This invention relates to jarring device used for generating jarring impact, and especially, to jarring devices for coiled tubing in an oil well-bore.
Oil wells are generally formed by drilling a bore into the earth for accessing buried crude oil deposits, and then installing a variety of equipment within the bore to enable pumping of crude oil up to the earth's surface. During drilling, hollow metallic tubes (also known as ‘casings’) are inserted within the bore to prevent walls of bore from collapsing. In a deep enough bore, multiple hollow casings are installed vertically one above the other by screwing ends of adjacent sections with each other. The entire assembly of attached casings is commonly known as ‘bore casing’.
Once a bore casing is formed, a variety of equipment (including crude oil pumping equipment and sensor equipment) is installed within the bore casing. In an operational oil well, crude oil is pumped to the surface of the earth from the buried crude oil deposits with the help of pumping equipment installed in the bore casing.
Performance and efficiency of an oil well production unit is vulnerable to failure of equipment installed within bore casing, or changed conditions within the well bore. Troubleshooting of such problems often requires liberating (or setting free) stuck equipment or retrieval (or fishing) of equipment within the bore casing.
Liberation of a stuck equipment or its retrieval is often performed with coiled tubing, which rides out on a powered drum and down the bore casing. The coiled tubing often includes a drilling jar which is capable of providing a striking impact (or a shock wave) in both upwards and downwards directions, in order to free trapped equipment or tubing sections. See U.S. Pat. No. 8,151,910 (incorporated by reference). In an attempt to free stuck equipment or to separate it from the installed equipment assembly, the jarring device generates a striking impact which in turn generates a shock wave along the coil tubing, which travels to the stuck equipment.
Often, installed equipment within a well bore casing is held together by interlocking friction fittings. For successful separation of such installed equipment assembly, it is important that the jarring impact is strong enough to overcome resistance from such friction fittings.
Though currently known jarring devices claim to facilitate separation of desired equipment within a bore casing, their jar (or strike) generating mechanisms are often too weak to be effective. U.S. Pat. No. 8,151,910 (the '910 patent) discloses a jarring device which generates jarring impact by exerting either stretch or compression loading forces on a mandrel, followed by sudden release of the fluid pressure resisting either of these loading forces. However, in the jarring device of the '910 patent, the fluid continually leaks out of the region of resistant fluid compression during exposure to the loading forces. The resistant force is therefore reduced by leakage, and as a result, the jarring impact generated is weakened.
The invention is a jarring device for coiled tubing that includes a braking assembly designed to completely block flow of fluid through a restricted segment and thereby provide enhanced resistance during loading, to generate a more forceful impact on release than the known jarring devices.
In the jarring device herein, a sliding assembly, which is slideable within a barrel assembly, includes a mandrel and a knocker. The knocker further has two striking surfaces, one which faces the upper sub, and the other facing the center sub. The barrel assembly (surrounding the sliding assembly) includes a fluid chamber which houses a compressible fluid. The fluid chamber has an upper chamber, a lower chamber, and a restricted segment between the upper chamber and the lower chamber. The braking assembly is attached to the sliding assembly and includes a ring valve which is made of an alloy belonging to Aluminum-Bronze family of copper alloys (a preferred embodiment primarily made of about 85% Cu, about 10.80% Al, and about 3.67% Fe, with optional preferred additives Mn (about 0.42%) and Ni (about 0.11%). The ring valve further includes at least three channels on each of its edges, where the channels extend into the ring and terminate inside the ring. Other channel designs are also contemplated.
The braking assembly is designed to completely block flow of fluid through the restricted segment when the ring is positioned in the restricted segment. In such position, when there is an influx of compressed fluid into the channels, the body of the ring expands and seals the flow of fluid through the restricted segment.
During down-stroke, the sliding assembly is pushed through the barrel assembly and the braking assembly passes through the restricted segment towards the lower chamber. Compressible fluid is forced through the channels in the lower face of the braking assembly ring, and the ring swells and stops flow through the restricted segment. Again, as soon the ring exits the restricted segment a flow path for the compressed fluid to flow towards the upper chamber becomes available, and there is a sudden drop in the resistant pressure, causing the knocker to accelerate towards and collide with the center sub, and the mandrel to collide with the upper surface of the upper sub. The preferred sliding assembly also includes a flange positioned below the ring which moves with the sliding assembly and collides with the upper edge of a lower sub (which the barrel assembly is connected with).
During up-stroke, the sliding assembly is pulled (by pulling the mandrel) through the barrel assembly, and the braking assembly, which starts in the lower chamber, is pulled into the restricted segment. The movement of the braking assembly ring against the resistance of the compressible fluid which is positioned on the side towards the upper chamber, causes swelling of the ring and stops fluid flow through the restricted segment. As soon as the ring exits the restricted segment, a flow path for the compressed fluid to flow through the restricted segment and towards the lower chamber becomes available, and there is a sudden drop in the resistance of the compressed fluid, and the knocker accelerates towards and collides with the upper sub. The preferred sliding assembly also includes a flange positioned below the center sub which moves with the sliding assembly and collides with the lower edge of the center sub.
The embodiments jarring device provided by the present invention will be discussed in greater detail with reference to the accompanying figures in the detailed description which follows.
It should be understood that the drawings and the associated descriptions below are intended and provided to illustrate one or more embodiments of the present invention, and not to limit the scope of the invention. Also, it should be noted that the drawings are not be necessarily drawn to scale.
Reference will now be made in detail to a first embodiment of a jarring device of the invention with reference to the accompanying
Upper barrel 110 and lower barrel 114 are internally threaded at portions proximate to each of their respective ends (shown as portions 122, 124, 126 and 128). A portion of lower barrel 114 has increased wall thickness (shown as portion 130) and reduced internal diameter compared to the other regions of lower barrel 114. Center sub 112 comprises two externally threaded arms 132 and 134. To form the barrel assembly, internally threaded portion 124 of the upper barrel 110 is screwed on to arm 132, and internally threaded portion 126 of the lower barrel 114 is screwed onto arm 134 of the center sub 112. Still further, internally threaded portion 122 of the upper barrel 110 is screwed onto externally threaded arm 136 of upper sub 108, and internally threaded portion 128 of the lower barrel 114 is screwed onto externally threaded arm 138 of lower sub 116. Each of the upper sub 108, the center sub 112, and the lower sub 116 further include a longitudinal cylindrical bore, and all three bores are aligned along a longitudinal axis of the barrel assembly so as to provide a passage for the sliding assembly to slide through. While the longitudinal cylindrical bore of the upper sub 108 provides a passage for sliding cylinder 140 of mandrel 102 to slide through, the longitudinal cylindrical bores of the center sub 112 and the lower sub 116 provide passage for wash-pipe 106 to slide through.
Mandrel 102 includes sliding cylinder 140, an outer cylinder 142 and a longitudinal bore 144 extending through the sliding cylinder 140 and the outer cylinder 142. The portion of the longitudinal bore 144 which lies in the outer cylinder 142 widens towards end 146 of the outer cylinder and is internally threaded for connecting the jarring device 100 to coiled tubing (shown in
The wash-pipe 106 includes a longitudinal bore 152. The portion of the wash-pipe 106 which lies proximate to its end 154 is externally threaded (shown as portion 156 in
While
The outer diameter of the ring valve 118 is greater than the outer diameter of the wash-pipe upper flange 120 and the outer diameter of the lower flange 121. Further, each of the six axially extending channels 304 are preferably placed, when mounting the ring valve 118, such that their entrances are not blocked either by the wash-pipe upper flange 120 or by the lower flange 121. The outer diameter of the ring valve 118 is only slightly less (preferably, within 111000th of an inch less) than the inner diameter of portion 130 of the lower barrel 114 such that when the ring valve 118 is placed within the portion 130 (by pushing the mandrel 102 into the upper sub 108 and sliding wash-pipe 106 away from the upper sub 108), the surface 300 conforms and fits tightly within portion 130.
Referring back to
One exemplary position of the sliding assembly within the barrel assembly is shown in
Lower sub 116 further includes a bore 174 as well as an externally threaded tapered arm 160. The narrower bore 174 is connected to the longitudinal bore 172 and lies along the longitudinal axis of the barrel assembly.
In the assembled jarring device 100, end 176 of wash-pipe 106 lies within the longitudinal bore 172 of lower sub 116. The longitudinal bore 144, bore 164, longitudinal bore 152, longitudinal bore 172 and narrow bore 174 together provide a fluid flow path for a fluid (flowing along the coil tubing) to pass through jarring device 100. The externally threaded tapered arm 160 is used to connect the jarring device 100 to lower portions of the coiled tubing which extends towards bottom of the oil well-bore. Lower portions of the coiled tubing would preferably include a fishing tool (such as an overshot) as described below and shown in
Referring back to
Operation of the jarring device 100 for producing jarring impact during down-stroke will now be explained in detail with reference to
Operation of the jarring device 100 for producing jarring impact during up-stroke will now be explained in detail with reference to
To frequently produce such series of jarring impacts, it is required that ring valve 118 slides smoothly within restricted segment 180, which also reduces wear on the contact surfaces. Low friction surface of ring valve 118 and its material composition (i.e. alloy composition having Cu about 85%, Al about 10.80%, Fe about 3.67%, Mn about 0.42% and Ni 0.11%) provides for these requirements. Ring valve 118 has excellent resistance to wear and fatigue under shock and load. Other embodiments of ring valve 118 are also within the scope of the invention. Two such embodiments are shown in
Referring to
Similarly,
Various other types of ring valves which would be suitable for being used in embodiments of the present invention would be obvious to a person skilled in the art. As an additional example another ring valve type could be a modification of the second type of ring valve 400 as described above. The modified version could additionally include multiple non-axially oriented sub-channels branching from each annular channel 406. During down-stroke or up-stroke, presence of such sub-channels would provide deeper penetration of compressed fluid within the ring valve and would likely enhance the expansion of ring valve's periphery. As a result of improved expansion, a better sealing for blocking flow of compressed fluid through restricted segment is achieved, resulting in a greater jarring impact. It is to be noted that ring valves used in embodiments of the present invention are made of alloys belonging to Aluminum-Bronze family of Copper alloys. Though Cu and Al are major constituents of such alloys, other minor additives may also be included to provide specific properties. As an example, and as mentioned above, in the first embodiment of present invention described above, apart from Cu and Al, the alloy forming ring valve 118 further includes Fe, Mn and Ni.
Use of jarring device 100 with a coil tubing for fishing of stuck equipment from an oil well-bore will now be explained with reference to accompanying
For fishing of stuck equipment 712, firstly, gripping prongs 714 of the fishing tool 700 are set to grip the stuck equipment 712. Thereafter, the jarring device 100 is operated to produce necessary jarring impacts. The jarring impacts thus produced are passed to the stuck equipment 712 through the coil tubing 702 and the fishing tool 700. After the jarring impacts free the stuck equipment 712, it is removed from the well bore by the fishing tool 700. It is to be understood that an exemplary illustration of the fishing tool 700 (and gripping prongs 714) are provided in
It is to be understood that the foregoing description and embodiments are intended to merely illustrate and not limit the scope of the invention. Other embodiments, modifications, variations and equivalents of the invention are apparent to those skilled in the art and are also within the scope of the invention, which is only described and limited in the claims which follow, and not elsewhere.