Embodiments of the present disclosure relate generally to drilling assemblies for use in drilling subterranean boreholes and, more particularly, to drilling assemblies that include both an actuatable expandable reamer and an actuatable expandable stabilizer, and to methods of making and using such drilling assemblies.
Expandable reamers are typically employed for enlarging subterranean boreholes. In drilling oil, gas, and geothermal wells, casing is installed and cemented to prevent the wellbore walls from caving into the subterranean borehole while also providing requisite shoring for subsequent drilling operation to achieve greater depths. Casing is also conventionally installed to mutually isolate different formations, to prevent crossflow of formation fluids, and to enable control of formation fluids and pressure as the borehole is being drilled. To increase the depth of a previously drilled borehole, new and smaller diameter casing, or “liner,” is disposed within and extended below the previous casing. However, while adding additional casing allows a borehole to reach greater depths, the additional, smaller casing has the disadvantage of narrowing the borehole. Narrowing the borehole restricts the diameter of any subsequent sections of the well because the drill bit and any further casing must pass through the smaller casing. As reductions in the borehole diameter are undesirable because they limit the production flow rate of oil and gas through the borehole, it is often desirable to enlarge a subterranean borehole to provide a larger borehole diameter beyond previously installed casing to enable better production flow rates of hydrocarbons through the borehole.
Various approaches to expand a borehole may include expandable stabilizer blocks or bearing pads used in an expandable stabilizer located longitudinally above an expandable reamer to increase stability and reduce dysfunctional loads, i.e., lateral vibrational loads, thereupon while reaming. In most instances, fixed stabilizer pads or blocks, being sized and configured for a corresponding hole diameter cut by a pilot bit or drill bit, are located in a drill string between the bit and the expandable reamer. The stabilizer bearing pads or blocks help to control stability, particularly when conducting a so called “down drill” operation, e.g., drilling in the down-hole direction. Also, stability is further improved by providing a point of control above an expandable reamer to decrease the flexibility of the drill string about the expandable reamer.
This summary is provided to introduce a selection of concepts in a simplified form. These concepts are described in further detail in the detailed description of example embodiments of the disclosure below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
In some embodiments, the present disclosure includes a drilling assembly for drilling a subterranean wellbore. The drilling assembly includes an expandable reamer having a first tubular body with a first longitudinal axis and a first drilling fluid flow path extending therethrough. A plurality of blades is carried by the first tubular body, and a cutting structure is carried by at least one blade of the plurality of blades wherein the at least one blade is outwardly movable from a refracted position to an extended position with respect to the first longitudinal axis. The drilling assembly also includes an expandable stabilizer axially located a distance of about 25 feet or less above the expandable reamer in the drilling assembly, the expandable stabilizer has a second tubular body with a second longitudinal axis and a second drilling fluid flow path extending therethrough. A plurality of bearing pads is carried by the second tubular body, wherein at least one bearing pad of the plurality of bearing pads is outwardly movable from a refracted position to an extended position with respect to the second longitudinal axis.
In additional embodiments, the present disclosure includes a drilling assembly for drilling a subterranean wellbore, including an expandable reamer having a first tubular body with a first longitudinal axis and a first drilling fluid flow path extending therethrough. A plurality of blades is carried by the first tubular body, and a cutting structure is carried by at least one blade of the plurality of blades, wherein the at least one blade is outwardly movable from a refracted position to an extended position with respect to the first longitudinal axis. The expandable reamer also includes a first actuation device for moving the at least one blade from the refracted position to the extended position and a first electrical device configured to receive a first electronic signal and actuate the first actuation device responsive to the first electronic signal. The drilling assembly also includes an expandable stabilizer axially spaced from the expandable reamer, the expandable stabilizer has a second tubular body with a second longitudinal axis and a second drilling fluid flow path extending therethrough. A plurality of bearing pads is carried by the second tubular body, wherein at least one bearing pad of the plurality of bearing pads is outwardly movable from a refracted position to an extended position with respect to the second longitudinal axis. The expandable stabilizer also includes a second actuation device for moving the at least one bearing pad from the refracted position to the extended position and a second electrical device configured to receive a second electronic signal and actuate the second actuation device responsive to the second electronic signal.
In yet other embodiments, the present disclosure includes a method of forming a drilling assembly for drilling a subterranean wellbore. The method includes coupling an expandable stabilizer to an expandable reamer. The expandable reamer has a first tubular body with a first longitudinal axis and a first drilling fluid flow path extending therethrough. A plurality of blades is carried by the first tubular body, and a cutting structure is carried by at least one blade of the plurality of blades, wherein the at least one blade is outwardly movable from a refracted position to an extended position with respect to the first longitudinal axis for reaming a section of the wellbore. The expandable stabilizer has a second tubular body with a second longitudinal axis and a second drilling fluid flow path extending therethrough. A plurality of bearing pads is carried by the second tubular body, wherein at least one bearing pad of the plurality of bearing pads is outwardly movable from a refracted position to an extended position with respect to the second longitudinal axis. The method also includes axially locating the expandable stabilizer a distance of about 25 feet or less above the blades of the expandable reamer.
While the specification concludes with claims particularly pointing out and distinctly claiming what are regarded as embodiments of the present disclosure, the advantages of embodiments of the disclosure may be more readily ascertained from the description of certain examples of embodiments of the disclosure when read in conjunction with the accompanying drawings, in which:
The illustrations presented herein are not meant to be actual views of any particular drilling assembly, component, structure, or device, but are merely idealized representations that are used to describe embodiments of the disclosure.
When used herein in reference to a location in the wellbore, the terms “above,” “upper” and “uphole” mean and include a relative position proximate the surface of the well, whereas the terms “below,” “lower” and “downhole” mean and include a relative position distal the surface of the well.
Referring now to
The blades 48 and bearing pads 50 are each retained in an initial, refracted position within their respective tubular bodies 44, 46, as shown in
The expandable reamer 14, including the blades 48, may be configured as described in any of U.S. Pat. Nos. 8,020,635, issued Sep. 20, 2011 to Radford; U.S. Pat. No. 7,900,717, issued Mar. 8, 2011 to Radford et al.; U.S. Pat. No. 7,681,666, issued Mar. 23, 2010 to Radford et al.; U.S. Pat. No. 7,549,485, issued Jun. 23, 2009 to Radford et al.; U.S. Pat. No. 7,036,611, issued May 2, 2006 to Radford et al.; and United States Patent Publication Nos. 2011/0127044, published Jun. 2, 2011 to Radford et al.; 2011/0005836, published Jan. 13, 2011 to Radford et al.; and 2009/0294178, published Dec. 3, 2009 to Radford, the disclosure of each of which is hereby incorporated herein in its entirety by this reference. The expandable stabilizer 16, including the bearing pads 50, may be configured as described in any of United States Patent Publication Nos. 2011/0127044, published Jun. 2, 2011 to Radford et al., and 2009/0294178, published Dec. 3, 2009 to Radford, the disclosure of each of which is hereby incorporated herein in its entirety by this reference.
The reamer blades 48 and stabilizer bearing pads 50 may be operationally configured to extend and retract responsive to hydraulic pressure acting against the blades 48 and bearing pads 50, respectively, as described in U.S. Pat. Nos. 7,900,717; 7,549,485; 8,020,635; and 7,681,666; and United States Patent Publication Nos. 2011/0127044 and 2009/0294178, each of which is referenced above and incorporated by reference herein.
In other embodiments, the reamer blades 48 and/or stabilizer bearing pads 50 may be configured for lateral outward extension by pressurized drilling fluid separately controlled by a closed-loop hydraulic system, as provided in U.S. Pat. Nos. 8,020,635; 7,681,666 and 7,549,485, and United States Patent Publication No. 2011/0127044, each of which referenced above and incorporated by reference herein. For example, the blades 48 and/or bearing pads 50 may be actuated by a piston element (not shown) coaxially aligned with the tubular body of the respective reamer 14 or stabilizer 16 and having a drilling fluid flow path extending through a central bore of the piston, as disclosed in United States Patent Publication No. 2011/0127044, referenced above. In such embodiments, the piston element may move axially as influenced by pressure of the drilling fluid flowing through the tubular bodies of the reamer 14 and stabilizer 16, which axial movement may bring lateral ports in the piston into fluid communication with lateral ports in a housing of the piston element, providing pressurized fluid flow directed to act against the blades 48 and/or bearing pads 50. The axial position of such a piston element may further be controlled by a sealed, closed-loop hydraulic system, comprising a first and second fluid chamber axially located on opposite sides of a laterally extending member of the piston. A bi-directional valve may be used to control the flow of the sealed hydraulic fluid within the first and second chambers in a manner to control the axial position of the laterally extending member of the piston. The valve may be controlled by a unit including a processor, memory device and software programs.
In still further embodiments, pressurized hydraulic fluid in a controlled, closed-loop hydraulic system may directly displace a reamer blade 48 or stabilizer bearing pad 50, as disclosed in U.S. Pat. Nos. 8,020,635; 7,681,666 and 7,549,485, each of which is referenced above and incorporated by reference herein. In such embodiments, the pressurized hydraulic fluid may be communicated to a chamber housing a portion of a lateral piston element coupled to the blade 48 or bearing pad 50. The pressurized fluid may be communicated to the chamber by way of a pressure source, such as a downhole pump or turbine operatively coupled to a control valve apparatus. The control valve apparatus may be selectively and reversibly operable, and may comprise a solenoid actuated valve.
It is to be appreciated that any of the embodiments of the references incorporated by reference herein may be modified and reconfigured in accordance with the teachings of the present disclosure. Furthermore, any conventional expandable reamer or expandable stabilizer modified and reconfigured in accordance with the teachings of the disclosure herein may be utilized to advantage to provide an improved system or drilling assembly for stabilizing the drill string while performing a reaming operation. Additionally, the reamer blades 48 and/or the stabilizer bearing pads 50 may be configured for lateral outward extension by any other mechanical means, such as a push rod, wedge or actuating motor or as conventionally understood to a person having ordinary skill in the art of expandable reamers and/or expandable stabilizers.
The expandable stabilizer 16 may be coupled directly to the expandable reamer 14, as shown in
The expandable stabilizer 16, when positioned above and proximate the expandable reamer 14, helps to reduce vibration and stabilize the expandable reamer 14 as the wellbore 40 is reamed to a larger diameter, or reamed diameter, Dr, above the smaller drilled diameter, Dd.
Referring to
Actuation of the expandable reamer 14 and the expandable stabilizer 16 may be controlled by a surface operator. The embodiments of the present disclosure provide the surface operators with a variety of options to separately control actuation of the reamer 14 and stabilizer 16, via direct-line electronic command signals, or, alternatively, command pattern signals which may be sensed downhole and relayed to the drilling assembly 38. Additionally, one or both of the reamer 14 and stabilizer 16 may be actuated automatically upon the recognition of a predetermined parameter by a downhole sensor. The embodiments of the assembly 38 illustrated in
As shown in
The first electrical device 92 may communicate with the first electronic signal source by one or more lines or wires 96 extending the length of the first tubular body 44 and electronically coupling the first electrical device 92 to additional components of the drill string, such as one or more BCPMs, sections of electrically communicative drill pipe, and downhole sensors 30, such as RPM recognition devices, accelerometers, pressure sensors, sonic calipers, and flow meters, as further disclosed below. The wires 96 may be located on an outer surface or inner surface of the first tubular body 44, or may be located within the body material thereof. Upon receiving a first electronic signal from the first electronic signal source, the first electrical device 92 may actuate the first actuation device 94, moving the reamer blades 48 from the retracted position to the extended position, as shown in
As described above, the expandable stabilizer 16 may be configured similar to the configuration of the expandable reamer 14. The expandable stabilizer 16 may have a second generally tubular body 46 having a second drilling fluid flow path 62 extending therethrough along a second longitudinal axis L2. The expandable bearing pads 50 may be operationally coupled to a second actuation device 98 located in or on the second tubular body 46. Also located in the second tubular body 46 is a second electrical device 100 operatively coupled to the second actuation device 98 and in electronic communication with a second electronic signal source. Similarly to the first electronic signal source, as discussed above, it is to be appreciated that a variety of alternative components may comprise the second electronic signal source. Moreover, the second electronic signal source may be the same as the first electronic signal source; although, in additional embodiments, the second electronic source may be separate from the first electronic source, as will be described in more detail below. The second electrical device 100 may communicate with the second electronic signal source by one or more wires 96 extending the length of the second tubular body 46 and electronically coupling the second electrical device 100 with additional components of the drill string, as further disclosed below. The wires 96 may be located on an outer surface or inner surface of the second tubular body 46, or may be located within the body 46. Upon receiving a second electronic signal from the second electronic signal source, the second electrical device 100 may actuate the second actuation device 98, moving the stabilizer bearing pads 50 from the refracted position to the extended position, as shown in
It is to be appreciated that the expandable reamer blades 48 and bearing pads 50 may be retracted similar to the manner in which they are extended. For example, upon receiving another electronic signal, the first electrical device 92 may actuate the first actuation device 94 in a manner to move the reamer blades 48 from the extended position to the retracted position. Similarly, upon receiving yet another electronic signal, the second electrical device may actuate the second actuation device 98 in a manner to move the stabilizer bearing pads 50 from the extended position to the retracted position. Alternatively, the first and second electrical devices 92, 100 may respectively actuate the first and second actuation devices 94, 98 upon reception of the same electronic signal. In additional embodiments, retention elements (not shown), such as springs or other retention elements, may respectively retract the reamer blades 48 and bearing pads 50 from the extended position to the refracted position upon deactivation of the first and second actuation devices 94, 98, respectively, by the first and second electrical devices 92, 100.
The first tubular body 44 and the second tubular body 46 each have respective lower ends 52, 56 and upper ends 54, 58. The lower ends 52, 56 may include a set of threads (e.g., a threaded-male pin member) (not shown) for connecting the lower ends 52, 56 to another component of the drill string or bottom-hole assembly, such as, for example, a drill collar or collars carrying a pilot drill bit 12 for drilling the wellbore 40. Similarly, the upper ends 54, 58 of the first tubular body 44 and the second tubular body 46 may include a set of threads (e.g., a threaded-female box member) (not shown) for connecting the upper ends 54, 58 to a set of threads (e.g., a threaded-male pin member) to another component of the drill string or bottom-hole assembly. By way of example and not limitation, the threaded-female box member at the lower end 56 of the stabilizer 46 may be threadedly connected to the corresponding threaded-male pin member at the upper end 54 of the reamer 44. In other embodiments, the threaded-female box member at the lower end 56 of the stabilizer 46 may be threadedly connected to a drill collar, and a lower end of the drill collar may be threadedly connected to the threaded-male pin member at the upper end 54 of the reamer 44. The threads in the lower and upper ends of the reamer 14 and stabilizer 16 can be of any suitable type for mating with another section of a drill string or another component of a bottom-hole assembly. Moreover, the threads at the respective upper ends 54, 58 and lower ends 52, 56 of the first and second tubular body 44, 46 may be configured with an electrical contact pad or ring (not shown) electrically coupled with the one or more wires 96 extending the length of the respective first and second tubular body 44, 46. The electrical contact pad or ring may be configured to engage a corresponding electrical contact pad or ring in the threads of a matting component of the bottom-hole assembly. In this manner, some or all of the components of the bottom-hole assembly may be in electronic communication with one another.
The drill string may also contain one or more sections of electrically communicative drill pipe 34 (shown in
Referring now to
Referring to
The processors 112 may be configured to actuate the first and second actuation devices 94, 98 responsive to any of the control methods discussed above. In some embodiments, one or both of the expandable reamer 14 and the expandable stabilizer 16 may be controlled by direct-line electronic signals sent directly from a surface controller and transmitted through the drill string via wire lines or through sections of electrically communicative drill pipe 34 (shown in
In other embodiments, one or both of the expandable reamer 14 and the expandable stabilizer 16 may be controlled by command patterns sent downhole by a surface controller. The command patterns may be any signal that allows communication between the surface drilling rig and a downhole tool, such as changes in drill string rotation rate (revolutions per minute, or “RPM”), changes in mud pulse frequency, changes in flow rates of the drilling fluid, and axial motion of the drill string.
One example of a command pattern signal comprises a predefined sequence of rotational speed (revolutions per minute (RPM)) duration periods may be used to provide a command pattern signal that is detected downhole by a sensor 30, such as an RPM recognition device, which may comprise an accelerometer, which may control one or both of the expandable reamer 14 and the expandable stabilizer 16. By way of a non-limiting example, the drill string may be rotated by a drilling rig at 40 RPM for 10 seconds, followed by a rotation of 20 RPM for 30 seconds, where one or more sensors 30 detect the drill string rotational speed. The RPM recognition device may include a processor (not shown), which transforms the detected rotation speeds into an electronic data signal and transmits the electronic data signal to the processors 112 through one or more wires 96, as described above, or another signal communication pathway. The processors 112 decode the pattern of rotational speeds and durations by comparing the data signal to patterns stored in the memory devices 116 corresponding to predetermined positions of the blades 48 and/or bearing pads 50. When the processors 112 identify a stored pattern corresponding to the pattern communicated by the data signal, the processors may respectively actuate the first and second actuation devices 94, 98 to move the blades 48 and/or bearing pads 50 to the corresponding predetermined positions.
Another example of a command pattern signal comprises a sequence of pulses of hydraulic pressure in the drilling fluid, or “mud pulses,” as known in the art, of a varying parameter, such as duration, amplitude and/or frequency, that may be detected by a pressure sensor in the bottom-hole assembly. The pressure sensor may be located in a BCPM positioned in the bottom-hole assembly (shown in
In additional embodiments, one or both of the expandable reamer 14 and the expandable stabilizer 16 may be controlled automatically or independently based on sensed downhole parameters, such as the diameter of the wellbore proximate the stabilizer bearing pads 50. For example, a measurement device, such as a sonic caliper, which may be represented by sensor 30 in
It is to be appreciated that the drilling assembly 38 comprising the expandable reamer 14 and the expandable stabilizer 16 may be controlled by any combination of the control methods described above. For example, in one embodiment, both the first and second actuation devices 94, 98 may respectively move the reamer blades 48 and stabilizer bearing pads 50 responsive to a direct electronic signal sent from a surface controller.
In an additional embodiment, the first actuation device 94 may move the reamer blades 48 responsive to a direct electronic signal sent from a surface controller while the second actuation device 98 may move the stabilizer bearing pads 50 responsive to a pattern command sent downhole from a surface controller and detected by a downhole sensor.
In yet additional embodiments, the first actuation device 94 may move the reamer blades 48 responsive to a direct electronic signal sent from a surface controller while the second actuation device 98 may automatically move the stabilizer bearing pads 50 responsive to a sensed downhole parameter, such as when the diameter of the wellbore 40 proximate the stabilizer bearing pads 50, as sensed by a sonic caliper, corresponds to the reamed diameter Dr of the wellbore 40.
In yet further additional embodiments, both the first and second actuation devices 94, 98 may respectively move the reamer blades 48 and stabilizer bearing pads 50 responsive to command patterns sent downhole from a surface controller and detected by one or more downhole sensors.
In still yet further additional embodiments, the first actuation device 94 may move the reamer blades 48 responsive to a command pattern sent downhole from a surface controller and detected by a downhole sensor while the second actuation device may 74 may move the stabilizer bearing pads 50 responsive to a direct electronic signal sent from a surface controller.
In other further additional embodiments, the first actuation device 94 may move the reamer blades 48 responsive to a command pattern sent downhole from a surface controller and detected by a downhole sensor while the second actuation device 98 may automatically move the stabilizer bearing pads 50 responsive to a sensed downhole parameter, such as when the diameter of the wellbore 40 proximate the stabilizer bearing pads 50, as sensed by a sonic caliper, corresponds to the reamed diameter Dr of the wellbore 40.
It is to be appreciated that one or both of the blades 48 and bearing pads 50 may be refracted from the extended position to the refracted position by any of the methods and mechanisms described above.
Additional non-limiting example embodiments of the present disclosure are set forth below.
Embodiment 1: A drilling assembly for drilling a subterranean wellbore, comprising: an expandable reamer comprising a first tubular body having a first longitudinal axis and a first drilling fluid flow path extending therethrough, a plurality of blades carried by the first tubular body, and a cutting structure carried by at least one blade of the plurality of blades, wherein at least one blade of the plurality of blades is outwardly movable from a refracted position to an extended position with respect to the first longitudinal axis; and an expandable stabilizer axially located a distance of about 25 feet or less above the expandable reamer in the drilling assembly, the expandable stabilizer comprising a second tubular body having a second longitudinal axis and a second drilling fluid flow path extending therethrough, a plurality of bearing pads carried by the second tubular body, wherein at least one bearing pad of the plurality of bearing pads is outwardly movable from a retracted position to an extended position with respect to the second longitudinal axis.
Embodiment 2: The drilling assembly of Embodiment 1, wherein the first tubular body of the expandable reamer and the second tubular body of the expandable stabilizer are separate tubular bodies coupled directly together.
Embodiment 3: The drilling assembly of Embodiment 1, wherein the first tubular body of the expandable reamer and the second tubular body of the expandable stabilizer comprise different regions of a unitary tool body.
Embodiment 4: The drilling assembly of any one of Embodiments 1 through 3, wherein the bearing pads are located a distance in a range extending from about 10 feet to about 15 feet above the blades.
Embodiment 5: The drilling assembly of any one of Embodiments 1 through 4, wherein the bearing pads are located a distance in a range extending from about 15 feet to about 25 feet above the blades.
Embodiment 6: The drilling assembly of any one of Embodiments 1 through 5, wherein the first longitudinal axis of the expandable reamer is co-axial with the second longitudinal axis of the expandable stabilizer.
Embodiment 7: A drilling assembly for drilling a subterranean wellbore, comprising: an expandable reamer comprising a first tubular body having a first longitudinal axis and a first drilling fluid flow path extending therethrough, a plurality of blades carried by the first tubular body, and a cutting structure carried by at least one blade of the plurality of blades, wherein the at least one blade is outwardly movable from a refracted position to an extended position with respect to the first longitudinal axis, the expandable reamer further comprising a first actuation device for moving the at least one blade from the refracted position to the extended position and a first electrical device configured to receive a first electronic signal and actuate the first actuation device responsive to the first electronic signal; and an expandable stabilizer axially spaced from the expandable reamer and comprising a second tubular body having a second longitudinal axis and a second drilling fluid flow path extending therethrough, a plurality of bearing pads carried by the second tubular body, wherein at least one bearing pad of the plurality of bearing pads is outwardly movable from a retracted position to an extended position with respect to the second longitudinal axis, the expandable stabilizer further comprising a second actuation device for moving the at least one bearing pad from the refracted position to the extended position and a second electrical device configured to receive a second electronic signal and actuate the second actuation device responsive to the second electronic signal.
Embodiment 8: The drilling assembly of Embodiment 7, further comprising a bi-directional communication pulse module (BCPM) configured to transmit the first electronic signal to the first electrical device of the expandable reamer.
Embodiment 9: The drilling assembly of Embodiment 8, wherein the BCPM is configured to transmit the second electronic signal to the second electrical device of the expandable stabilizer.
Embodiment 10: The drilling assembly of any one of Embodiments 7 through 9, further comprising a sensor device configured to indicate a diameter of the wellbore proximate the expandable stabilizer, the sensor device comprising an electronic device configured to transmit the second electronic signal to the second electrical device of the expandable stabilizer when the diameter of the wellbore corresponds to a predetermined diameter.
Embodiment 11: The drilling assembly of any one of Embodiments 7 through 10, further comprising at least one section of electrically communicative drill pipe located in the drilling assembly, the at least one section of electrically communicative drill pipe providing an electrical interconnection between two components of the drilling assembly coupled directly to opposing ends of the at least one section of electrically communicative drill pipe, wherein the first electronic signal is transmitted through the at least one section of electrically communicative drill pipe to the first electrical device of the expandable reamer.
Embodiment 12: The drilling assembly of any one of Embodiments 7 through 11, wherein the second electronic signal is transmitted through the at least one section of electrically communicative drill pipe to the second electrical device of the expandable stabilizer.
Embodiment 13: The drilling assembly of any one of Embodiments 7 through 12, further comprising a revolution-per-minute (RPM) recognition device configured to transmit the second electronic signal to the second electrical device of the expandable stabilizer responsive to detection of a predetermined series of operating revolution-per-minute intervals.
Embodiment 14: The drilling assembly of any one of Embodiments 7 through 13, wherein the first actuation device does not comprise a ball trap mechanism.
Embodiment 15: The drilling assembly of any one of Embodiments 7 through 14, wherein the first actuation device comprises at least one of a downhole pump and a downhole turbine configured to pressurize hydraulic fluid enclosed and sealed within the first tubular body of the expandable reamer.
Embodiment 16: The drilling assembly of any one of Embodiments 7 through 15, wherein the second actuation device does not comprise a ball trap mechanism.
Embodiment 17: The drilling assembly of any one of Embodiments 7 through 16, wherein the second actuation device comprises at least one of a downhole pump and a downhole turbine configured to pressurize hydraulic fluid enclosed and sealed within the second tubular body of the expandable stabilizer.
Embodiment 18: A method of forming a drilling assembly for drilling a subterranean wellbore, comprising: coupling an expandable stabilizer to an expandable reamer, the expandable reamer comprising a first tubular body having a first longitudinal axis and a first drilling fluid flow path extending therethrough, a plurality of blades carried by the first tubular body, and a cutting structure carried by at least one blade of the plurality of blades, wherein the at least one blade is outwardly movable from a retracted position to an extended position with respect to the first longitudinal axis for reaming a section of the wellbore, the expandable stabilizer comprising a second tubular body having a second longitudinal axis and a second drilling fluid flow path extending therethrough, a plurality of bearing pads carried by the second tubular body, wherein at least one bearing pad of the plurality of bearing pads is outwardly movable from a retracted position to an extended position with respect to the second longitudinal axis; and axially locating the expandable stabilizer a distance of about 25 feet or less above the blades of the expandable reamer.
Embodiment 19: The method of Embodiment 18, wherein coupling the expandable stabilizer to the expandable reamer comprises forming the expandable stabilizer and the expandable reamer to comprise different regions of a unitary tubular body.
Embodiment 20: The method of Embodiment 18 or Embodiment 19, further comprising configuring the at least one outwardly movable bearing pad to move from the retracted position to the extended position at least substantially automatically after the expandable reamer has reamed a section of the wellbore having a length equal to or greater than the distance the expandable stabilizer is axially located above the blades of the expandable reamer.
While certain illustrative embodiments have been described in connection with the figures, those of ordinary skill in the art will recognize and appreciate that embodiments of the present disclosure are not limited to those embodiments explicitly shown and described herein. Rather, many additions, deletions, and modifications to the embodiments described herein may be made without departing from the scope of embodiments of the present disclosure as hereinafter claimed, including legal equivalents. In addition, features from one disclosed embodiment may be combined with features of another disclosed embodiment while still being encompassed within the scope of embodiments of the present disclosure as contemplated by the inventor.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/642,026, filed May 3, 2012, titled “Drilling Assemblies Including Expandable Reamers and Expandable Stabilizers, and Related Methods,” the disclosure of which is incorporated herein in its entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
1678075 | Phipps | Jul 1928 | A |
2069482 | Seay | Feb 1937 | A |
2177721 | Johnson et al. | Oct 1939 | A |
2344598 | Church | Mar 1944 | A |
2754089 | Kammerer, Jr. | Jul 1956 | A |
2758819 | Kammerer, Jr. | Aug 1956 | A |
2834578 | Carr | May 1958 | A |
2882019 | Carr et al. | Apr 1959 | A |
3105562 | Stone et al. | Oct 1963 | A |
3123162 | Rowley | Mar 1964 | A |
3126065 | Chadderdon | Mar 1964 | A |
3211232 | Grimmer. | Oct 1965 | A |
3224507 | Cordary, Jr. | Dec 1965 | A |
3425500 | Fuchs | Feb 1969 | A |
3433313 | Brown | Mar 1969 | A |
3556233 | Gilreath | Jan 1971 | A |
4403659 | Upchurch | Sep 1983 | A |
4458761 | Van Vreeswyk | Jul 1984 | A |
4545441 | Williamson | Oct 1985 | A |
4589504 | Simpson | May 1986 | A |
4660657 | Furse et al. | Apr 1987 | A |
4690229 | Raney | Sep 1987 | A |
4693328 | Furse et al. | Sep 1987 | A |
4842083 | Raney | Jun 1989 | A |
4848490 | Anderson | Jul 1989 | A |
4854403 | Ostertag et al. | Aug 1989 | A |
4884477 | Smith et al. | Dec 1989 | A |
4889197 | Boe | Dec 1989 | A |
5139098 | Blake | Aug 1992 | A |
5211241 | Mashaw, Jr. et al. | May 1993 | A |
5224558 | Lee | Jul 1993 | A |
5265684 | Rosenhauch | Nov 1993 | A |
5293945 | Rosenhauch et al. | Mar 1994 | A |
5305833 | Collins | Apr 1994 | A |
5318131 | Baker | Jun 1994 | A |
5318137 | Johnson et al. | Jun 1994 | A |
5318138 | Dewey et al. | Jun 1994 | A |
5332048 | Underwood et al. | Jul 1994 | A |
5343963 | Bouldin et al. | Sep 1994 | A |
5361859 | Tibbitts | Nov 1994 | A |
5368114 | Tandberg et al. | Nov 1994 | A |
5375662 | Echols, III et al. | Dec 1994 | A |
5425423 | Dobson et al. | Jun 1995 | A |
5437308 | Morin et al. | Aug 1995 | A |
5553678 | Barr et al. | Sep 1996 | A |
5560440 | Tibbitts et al. | Oct 1996 | A |
5740864 | de Hoedt et al. | Apr 1998 | A |
5788000 | Maury et al. | Aug 1998 | A |
5823254 | Dobson et al. | Oct 1998 | A |
5887655 | Haugen et al. | Mar 1999 | A |
6039131 | Beaton | Mar 2000 | A |
6059051 | Jewkes et al. | May 2000 | A |
6070677 | Johnston | Jun 2000 | A |
6109354 | Ringgenberg et al. | Aug 2000 | A |
6116336 | Adkins et al. | Sep 2000 | A |
6131675 | Anderson | Oct 2000 | A |
6189631 | Sheshtawy | Feb 2001 | B1 |
6213226 | Eppink et al. | Apr 2001 | B1 |
6220375 | Butcher et al. | Apr 2001 | B1 |
6227312 | Eppink et al. | May 2001 | B1 |
6289999 | Dewey et al. | Sep 2001 | B1 |
6325151 | Vincent et al. | Dec 2001 | B1 |
6378632 | Dewey | Apr 2002 | B1 |
6488104 | Eppink et al. | Dec 2002 | B1 |
6494272 | Eppink et al. | Dec 2002 | B1 |
6615933 | Eddison | Sep 2003 | B1 |
6668936 | Williamson, Jr. et al. | Dec 2003 | B2 |
6668949 | Rives | Dec 2003 | B1 |
6708785 | Russell et al. | Mar 2004 | B1 |
6732817 | Dewey et al. | May 2004 | B2 |
7036611 | Radford et al. | May 2006 | B2 |
7048078 | Dewey et al. | May 2006 | B2 |
7314099 | Dewey et al. | Jan 2008 | B2 |
7493971 | Nevlud et al. | Feb 2009 | B2 |
7513318 | Underwood et al. | Apr 2009 | B2 |
7549485 | Radford et al. | Jun 2009 | B2 |
7681666 | Radford et al. | Mar 2010 | B2 |
7882905 | Radford et al. | Feb 2011 | B2 |
7900717 | Radford et al. | Mar 2011 | B2 |
8020635 | Radford | Sep 2011 | B2 |
8028767 | Radford et al. | Oct 2011 | B2 |
8205689 | Radford | Jun 2012 | B2 |
8235144 | Rasheed | Aug 2012 | B2 |
8365843 | Hall et al. | Feb 2013 | B2 |
20020070052 | Armell | Jun 2002 | A1 |
20030029644 | Hoffmaster et al. | Feb 2003 | A1 |
20060113113 | Underwood et al. | Jun 2006 | A1 |
20090242275 | Radford et al. | Oct 2009 | A1 |
20090294178 | Radford | Dec 2009 | A1 |
20100139981 | Meister et al. | Jun 2010 | A1 |
20110005836 | Radford et al. | Jan 2011 | A1 |
20110127044 | Radford et al. | Jun 2011 | A1 |
20110284233 | Wu et al. | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
246789 | Nov 1987 | EP |
1036913 | Sep 2000 | EP |
1044314 | Oct 2000 | EP |
2328964 | Mar 1999 | GB |
2344122 | May 2000 | GB |
2344607 | Jun 2000 | GB |
2344122 | Apr 2003 | GB |
2460096 | Nov 2009 | GB |
0031371 | Jun 2000 | WO |
2009135116 | Nov 2009 | WO |
Entry |
---|
International Search Report for International Application No. PCT/US2013/039480 dated Sep. 27, 2013, 5 pages. |
International Written Opinion for International Application No. PCT/US2013/039480 dated Sep. 27, 2013, 10 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2013/039480 dated Nov. 4, 2014, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20130292175 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61642026 | May 2012 | US |