1. Technical Field
The present invention relates generally to drilling tools, and more particularly to the making of a drilling or abrading tool having a working surface with an array of blind apertures plugged with super-abrasive material.
2 Description of Related Art
Diamond-impregnated drill bits are well known to those skilled in the art. Such bits are conventionally manufactured using a powder metallurgy process wherein abrasive particles are randomly mixed within a matrix powder that is subjected to infiltration with a molten binder material. For example, diamond particles or grit may be mixed with a tungsten carbide powder, with the mixture then infiltrated by a molten copper alloy. Fusing of the tungsten carbide powder to retain the randomly distributed diamonds in alternative implementations may be effectuated by a hot isostatic pressing or sintering process.
The powder metallurgy process for diamond impregnation may be applied in connection with the making of the entire drill bit or parts of the drill bit. Alternatively, the powder metallurgy process for diamond impregnation may be applied in connection with the making of an impregnated construct or segment that is attached to a bit body so as to form the drill bit. Examples of such constructs include cells, blades or inserts affixed to the bit body by, for example, a brazing process.
There exist a number of concerns with respect to the prior art impregnated-diamond process and resulting impregnated-diamond drill bits.
First, the random distribution of grit or small carat weight diamond granules within a cell of tungsten carbide powder does not ensure smooth diamond coverage in the fused diamond-impregnated structure. Indeed, the random distribution necessarily implies an irregular diamond distribution including areas with diamond clusters, areas of lower diamond concentration, and even areas that are void of diamond content. As a result, the behavior of the cuttings across the impregnated working surface of the structure during tool operation is not predictable.
Second, the failure of diamond-impregnated structures has been linked to the presence of the randomly distributed diamond content. Historically, the random distribution of diamond content within the diamond-impregnated structure was viewed as desirable. The reason for this was that fresh cutting diamond was constantly being exposed on the working surface as the tungsten carbide matrix surrounding the diamond particles was worn away during the abrading, grinding, machining, or cutting process for which the structure was being used. However, areas of the structure with diamond clusters may lack sufficient matrix material to support diamond retention during tool operation, while areas of low or no diamond content tend to exhibit poor wear properties. The random diamond distribution further allows for an accompanying random distribution of matrix material striations trailing behind the exposed diamond particles. The striations reduce the ability of cooling fluids to carry heat away from the working surface, and the excess heat build-up at the working surface tends to accelerate diamond failure and wear of the tungsten carbide matrix.
Third, the inability to control diamond content with respect to the random distribution, with the resulting uneven diamond distribution across the working surface, necessitated the inclusion of extra diamond in the mixture so as to prevent occurrence of an uncut portion of the profile and subsequent “ring out.” This extra diamond has adverse affects on the tool both economically (in terms of added cost) and mechanically (due to a reduction in stress at the target interface by increasing the footprint in the same proportion, where stress is roughly expressed by the applied weight over the footprint area).
Fourth, if the fusing process utilized high heat, such as would be the case at least with respect to a sintering process, the applied heat could subject the diamond content to a graphitizing temperature for an unacceptable length of time. This would effectively degrade the properties of the impregnated diamond. The diamond-impregnated structure would then experience a reduced working life.
Fifth, the striations trailing behind the exposed diamond particles could produce a clogged interface between the structure and the surface of the target material (such as a rock formation in an earth drilling application). These striations further limit the depth of cut. Overall, this has an adverse affect on rate of penetration of the construct into the work target.
There is a need in the art for an improved drilling tool which addresses the foregoing, and other, problems experienced with the making and use of tools including randomly distributed impregnated diamond structures.
In an embodiment, an apparatus comprises: a substrate having a surface; a plurality of blind apertures formed in said surface, wherein each aperture in the plurality of blind apertures has an opening with a cross-sectional dimension in the range of 1 mm to 15 mm; and a super-abrasive material filling each of the plurality of blind apertures.
The plurality of blind apertures formed in said surface are preferably arranged in a regular and repeating pattern, such as with an array.
The super-abrasive material filling each of the plurality of blind apertures may comprise a polycrystalline diamond compact or an impregnated diamond material (such as formed by fused tungsten carbide impregnating randomly distributed diamond particles).
Other features and advantages of the invention will become clear in the description which follows of several non-limiting examples, with reference to the attached drawings wherein:
Reference is now made to
In prior art diamond-impregnated bits, the blades 104 would be made, for example, of fused tungsten carbide which impregnates randomly distributed diamond. Alternatively, an impregnated diamond construct (or segment), again made of fused tungsten carbide which impregnates randomly distributed diamond, would be attached the body of the bit at the blade regions.
In
As shown in
Each hole 122 comprises a micro-hole having a diameter of about 1 mm to 3.5 mm and a depth of about 2 mm to 10 mm. The holes 122 are spaced from each other in the array by a distance of about two times the hole diameter to four times the hole diameter. The array of blind holes 122 preferably has a layout with a regular and repeating pattern, for example such as provided with a matrix format of columns and rows with a hole positioned at the intersection of each column and row (see,
Reference is now made to
Reference is now made to
With respect to
The angle θ for the non-perpendicular orientation of the blind holes 122 may also be region dependent. In other words, one region of the blade 104 or pad 108 may utilize holes with a first non-perpendicular orientation angle while another region of the blade or pad may utilize holes with a second non-perpendicular orientation angle. A gradual change in orientation angle for the holes 122 may also be provided with respect to the blade or pad (for example, changing along the length of the blade). It will also be understood that the angle θ may generally be representative of a compound angle.
Reference is now made to
In prior art diamond-impregnated segments, the segment 200 would be made, for example, of fused tungsten carbide which impregnates randomly distributed diamond. In a typical application, such segments would be attached to the outer surface of a bit body (for example, with a brazing process). In some implementations, such segments would form all or a part of a blade structure for the tool.
In
As shown in
Each hole 122 comprises a micro-hole having a diameter of about 1 mm to 3.5 mm and a depth of about 2 mm to 10 mm. The holes 122 are spaced from each other in the array by a distance of about two times the hole diameter to four times the hole diameter. The array of blind holes 122 preferably has a layout with a regular and repeating pattern, for example such as provided with a matrix format of columns and rows with a hole positioned at the intersection of each column and row. The blind holes may have any desired and suitable aspect ratio AR (i.e., ratio of hole depth d to hole diameter D, AR=d:D). Exemplary aspect ratios include about 2:1 to 5:1. It is preferred that the holes 122 have a depth sufficient to ensure availability of super-abrasive material 124 throughout the anticipated working life of the tool.
Reference is now made to
The drill bit of
Reference is now made to
As shown in
Each hole 122 comprises a micro-hole having a diameter of about 1 mm to 3.5 mm and a depth of about 2 mm to 10 mm. The holes 122 are spaced from each other in the array by a distance of about two times the hole diameter to four times the hole diameter. The array of blind holes 122 preferably has a layout with a regular and repeating pattern, for example such as provided with a matrix format of columns and rows with a hole positioned at the intersection of each column and row. The blind holes may have any desired and suitable aspect ratio AR (i.e., ratio of hole depth d to hole diameter D, AR=d:D). Exemplary aspect ratios include about 2:1 to 5:1. It is preferred that the holes 122 have a depth sufficient to ensure availability of super-abrasive material 124 throughout the anticipated working life of the tool.
The construct 300 may be used as an abrading, cutting or machining structure. In such applications, the construct 300 may be attached to a supporting substrate to produce a working tool, or otherwise integrally formed as the tool itself The construct 300 may be attached to substrate using brazing or furnacing techniques known to those skilled in the art. It will be understood that the fabricated construct 300 could be used in any cutting or abrading tool including, without limitation, grinders, dressing tools, saw blade, wire saws, and the like.
For each of the embodiments described above in
With respect to the super-abrasive material 124 used to plug the blind holes 122, it will be understood that the super-abrasive material 124 may exhibit variation in characteristic as a function of depth. In other words, the material and/or functional characteristics of the super-abrasive material 124 plug may vary depending on plug depth. In an embodiment, one or more of super-abrasive particle distribution, super-abrasive particle content, and powder matrix component distribution may vary as a function of depth. These variations may be tailored to suit a particular working application of the tool (for example, having the tool start with a “softer” grade and finish with a “harder” grade). As an example, the diamond distribution may vary as a function of depth with respect to random and/or non-random diamond distributions. As an example, diamond content may vary as a function of depth with respect to diamond size and/or diamond volume. As an example, powder matrix component distribution may vary, such as with a tungsten carbide matrix, with respect to relative tungsten versus carbide richness.
It is preferred that the operation used for plugging each hole 122 with super-abrasive material 124 be a “cold” process. In other words, the plugging process should not require the application of excessive heat. The goal with the “cold” process is to ensure that each hole 122 is plugged with super-abrasive material 124 in a way that excessive heating of the included diamond, which may result in graphitization, does not occur. Pressing, low-temperature brazing and electroplating comprise suitable options for the plugging process.
Although
With reference to
Each slot 222 has a width of about 1 mm to 4 mm, a length of about 5 mm-15 mm, and a depth of about 2 mm to 15 mm. The slots 222 are spaced from each other in the array by a distance of about two times the sloth width to four times the slot width. The array of blind slots 222 preferably has a layout with a regular and repeating pattern, for example such as provided with a matrix format of columns and rows, with the slots oriented parallel to each other. It is preferred that the slots 222 have a depth sufficient to ensure availability of super-abrasive material 124 throughout the anticipated working life of the tool.
Reference is now made to
The super-abrasive material 124 used to plug each slot 222 may have any of a number of forms known to those skilled in the art. One example of a super-abrasive material is a polycrystalline diamond compact (PDC) slab that is sized and shaped to fit the slot opening. PDC components of this type are available from a number of sources known in the art, and may be fully or partially leached as desired. Another example of a super-abrasive material is a cubic boron nitride (CBN) slab that is sized and shaped to fit the slot opening. CBN components of this type are available from a number of sources known in the art. Another example of a super-abrasive material is a diamond impregnated construct slab that is sized and shaped to fit the slot opening. The diamond impregnated construct slab is fabricated in a manner well known to those skilled in the art by impregnating diamond within a fused tungsten carbide matrix. Another example of a super-abrasive material is a thermally stable polycrystalline diamond slab that is sized and shaped to fit the slot opening. TSP components of this type are available from a number of sources known in the art. The slots 222 preferably have a rectangular cross-section, and the super-abrasive material 124 slab has a corresponding rectangular cross-section configuration. The super-abrasive material 124 slab may be secured within each opening using any suitable means including: brazing, interference fit, press-fit, friction-fit or adhesive.
With respect to the super-abrasive material 124 used to plug the blind slots 222, it will be understood that the super-abrasive material 124 may exhibit variation in characteristic as a function of depth. In other words, the material and/or functional characteristics of the super-abrasive material 124 plug may vary depending on plug depth. In an embodiment, one or more of super-abrasive particle distribution, super-abrasive particle content, and powder matrix component distribution may vary as a function of depth. These variations may be tailored to suit a particular working application of the tool (for example, having the tool start with a “softer” grade and finish with a “harder” grade). As an example, the diamond distribution may vary as a function of depth with respect to random and/or non-random diamond distributions. As an example, diamond content may vary as a function of depth with respect to diamond size and/or diamond volume. As an example, powder matrix component distribution may vary, such as with a tungsten carbide matrix, with respect to relative tungsten versus carbide richness.
It is preferred that the operation used for plugging each slot 222 with super-abrasive material 124 be a “cold” process. In other words, the plugging process should not require the application of excessive heat. The goal with the “cold” process is to ensure that each slot 222 is plugged with super-abrasive material 124 in a way that excessive heating of the included diamond, which may result in graphitization, does not occur. Pressing, low-temperature brazing and electroplating comprise suitable options for the plugging process.
Reference is now made to
The holes 122 and slots 222 preferably comprise micro-apertures produced, for example, using a micro-drilling process. An exemplary micro-drilling process comprises electrical discharge machining (EDM) which is a contactless machining process. During EDM, sparks form in a dielectric as a result of an electrical discharge between a tool electrode and a conductive work piece. The sparks erode or remove materials from the surface of the work piece by heating, melting and vaporizing the material. Repeated action produces an aperture in the work piece having a well-controlled set of dimensions (diameter and depth for a hole 122; and width, length and depth for a slot 222). Advantages of the use of EDM for micro-aperture formation include: a burr-free sidewall, aspect ratios as high as 10:1; consistent cross-sectional dimensions over aperture depth; support of a wide range of surface dimensions ranging from 5-300 microns; ability to produce apertures on an angled or curved surface; straightness of the apertures; computerized control for replicatable aperture dimensions and relationships (for example, hole diameter, hole depth and inter-hole spacing) over a plurality of drilled apertures and for an array of apertures; and ability to economically and accurately drill apertures in hardened steel or carbide materials.
Although preferred embodiments of the method and apparatus have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it will be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the spirit of the invention as set forth and defined by the following claims.
This application is a continuation of U.S. Patent Application for patent Ser. No. 13/491,798 filed Jun. 8, 2012, and entitled “Drilling or Abrading Tool Having a Working Surface with an Array of Blind Apertures Plugged with Super-Abrasive Material,” which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 13491798 | Jun 2012 | US |
Child | 14862565 | US |