As drilling mud is recirculated during drilling, debris from earth formations may damage sensitive downhole equipment. Filters used to collect the debris and thereby provide a way of removing the debris are known in the art. Often these filters will attach in single shouldered pipe such as described in U.S. Pat. No. 4,495,073 . The '073 patent discloses a mud screen for installation between any two selected ends of interconnected pipes comprising a supporting collar anchored in the selected threaded connection of the drill pipe string and a screen support mounted on such collar and secured thereto by one or more releasing devices. An apertured inverted conical screen is supported by the screen support in transverse relationship to the pipe bore. A bridging element is secured across the screen support and defines a mounting for an upstanding post which functions as a manual handle and also defines a fishing neck at its upper end for downhole retrieval.
U.S. Pat. No. 6,598,685 discloses another system for mounting a filter in a drill string. Disclosed is an apparatus comprising a cylindrical flange member having a first and second passage and a cylindrical sleeve having an internal fishing neck. An attachment pin attaches the flange member to the cylindrical sleeve. The apparatus further comprises a screen member attached to the cylindrical sleeve. In one embodiment, the first and second passages are disposed off-centered so that four bore holes are created. The attachment pin cooperates with a groove formed on the sleeve's outer diameter surface. The apparatus may further include a pulling tool. The pulling tool contains a plurality of dog members disposed about the mandrel, and a spring that urges the dog members into engagement with a protuberance on the mandrel. The apparatus further comprises a shear pin attaching the dog members to the mandrel and wherein the shear pin is disposed within a slot so that the dog members can move axially relative to the mandrel.
U.S. Pat. No. 6,769,484 discloses a downhole expandable bore liner and well screen filter assembly that has a perforated tubular base-pipe overlain with a self expanding filter-cover. A set of runners or bumpers extend the length of the outside of the filter-cover. A releaseable constriction mechanism holds the liner/filter assembly in a compressed configuration during insertion of the assembly down a well bore to facilitate insertion of the liner/filter assembly into its downhole position. Once positioned downhole in the well bore, the mechanism is released, and the liner/filter assembly takes its expanded or uncompressed configuration and interfaces with the walls of the well bore. In its uncompressed configuration, the liner/filter assembly can contact and press against the walls of the well bore, which contact serves to stabilize the assembly and to center it in the downhole well bore. The resilient and malleable nature of the filter material of the filter-cover can engage and at least partially fill and stabilize the irregularities in the formation wall of the well bore. Additionally, the resilient and malleable nature of the filter material of the filter-cover allows the assembly to utilize an expandable base-pipe in complement with the expandable filter material.
A drilling fluid filter for placement within a bore wall of a tubular drill string comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component.
It should be notes that a perforated receptacle means a receptacle comprising a plurality of orifices of circular shape, rectangular shape, amorphous shape, conical shape and any other know shape known in the art.
The hanger may comprise an engaging surface for attachment to the bore wall. The hanger may be selected from the group consisting of rough surfaces, locks, struts, and a plurality of overlapping plates. The drill string component may be a drill pipe, an internally upset drill pipe, swivel, drill collar, or downhole tools. Preferably, the filter is installed in the drill string component near the opening of the well bore so that is may be retrieved easily; however, more than one filter may be distributed in a drill string. Drill string equipment located downhole may be particularly sensitive to debris and a filter may be located proximate that equipment. If a filter is located downhole another filter may be located up hole where it is easier to retrieve since a downhole filter may be harder to retrieve. The filter downhole may collect significantly less debris and not require replacement as rapidly as the up hole filter.
The mandrel may comprise a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The adjustable portion of the mandrel may comprise a first coaxial position, which engages the hanger against the bore wall, and a second coaxial position which disengages the hanger from the bore wall. The hanger may be engaged against the bore wall by compression. The hanger may be engaged against an internal shoulder of the bore wall, an internal upset of the bore wall, grooves in the bore wall, or an internal diameter of the bore wall.
Disclosed is a filter with a mandrel that extends beyond the open end of the perforated receptacle and the fluid filter may be inserted into a top end of a bore of a drill string component during tripping. The filter may be lowered in a desired distance before the mandrel is operated to engage the bore wall of the drill string component. The filter may be lowered in by top-hole equipment, such as a wire line. The top-hole equipment may attach to the mandrel of the filter at a top-hole interface.
Also disclosed is a filter with a mandrel that extends beyond the closed end of the perforated receptacle and may be inserted into a bottom end of a bore of a drill string component. The mandrel may be operated to engage or disengage the hanger against the bore wall from underneath. In embodiments where the mandrel is telescopic a hammer may be used to engage or disengage the filter.
In some embodiments the mandrel may engage or disengage the filter against the bore wall of the drill string component by rotating the mandrel coaxially. The linkage may be a cam adjacent a lock which will engage the bore wall.
The filter 20 may be lowered into the bore 22 of a drill string component 21 as show in
The hanger 28 should be designed to withstand downward force from drilling fluid entering the open end 30 of the perforated receptacle 29 and exiting through the perforations 36 in the receptacle 29. The open end 30 may allow more fluid to enter the receptacle 29 per unit of time than the perforations 36 may allow to exit per unit of time; which may cause the drilling fluid to push downward on the filter 20. Further, the receptacle 29 may collect heavy debris which would increase the weight of the filter 20.
An advantage to hanging a filter 20 on the internal upset 32 of a drill string component 21 is readily apparent in double shouldered pipe, although it may could used in any drill string component 21 comprising an internal bore 22. Several systems for transmitting data or power through a string of drill components 21 comprise transmission elements 40 in the secondary shoulders 41 or primary shoulders 42 of double shouldered pipe. Thus, it is advantageous for a data or power transmission system as disclosed in U.S. Pat. No. 6,670,880 to Hall, et al.; U.S. Pat. No. 6,641,434 to Boyle, et al.; and U.S. Pat. No. 6,688,396 to Floerke, et al.; all of which are herein incorporated by reference; to use a filter 20 attachable to bore wall 35 of a drill component 21 as disclosed in this specification.
Whereas the present invention has been described in particular relation to the drawings attached hereto, it should be understood that other and further modifications apart from those shown or suggested herein, may be made within the scope and spirit of the present invention.
This invention was made with government support under Contract No. DE-FC26-01 NT41229 awarded by the U.S. Department of Energy. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
2414719 | Cloud | Jan 1947 | A |
2764388 | Camp | Sep 1956 | A |
3518608 | Papadopouloa | Jun 1970 | A |
4495073 | Belmgraben | Jan 1985 | A |
4739325 | MacLeod | Apr 1988 | A |
4788544 | Howard | Nov 1988 | A |
6012015 | Tubel | Jan 2000 | A |
6252518 | Laborde | Jun 2001 | B1 |
6392317 | Hall et al. | May 2002 | B1 |
6589685 | Mizuno et al. | Jul 2003 | B1 |
6598685 | Mashburn | Jul 2003 | B1 |
6670880 | Hall et al. | Dec 2003 | B1 |
6684951 | Restarick | Feb 2004 | B1 |
6688396 | Floerke et al. | Feb 2004 | B1 |
6717501 | Hall et al. | Apr 2004 | B1 |
6799632 | Hall et al. | Oct 2004 | B1 |
6821147 | Hall et al. | Nov 2004 | B1 |
6830467 | Hall et al. | Dec 2004 | B1 |
6844498 | Hall et al. | Jan 2005 | B1 |
6866306 | Boyle et al. | Mar 2005 | B1 |
6888473 | Hall et al. | May 2005 | B1 |
6913093 | Hall et al. | Jul 2005 | B1 |
6929493 | Hall et al. | Aug 2005 | B1 |
6945802 | Hall et al. | Sep 2005 | B1 |
6968611 | Hall et al. | Nov 2005 | B1 |
20040039466 | Lilly et al. | Feb 2004 | A1 |
20040104797 | Hall et al. | Jun 2004 | A1 |
20040113808 | Hall et al. | Jun 2004 | A1 |
20040145492 | Hall et al. | Jul 2004 | A1 |
20040150532 | Hall et al. | Aug 2004 | A1 |
20040164833 | Hall et al. | Aug 2004 | A1 |
20040164838 | Hall et al. | Aug 2004 | A1 |
20040216847 | Hall et al. | Nov 2004 | A1 |
20040244916 | Hall et al. | Dec 2004 | A1 |
20040244964 | Hall et al. | Dec 2004 | A1 |
20040246142 | Hall et al. | Dec 2004 | A1 |
20050001735 | Hall et al. | Jan 2005 | A1 |
20050001736 | Hall et al. | Jan 2005 | A1 |
20050001738 | Hall et al. | Jan 2005 | A1 |
20050035874 | Hall et al. | Feb 2005 | A1 |
20050035875 | Hall et al. | Feb 2005 | A1 |
20050035876 | Hall et al. | Feb 2005 | A1 |
20050036507 | Hall et al. | Feb 2005 | A1 |
20050039912 | Hall et al. | Feb 2005 | A1 |
20050045339 | Hall et al. | Mar 2005 | A1 |
20050046588 | Hall et al. | Mar 2005 | A1 |
20050046590 | Hall et al. | Mar 2005 | A1 |
20050067159 | Hall et al. | Mar 2005 | A1 |
20050070144 | Hall et al. | Mar 2005 | A1 |
20050082092 | Hall et al. | Apr 2005 | A1 |
20050092396 | Hall et al. | May 2005 | A1 |
20050092499 | Hall et al. | May 2005 | A1 |
20050095827 | Hall et al. | May 2005 | A1 |
20050115717 | Hall et al. | Jun 2005 | A1 |
20050145406 | Hall et al. | Jul 2005 | A1 |
20050150653 | Hall et al. | Jul 2005 | A1 |
20050161215 | Hall et al. | Jul 2005 | A1 |
20050173128 | Hall et al. | Aug 2005 | A1 |
20050212530 | Hall et al. | Sep 2005 | A1 |
20050236160 | Hall et al. | Oct 2005 | A1 |
20050279508 | Hall et al. | Dec 2005 | A1 |
20050284659 | Hall et al. | Dec 2005 | A1 |
20050284662 | Hall et al. | Dec 2005 | A1 |
20050284663 | Hall et al. | Dec 2005 | A1 |
20050285645 | Hall et al. | Dec 2005 | A1 |
20050285705 | Hall et al. | Dec 2005 | A1 |
20050285706 | Hall et al. | Dec 2005 | A1 |
20050285751 | Hall et al. | Dec 2005 | A1 |
20050285752 | Hall et al. | Dec 2005 | A1 |
20050285754 | Hall et al. | Dec 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20060065443 A1 | Mar 2006 | US |