a valve sleeve within a valve housing to cause actuation of the valve sleeve. Movement of the valve sleeve, in turn, opens or closes the main drilling fluid flow ports within the valve. In prior art valves, at least two know drawbacks exist. First, to open the sleeve, significant forces maintaining the sleeve in a closed position must initially be overcome. Second, a rapid opening of the sleeve can cause a significant pressure drop in the valve. Thus, in some flow control valves, in order to overcome the significant forces maintaining the sleeve in a closed position, a solid piston is used to slowly initiate movement of the valve sleeve. As the valve sleeve of a prior art flow control valve is initially urged into the open position by the solid piston, flow through the main flow ports of the flow control valve begins. With respect to pressure drops within the valve, those skilled in the art will understand that because the main flow ports are relatively large, as they begin to open, just a small amount of movement of the valve sleeve can cause a drop in pressure as the ports open. For this reason, the solid piston described above is also desirable because it permits the valve sleeve to be opened slowly, thereby minimizing pressure drop. However, by slowly opening the main flow ports utilizing such a solid piston, the fluid flow passing through the ports is maintained at a high pressure, thereby causing potential washout of the flow ports, i.e., the high velocity of the fluid passing through the partially-open main flow ports will corrode or wash away the steel from which such flow control valves and main flow ports are typically fabricated.
This disclosure generally relates to drill string flow control valves and more particularly, drill string flow control valves for prevention of u-tubing of fluid flow in drill strings and well drilling systems.
One example of a drill string flow control valve utilizes a piston with a flow passage therethrough to initiate movement of a valve sleeve within a flow control valve. The flow passage communicates fluid through the piston and into the interior of the valve sleeve, thereby bleeding off pressure from the fluid passing through the primary flow ports as the valve sleeve is initially opened. Thus, initially, drilling fluid flow through the valve sleeve is via the bore through the piston. As the valve sleeve continues to crack open, flow through the main flow ports begins. This permits a greater degree of control of flow through the main flow ports and minimizes the pressure drop associated with the prior art. In one preferred embodiment, part or all of the piston components are formed of a material, such as tungsten carbine, that is harder than, i.e., a higher Rockwall hardness factor, the material used to fabricate the rest of the valve (usually steel).
In one embodiment of the invention, a ball valve is disposed to control flow through the flow passage of the piston. Preferably, the ball valve comprises a ball and a ball seat disposed between a piston pressure port and a piston pressure surface. As pressure on the ball is increased, the ball engages the piston pressure surface and urges the piston against the valve sleeve, thereby initiating “opening” of the valve sleeve and main flow ports. At the same time, flow past the ball through the flow passage and into the interior of the valve sleeve reduces pressure at the primary sleeve flow ports. A biasing element may be used to urge the ball valve into the valve seat, i.e., the closed position. Those skilled in the art will appreciate that by altering the force of the biasing element on the ball, pressure at which movement of the ball initiates, and hence, operation of the overall flow control valve, can be adjusted as desired. Increasing pressure urges the ball out of the seat, and flow passes around the ball into the bore of the piston. Because the ball has a comparatively small surface area and there is little friction on the ball, a lower pressure can be used to open the ball valve.
The ball seat can simply be a ring with a bore therethrough and edges chamfered or otherwise shaped to mate with the profile of the ball. A snap ring may be used to secure the ball seat in place within the port used to direct a portion of the flow through the piston.
In one embodiment, a plug body with an axial bore has the piston axially mounted in the plug body. The ball seat mounts in the axial bore of the plug. The axial bore forms the flow port to the piston.
In one embodiment, a filter type lockdown nut is used to secure the ball seat in place within the port. The lockdown nut has a bore therethrough which opens to the end of the nut. A first end of the nut is provided with a plurality of apertures to allow flow into the bore.
In any event, the arrangement of the invention permits a slow, controlled increase in the flow rate through the small piston to create sufficient pressure differential to begin to open the main flow ports of the valve sleeve.
In one example, a drill string flow control valve comprises a valve housing characterized by a wall defining a valve interior, wherein the valve housing has an internal housing flow path formed therein with a housing outlet flow port disposed along said internal housing flow path; a valve sleeve disposed at least partially in the interior of the valve housing, the valve sleeve characterized by a first end and a second end and a wall defining a sleeve interior, a first sleeve flow port defined within the valve sleeve wall, and a second sleeve flow port defined within the valve sleeve wall adjacent said first end, wherein the valve sleeve is axially movable within the valve housing between a closed position and an open position, such that the valve sleeve wall substantially impedes fluid flow from the housing outlet flow port to the first sleeve flow port when the valve sleeve is in the closed position and wherein the first sleeve flow port and the housing outlet flow port are in substantial alignment when in the open position; wherein the valve sleeve has an upper pressure surface defined thereon so as to provide a first surface area upon which a first fluid pressure from the internal housing flow path may act to provide a downward force on the valve sleeve and wherein the valve sleeve has a lower pressure surface defined thereon so as to provide a second surface area upon which a second fluid pressure may act to provide an upward force on the valve sleeve; a spring wherein the spring biases the valve sleeve to the closed position by exertion of a biasing force on the valve sleeve; an upper pressure port in fluid communication with said internal housing flow path, said upper pressure port disposed to allow the first fluid pressure to act upon the upper pressure surface; a lower pressure port that allows the second fluid pressure to act upon the lower pressure surface; a piston having a first end and a second end and axially movable within the valve housing, said piston further characterized by a flow passage therethrough, wherein the second end of the piston is adjacent one end of the valve sleeve to permit fluid communication between said piston flow passage and said second sleeve flow port and wherein the first end of the piston has a piston pressure surface characterized by a piston surface area; and a piston pressure port in fluid communication with the internal housing flow path that allows a fluid pressure internal to the valve to act upon the piston pressure surface, said piston pressure port in fluid communication with said piston flow passage The drill string flow control valve may include a ball and a ball seat disposed between the piston pressure port and the piston pressure surface. A biasing element, such as a spring, may be disposed to urge the ball into contact with the ball seat. Another example of a drill string flow control valve comprises a valve housing, wherein the valve housing is characterized by a cylindrical wall extending from a first end to a second end and defining a valve interior, wherein the valve housing has an internal housing flow path channel formed between said first and second ends with a housing outlet flow port disposed along said flow path channel; a valve sleeve disposed at least partially in the valve housing, the valve sleeve characterized by a valve sleeve wall defining a valve sleeve interior, said valve sleeve having a first sleeve flow port defined within said wall and a second sleeve flow port defined within said wall, wherein the valve sleeve is axially movable within the valve housing between a closed position and an open position, such that fluid flow between said housing outlet flow port and said first sleeve flow port is substantially impeded when the valve sleeve is in the closed position and wherein the first sleeve flow port and the housing outlet flow port are substantially aligned when in the open position; wherein the valve sleeve has a first pressure surface defined thereon so as to provide a first surface area upon which a first fluid pressure from the housing flow path channel may act to provide a downward force on the valve sleeve, and wherein the valve sleeve has a second pressure surface defined thereon so as to provide a second surface area upon which a second fluid pressure may act to provide an upward force on the valve sleeve; a biasing mechanism wherein the biasing mechanism biases the valve sleeve to the closed position; a first pressure channel that allows the first fluid pressure to act upon the first pressure surface; a second pressure channel that allows the second fluid pressure to act upon the second pressure surface; an elongated piston having a first end, an internal bore and a second end open to said internal bore, said piston axially movable within the valve housing, wherein said second open end is in fluid communication with said second sleeve flow port; and a piston pressure in fluid communication with the internal housing flow path, said piston pressure port in fluid communication with said internal bore of said piston.
An example of a method for controlling flow in a downhole tubular comprises restricting flow through the downhole tubular by closing a flow stop valve when a difference between a first fluid pressure outside the downhole tubular and a second fluid pressure along a primary flow path within inside the downhole tubular at the flow stop valve is below a threshold value; and permitting flow through along the primary flow path of the downhole tubular by opening the flow stop valve when a difference between the first fluid pressure outside the downhole tubular and the second fluid pressure inside the downhole tubular at the flow stop valve is above a threshold value, wherein said flow stop valve is opened by: introducing drilling fluid into the valve to induce a pressure applied to the pressure surface of a piston, thereby causing said piston to urge a valve sleeve from a closed position; directing a portion of said drilling fluid through said piston and into the interior of said valve sleeve to establish initial flow through said valve; directing another portion of said drilling fluid against said valve sleeve to apply a fluid pressure on the valve sleeve; and increasing the fluid pressure upon the valve sleeve so as to cause the valve sleeve to axially move against the biasing direction of a spring, thereby increasing fluid flow through said valve sleeve.
Another example of a method for controlling flow in a downhole tubular comprises providing a valve housing, wherein the valve housing is characterized by a tubular wall extending from a first end to a second end and defining a valve interior, wherein the valve housing has an internal housing flow path formed between said first and second ends with a housing outlet flow port disposed along said internal flow path; providing a valve sleeve disposed at least partially in the valve housing, the valve sleeve having at least two pressure surfaces and axially movable within the valve housing between a closed position and an open position, providing a piston having a flow passage therethrough within the valve housing and bearing against the valve sleeve; biasing the valve sleeve under a biasing force in a first direction against the piston so as to close the valve; introducing drilling fluid into the valve housing to induce a first fluid pressure therein; applying said first fluid pressure to the piston pressure surface, thereby causing said piston to urge the valve sleeve in a second direction opposite the first direction; directing a portion of the drilling fluid to flow through said piston flow passage and into the interior of said valve sleeve to initiate flow; applying a fluid pressure from within the valve housing to a first surface of the valve sleeve to generate a first force to urge the valve sleeve in the second direction; applying a second fluid pressure derived from downstream of said first fluid pressure to a second surface of the valve sleeve to generate a second force to urge the valve sleeve in the first direction; maintaining a drilling fluid flow through the valve sleeve so that the first force is greater than the biasing spring force plus the second force; and decreasing the fluid flow through the valve sleeve so as to allow the biasing force to shift the valve sleeve in the first direction, thereby urging the valve into a closed position.
An example of a drill string flow control valve system comprises a valve housing, wherein the valve housing is characterized by a tubular wall extending from a first end to a second end and defining a valve interior, wherein the valve housing has an internal housing flow path formed between said first and second ends with a housing outlet flow port disposed along said internal flow path; a valve sleeve disposed at least partially in the valve housing, the valve sleeve having a first end and a second end and characterized by a valve sleeve wall extending between said first and second ends to define a valve sleeve interior, said valve sleeve having a first flow port disposed in said valve sleeve wall and a second flow port at said first end, wherein the valve sleeve is axially movable within the valve housing between a closed position and an open position, such that fluid flow between said housing outlet flow port and said first flow port is substantially impeded when the valve sleeve is in the closed position and wherein the first flow port and the housing outlet flow port are substantially aligned when in the open position; wherein the valve sleeve has an upper pressure surface defined thereon so as to provide a first surface area upon which a first fluid pressure from the internal housing flow path may act to provide a downward force on the valve sleeve, and wherein the valve sleeve has a lower pressure surface defined thereon so as to provide a second surface area upon which a second fluid pressure may act to provide an upward force on the valve sleeve; a spring, wherein the spring biases the valve sleeve to the closed position by exertion of a biasing force on the valve sleeve; an upper pressure port disposed internally to said valve housing between said sleeve flow port and the second end of said valve sleeve, said upper pressure port in fluid communication with the upper pressure surface, said upper pressure port disposed to allow the first fluid pressure to act upon the upper pressure surface, wherein the first fluid pressure is measured from adjacent the first end of the valve housing; a lower pressure port disposed internally to said valve housing so as to allow the second fluid pressure to act upon the lower pressure surface, wherein the second fluid pressure is measured from adjacent the second end of the valve housing; an upper pressure port that allows the first fluid pressure to act upon the first pressure surface; a lower pressure port that allows the second fluid pressure to act upon the second pressure surface; an elongated piston having a first end, an internal bore and a second end open to said internal bore, said piston axially movable within the valve housing, wherein the second end of the piston is adjacent an end of the valve sleeve and in fluid communication with the second flow port of said valve sleeve, and wherein the first end of the piston has a piston pressure surface characterized by a piston surface area; and a piston pressure port in fluid communication with said internal housing flow path that allows a fluid pressure internal to the valve to act upon the piston pressure surface, said piston pressure port in fluid communication with said piston internal bore, wherein the valve sleeve further comprises a flow restriction in the valve sleeve interior, wherein said lower pressure port is disposed in the wall of the valve sleeve below the flow restriction and the upper pressure port is disposed in the wall of the valve sleeve above the flow restriction.
Another example of a drill string flow control valve system comprises a valve housing formed of a tubular member extending from a first end to a second end and characterized by an external surface, said tubular member having a first flow path internally disposed therein; a valve sleeve slidingly mounted in the valve housing, said valve sleeve having a first end, a first flow port, a second flow port, a valve sleeve interior and a second end; a piston having a first end, an internal piston bore and a second open end in fluid communication with said piston bore, said piston slidingly mounted in the valve housing between said first end of the tubular member and said valve sleeve, wherein the second end of the piston is disposed to urge the valve sleeve axially relative to the valve housing, wherein said second open end of said piston is in fluid communication with the second flow port of said valve sleeve; a piston pressure port in fluid communication with said first internal housing flow path, said piston pressure port also in fluid communication with the piston bore; a ball and ball seat disposed along said piston pressure port; a first biasing mechanism disposed to urge said piston against said ball and to urge said ball into contact with said ball seat; a second biasing mechanism for biasing the valve sleeve against the piston; a first pressure port in the valve sleeve, said first pressure port in fluid communication with said internally disposed first flow path, said first pressure port in fluid communication with a first surface of the sleeve to provide a pressure acting on the first surface of the sleeve; and a second pressure port in fluid communication with a second surface of the sleeve to provide a second fluid pressure acting on the second surface of the sleeve, said second fluid pressure derived from adjacent the second end of said valve housing.
An example of a drill string flow stop valve comprises a tubular housing having an external surface and a first flow path internally disposed therein and an internal flow port disposed along said flow path; a hollow tubular section slidingly mounted in the valve housing and movable between a first position and a second position thereby establishing a second flow path in the interior of the hollow tubular section, wherein the hollow tubular section substantially impedes fluid flow through the internal flow port to an interior of the hollow tubular section when the valve sleeve is in the first position and wherein fluid flow through the internal flow port to the interior of the hollow tubular section is permitted when the valve sleeve is in the second position; a biasing mechanism for biasing the hollow tubular section toward the first position; a first vent in fluid communication with the internally disposed first flow path, said first vent in fluid communication with a first pressure chamber; a second vent in fluid communication with a second pressure chamber which is separate from the first pressure chamber, said second vent in fluid communication with the second flow path; an elongated piston having a first end, an internal bore and a second end open to said internal bore, wherein said second open end is in fluid communication with the interior of said hollow tubular section; and a third vent in fluid communication with the internally disposed first flow path, said third vent in fluid communication with said internal bore of said elongated piston.
In another improvement over the prior art, it has been found that flow control valves that utilize a jet or flow restriction disposed within the valve sleeve can position the first pressure channel (or upper pressure port or first pressure port) in the wall of the valve sleeve above the flow restriction as opposed to locating the first pressure channel outside the valve sleeve. A second pressure channel (or lower pressure port or second pressure port) is located downstream of the flow restriction. Although not necessary for use with embodiments of a flow control valve utilizing a small piston as described above, this arrangement is particularly beneficial in embodiments of a flow control valve utilizing a small piston since the initial flow through the small piston establishes fluid flow through the valve sleeve and restriction. The fluid has a first pressure above the restriction and a second pressure below the restriction. This pressure difference can be utilized to continue to open the valve as described in the prior art. However, the need for separate or complicated flow channels formed outside the valve sleeve, such as in the mandrel of the flow control valve, is eliminated. For fabrication purposes and simplification of manufacture and costs thereof, it is much easier to create flow ports that simply extend through the wall of the valve sleeve.
An example of a drill string flow control valve system comprises a valve housing, wherein the valve housing is characterized by a tubular wall extending from a first end to a second end and defining a valve interior, wherein the valve housing has an internal housing flow path formed between said first and second ends with a housing outlet flow port disposed along said internal flow path; a valve sleeve disposed at least partially in the valve housing, the valve sleeve having a first end and a second end and characterized by a valve sleeve wall extending between said first and second ends to define a valve sleeve interior, said valve sleeve having a first flow port disposed in said valve sleeve wall and a second flow port at said first end, wherein the valve sleeve is axially movable within the valve housing between a closed position and an open position, such that fluid flow between said housing outlet flow port and said first flow port is substantially impeded when the valve sleeve is in the closed position and wherein the first flow port and the housing outlet flow port are substantially aligned when in the open position; wherein the valve sleeve has an upper pressure surface defined thereon so as to provide a first surface area upon which a first fluid pressure from the internal housing flow path may act to provide a downward force on the valve sleeve, and wherein the valve sleeve has a lower pressure surface defined thereon so as to provide a second surface area upon which a second fluid pressure may act to provide an upward force on the valve sleeve; a spring, wherein the spring biases the valve sleeve to the closed position by exertion of a biasing force on the valve sleeve; an upper pressure port disposed internally to said valve housing between said sleeve flow port and the second end of said valve sleeve, said upper pressure port in fluid communication with the upper pressure surface, said upper pressure port disposed to allow the first fluid pressure to act upon the upper pressure surface, wherein the first fluid pressure is measured from adjacent the first end of the valve housing; a lower pressure port disposed internally to said valve housing so as to allow the second fluid pressure to act upon the lower pressure surface, wherein the second fluid pressure is measured from adjacent the second end of the valve housing; an upper pressure port that allows the first fluid pressure to act upon the first pressure surface; a lower pressure port that allows the second fluid pressure to act upon the second pressure surface; an elongated piston having a first end, an internal bore and a second end open to said internal bore, said piston axially movable within the valve housing, wherein the second end of the piston is adjacent an end of the valve sleeve and in fluid communication with the second flow port of said valve sleeve, and wherein the first end of the piston has a piston pressure surface characterized by a piston surface area; and a piston pressure port in fluid communication with said internal housing flow path that allows a fluid pressure internal to the valve to act upon the piston pressure surface, said piston pressure port in fluid communication with said piston internal bore, wherein the valve sleeve further comprises a flow restriction in the valve sleeve interior, wherein said lower pressure port is disposed in the wall of the valve sleeve below the flow restriction and the upper pressure port is disposed in the wall of the valve sleeve above the flow restriction. The system may further have an elongated piston having a first end, an internal bore and a second end open to said internal bore, the piston axially movable within the valve housing, wherein the second end of the piston is adjacent an end of the valve sleeve and in fluid communication with the second flow port of said valve sleeve, and wherein the first end of the piston has a piston pressure surface characterized by a piston surface area; and a piston pressure port in fluid communication with said internal housing flow path that allows a fluid pressure internal to the valve to act upon the piston pressure surface. In this embodiment, the piston pressure port is in fluid communication with the piston internal bore.
In another embodiment, the flow restriction or jet can be interchangeable so as to permit the flow rate and the desired pressure drop across the flow restriction to be adjusted (and thereby adjust operating pressures for the valve). For example, a restriction may be formed by providing a ring with a bore through the ring that narrows from one end to the other end of the ring. The dimensions of the bore can be altered to adjust the pressure drops. The ring may be interchangeable with others and secured in place within the annulus of the valve sleeve by a snap ring or similar fastener. As described above, while most beneficial in flow stop valves utilizing a small piston that engages a valve sleeve, the arrangement of a flow restriction in a valve sleeve bounded by an upper and lower pressure port would also be beneficial in flow stop valves without such a piston.
The features and advantages of this disclosure will be apparent to those skilled in the art. While numerous changes may be made by those skilled in the art, such changes are within the spirit of this disclosure.
A more complete understanding of this disclosure and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying figures, wherein:
While this disclosure is susceptible to various modifications and alternative forms, specific exemplary embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the disclosure to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure as defined by the appended claims.
This disclosure generally relates to drill string flow control valves and more particularly, drill string flow control valves for prevention of u-tubing of fluid flow in drill strings and well drilling systems.
Drill string flow control valves are provided herein that, among other functions, can be used to reduce and/or prevent u-tubing effects in drill strings.
To facilitate a better understanding of this disclosure, the following examples of certain embodiments are given. In no way should the following examples be read to limit, or define, the scope of the disclosure.
For ease of reference, the terms “upper,” “lower,” “upward,” and “downward” are used herein for convenience only to identify various components and refer to the spatial relationship of certain components, regardless of the actual orientation of the flow control valve. The term “axial” refers to a direction substantially parallel to the drill string in proximity to a drill string flow control valve.
In an exemplary embodiment, as illustrated in
A plug 18 having a varying-diameter tubular wall 18a is disposed within the interior 14. A plurality of axially-extending flow bores 18b are defined in a flanged portion 18aa of the tubular wall 18a. A plurality of housing outlet flow ports 19 is defined in the tubular wall 18a. Although the valve housing 12 and the plug 18 are shown here as two or more components, in several exemplary embodiments, these components may be formed as one integral piece such that the plug 18 is simply a part of the valve housing 12. Moreover, the plug 18 may be considered to be part of the valve housing 12, regardless of whether the valve housing 12 and the plug 18 are formed as one integral piece or are two or more components. In this particular embodiment, a plug is preferred because it obviates the need to bore internal flow channels in the valve housing. Rather, internal flow channels, such as internal housing flow path 16, can be defined between or by the engagement of plug 18 and valve housing 12, such as by an annulus that may be defined when plug 18 is engaged with valve housing 12. In any event, the axially-extending flow bores 18b and the housing outlet flow ports 19 form part of the flow path 16. A lockdown nut 20 is connected to the upper end portion of the plug 18. In an exemplary embodiment, the lockdown nut 20 is a filter-type lockdown nut. A lock nut 22 is engaged with the lower end portion of the plug 18.
A valve sleeve 24 is disposed within the interior 14. The valve sleeve 24 is axially slidable or movable within the valve housing 12. In an exemplary embodiment, the valve sleeve 24 may be partially disposed within a portion of the plug 18, as shown in
A jet or flow restriction 26 may be disposed within the sleeve interior 24d. Although flow restriction 26 may be located anywhere along the interior 24d of sleeve 24, in a preferred embodiment, flow restriction 26 is positioned adjacent the lower end of the annular portion 24j of the valve sleeve 24. A snap ring 28 is disposed within the sleeve interior 24d and is engaged with the valve sleeve wall 24c. The flow restriction 26 is axially positioned between the annular portion 24j and the snap ring 28. In an exemplary embodiment, the flow restriction 26 may be formed by providing a ring with a bore therethrough that narrows from one end to the other end of the ring. In several exemplary embodiments, the flow restriction 26 may be interchangeable with other jets or flow restrictions and secured in place within the sleeve interior 24d by the snap ring 28, other snap ring(s), or similar fastener(s).
An external threaded connection 30a at one end of a sub 30 is engaged with the internal threaded connection 12e of the valve housing 12, thereby connecting the sub 30 to the valve housing 12. The sub 30 defines an upper end surface 30b, and an interior 30c, which, in several exemplary embodiments, forms part of the flow path 16. The sub 30 further includes an external threaded connection 30d at the other end thereof, and an internal shoulder 30e.
A variable-volume pressure chamber 32 is defined adjacent pressure surface 24i. In one embodiment, pressure chamber 32 is an annular region formed between the inside surface of the valve housing wall 12c of the valve housing 12, and the outside surface of the valve sleeve wall 24c of the valve sleeve 24. The annular region 32 is axially defined between the lower pressure surface 24i of the valve sleeve 24, and a location at least proximate the upper end surface 30b of the sub 30. A coil sleeve spring 34 is disposed within the annular region 32 so that the valve sleeve wall 24c extends through the sleeve spring 34 and the coils of the sleeve spring 34 extend circumferentially about the valve sleeve wall 24c. The valve sleeve 24 is biased upwards by the sleeve spring 24. In several exemplary embodiments, instead of, or in addition to, the coil sleeve spring 34, one or more other biasing mechanisms may be disposed in the annular region 32 to thereby bias the valve sleeve 24 upwards.
One or more pressure fluid ports or vents 36 are in fluid communication the flow path 16. The pressure fluid ports 36 are preferably bled off from an upper portion of flow path 16. In an exemplary embodiment, as shown in
At least one lower pressure fluid port or vent 40 is in fluid communication with the sleeve interior 24d and thus with the flow path 16. In an exemplary embodiment, the lower pressure fluid port 40 is formed in the valve sleeve wall 24c. Via the lower pressure fluid port 40, the annular region 32 is in fluid communication with the sleeve interior 24d and thus with the flow path 16. In several exemplary embodiment, instead of, or in addition to, the lower pressure fluid port 40, one or more other lower pressure fluid ports identical to the lower pressure fluid port 40 may be formed in the valve sleeve wall 24c below the lower pressure surface 24i of the valve sleeve 24 at different axial positions therealong.
A piston 42 is disposed within the plug 18 and thus within the interior 14. The piston 42 is axially slidable or movable within the plug 18 and thus within the valve housing 12. In an exemplary embodiment, as show in
In an exemplary embodiment, as illustrated in
As shown in
As shown in
In an exemplary embodiment, as illustrated in
As shown in
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, in order to resist the high pressure and flow rates that can cause wash out of sleeve flow ports 24e, part or all of the piston 42 is formed of a material, such as tungsten carbide, that is harder than, i.e., has a Rockwell hardness factor that is higher than, the material used to fabricate the remainder of the valve 10 (usually steel). In an exemplary embodiment, the valve housing 12 or the valve sleeve 24 is manufactured of a material having a Rockwell hardness and the piston 42 is manufactured of another material having a Rockwell hardness higher than the Rockwell hardness of the material used to manufacture the valve housing 12 or the valve sleeve 24. In an exemplary embodiment, the valve housing 12 and the valve sleeve 24 are manufactured of steel and the piston 42 is manufactured of tungsten carbide.
In operation, in an exemplary embodiment, with continuing reference to
More particularly, the drill string of which the valve 10 is a part is positioned within a preexisting structure such as, for example, a wellbore that traverses one or more subterranean formations, thereby defining an annular region between the inside wall of the wellbore and the outside surface of the drill string. At this time, the valve 10 and thus the valve sleeve 24 may be in a closed position as shown in
When the valve 10 and thus the valve sleeve 24 are in the closed position as shown in
In an exemplary embodiment, during or after the positioning of the drill string of which the valve 10 is a part within the wellbore, fluid flow through the valve 10 is restricted by placing the valve 10 and thus the valve sleeve 24 in the closed position described above, that is, closing the valve 10, when a difference between a fluid pressure on the upper and lower pressure surfaces is below a threshold value. This difference in pressure causes the valve sleeve 24 to remain in the closed position, thereby substantially impeding any fluid flow from the housing outlet flow ports 19 to the corresponding sleeve flow ports 24e, and vice versa. And this difference in pressure causes the piston 42 to remain upwardly biases, thereby urging the ball 50 upwards to seat the ball 50 against the ball seat 48 and substantially impeding any fluid flow past the ball 50.
In an exemplary embodiment, during or after the positioning of the drill string of which the valve 10 is a part within the wellbore, fluid flow through the valve 10 is permitted by opening the valve 10, that is, placing the valve 10 and thus the valve sleeve 24 in an open position from the above-described closed position, when a difference between the fluid pressure between the upper and lower pressure surfaces is above a threshold value. To so open the valve 10, drilling fluid is introduced into the valve 10, with the drilling fluid initially flowing downward past the upper end 12a of the valve housing 12. As a result of introducing drilling fluid into the valve 10, a pressure applied to the piston pressure surface 42d is induced, thereby causing the piston 42 to urge the valve sleeve 24 from the closed position.
As the pressure applied to the piston pressure surface 42d increases, the ball 50 is urged out of the ball seat 48. In particular, the ball 50 pushes downward against the piston pressure surface 42d, which causes the piston 42 to overcome the biasing force exerted by the piston spring 44, thereby urging the piston 42 downward. In an exemplary embodiment, a relatively low pressure can be used to urge the ball 50 out of the ball seat 48 because the ball 50 has a comparatively small surface area and there is little friction on the ball 50. Via the piston pressure port 52, a portion of the drilling fluid is directed through the piston 42 and into the sleeve interior 24d of the valve sleeve 24, thereby establishing an initial flow through the valve 10. In particular, the portion of the drilling fluid flows through the apertures 20e of the lockdown nut 20, through the bore 20c, through the piston pressure port 52, past the ball seat 48 and the ball 50, through the flow ports 42i of the piston 42, through the flow passage 42c of the piston 42, and into the sleeve interior 24d. Thus, initially, drilling fluid flow through the valve sleeve 24 occurs past the ball 50 and through the piston 42. The flow of the drilling fluid through the apertures 20e filters the drilling fluid before the drilling fluid flows past the ball seat 48, blocking any relatively large particles from flowing into or past the ball seat 48.
Another portion of the drilling fluid flows through the upper pressure fluid ports 36 from the flow path 16, entering the annular region 38 and contacting upper pressure surface 24h of the valve sleeve 24. As a result, a downwardly-directed fluid pressure is applied on the upper pressure surface 24h of the valve sleeve 24.
In an exemplary embodiment, as illustrated in
As shown in
In an exemplary embodiment, once fluid flow has been initiated, a fluid pressure, derived downstream of the fluid pressure applied to the upper pressure surface 24h, is applied to the valve sleeve 24 to generate a force to urge the valve sleeve 24 upward. In particular, drilling fluid flows through the lower pressure fluid port 40, entering the annular region 32 and contacting lower pressure surface 24i of the valve sleeve 24. As a result, an upwardly-directed fluid pressure is applied on the lower pressure surface 24i of the valve sleeve 24. When the valve 10 and thus the valve sleeve 24 are in the open position, the drilling fluid flow through the valve 10 is maintained so that the force urging the valve sleeve 24 downward is greater than the upwardly-directed biasing force exerted by the sleeve spring 34 plus the upwardly-directed force exerted by the fluid pressure against the lower pressure surface 24i.
In an exemplary embodiment, whether or not flow control valve 10 includes a piston 42 as described herein, the upper pressure fluid ports 36 are positioned upstream of flow restriction 26 and the lower pressure port 40 is positioned downstream of flow restriction 26. As a result, during the flow of the drilling fluid along the flow path 16, the pressure differential across the flow restriction 26 can be utilized to facilitate control of valve sleeve 24. In several exemplary embodiments, the dimensions of the flow restriction 26 can be altered to adjust pressure drops. If the flow restriction 26 includes a ring with a bore formed therethrough, the dimensions of the bore can be altered to adjust pressure drops, and the ring may be interchangeable with others and secured in place with the snap ring 28 or similar fastener.
In an exemplary embodiment, the valve 10 and thus the valve sleeve 24 may be placed back into the closed position shown in
In an exemplary embodiment, as illustrated in
In several exemplary embodiments, and as illustrated in at least
Although drill pipe threads have been depicted herein in several embodiments, it is explicitly recognized that the drill string flow control valves, the joints of drill pipe, and other drill string components herein may be attached to one another by any suitable means known in the art including, but not limited to, drill pipe threads, ACME threads, high-torque shoulder-to-shoulder threads, o-ring seals, welding, or any combination thereof.
While the foregoing has been described in relation to a drill string and is particularly desirable for addressing u-tubing concerns, those skilled in the art with the benefit of this disclosure will appreciate that the drill string flow control valves of this disclosure can be used in other fluid flow applications without limiting the foregoing disclosure.
Therefore, the present invention is well adapted to attain the ends and advantages mentioned as well as those that are inherent therein. The particular embodiments disclosed above are illustrative only, as the present invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular illustrative embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the present invention. Also, the terms in the claims have their plain, ordinary meaning unless otherwise explicitly and clearly defined by the patentee.
This application claims priority to U.S. provisional patent application No. 61/294,402, filed Jan. 12, 2010, the entire disclosure of which is incorporated herein by reference. This application is related to U.S. provisional patent application No. 60/793,883, filed Apr. 21, 2006; U.S. utility patent application Ser. No. 11/788,660, filed Apr. 20, 2007, now U.S. Pat. No. 7,584,801; U.S. utility patent application Ser. No. 12/432,194, filed Apr. 29, 2009; and U.S. utility patent application Ser. No. 12/609,458, filed Oct. 30, 2009, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3090443 | bostock | May 1963 | A |
3973587 | Cochran | Aug 1976 | A |
6216799 | Gonzalez | Apr 2001 | B1 |
6263981 | Gonzalez | Jul 2001 | B1 |
6276455 | Gonzalez | Aug 2001 | B1 |
6325159 | Peterman et al. | Dec 2001 | B1 |
6401823 | Gonzalez et al. | Jun 2002 | B1 |
8066079 | de Boer | Nov 2011 | B2 |
20020020558 | Gonzalez | Feb 2002 | A1 |
Number | Date | Country |
---|---|---|
WO2007124097 | Nov 2007 | WO |
Entry |
---|
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority, PCT/US2011/021022, date of Report Jul. 17, 2012, The International Bureau of WIPO, 19 pages. |
Examination Report Under Section 18(3), dated Aug. 20, 2010, United Kingdom Intellectual Property Office, 3 pages. |
International Search Report and Written Opinion of the International Searching Authority, Or the Declaration, PCT/US2010/032957, dated Oct. 22, 2010, European Patent Office, 16 pages. |
Number | Date | Country | |
---|---|---|---|
20110168410 A1 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
61294402 | Jan 2010 | US |