This invention relates to quick connect assemblies including quick connector fittings which quickly and releasably connect to a well casing for providing an interface for attaching well related equipment such as blowout preventors to the casing.
Fittings, such as drilling flanges, are currently used to provide an interface to well casings for mounting various equipment such as blowout preventors. A conventional fitting, such as a drilling flange, is threaded onto the casing until a shoulder within the drilling flange makes contact with the casing mouth. An elastomeric O-ring seals the drilling flange/casing interface. Once such a drilling flange is mounted on a casing, it is difficult to remove. Consequently, in many instances, the drilling flange remains permanently on the casing. As a result, on the field where multiple drilling operations may be going on at once, a separate drilling flange is required for each casing. This can be expensive.
Another problem with these flanges is that their orientation with respect to the casing cannot be accurately predetermined. The orientation depends on how tight the flange is threaded on the casing. This shortcoming poses a problem in situations where the equipment to be attached requires a specific orientation relative to the casing.
As such, a quick connect assembly is needed which provides for the easy installation and removal of a quick connector fitting so as to allow the fitting to be used on multiple casings in the field and which allows the fitting to be oriented to any desired position relative to the casing.
The present invention is directed to quick connect assemblies allowing for the quick and releasable connection of a quick connector fitting to a well casing for providing an interface for the attachment of well related drilling equipment such as blowout preventors. In a first embodiment, a male receiver is coupled to the casing. The receiver has an annular lip formed on its outer surface near its upper open end or mouth. The annular lip has a lower surface which slopes upward in a radially outward direction. A quick connector fitting has a first cylindrical section which tapers to a smaller second cylindrical section. A flange extends radially from an upper end of the smaller cylindrical section. The flange provides the interface for attaching well related equipment. The larger cylindrical section of the fitting is slid over the mouth of the male receivers. Threaded openings are formed radially through the larger section of the fitting and are arranged circumferentially around the fitting. Lock screws are threaded through the openings to engage the lower sloping surface of the annular lip male receiver. As the lock screws are tightened, the lip sloping surface guides them downward thereby causing the fitting to seat and lock on the male receiver mouth. To remove the fitting, the lock screws are loosened.
In another embodiment, a quick connector fitting is used having an annular lip formed on its inner surface. A flange extends from an upper end of the fitting to provide the interface for attachment of the various well related equipment. The fitting lower end is slid over the casing head such that a lower surface of the annular lip is seated on the mouth of the casing. An annular groove is formed circumferentially around the outer surface of the fitting near the fitting lower end. The annular groove has a lower surface that slopes downward in a radially outward direction. A retainer slip, preferably a four piece retainer slip, having an upper and a lower annular lip is used to secure the fitting to the casing. The upper lip engages the groove, while the lower lip engages the outer surface of the casing. Teeth are formed on the face of the lower retainer slip lip that engages the casing. A clamp surrounds the retainer slip. As the clamp is tightened, it provides radial forces on the retainer slip causing the teeth formed on the lower lip to engage the casing outer surface and thus fix the position of the retainer slip relative to the casing. As the clamp is further tightened, the retainer slip upper lip engages the lower sloping surface of the groove formed on the outer surface of the fitting and causes the fitting to move downward against the casing. As a result, the annular lip formed on the inner surface of the fitting sits tightly against the casing mouth.
In yet a further embodiment, an annular bushing is threaded on the outer threads formed on the casing. Preferably the bushing is threaded downward about ¼ inch±⅛ inch from the casing mouth. An annular groove is formed on the outer surface of the bushing. The groove has an upper surface which slopes upward in a radially outward direction. A fitting is then fitted over the casing and the bushing. The fitting has an inner shoulder which sits on the mouth of the casing. On its opposite end, the fitting forms a flange for providing an interface for the well related equipment. Fasteners are threaded radially through the fitting to engage the upper surface annular groove. The sloping upper surface guides the fasteners downward thereby causing the fitting to tightly seat on the mouth of the casing and to lock on the bushing and thereby on the casing. Lock nuts may be threaded on the fasteners from the ends opposite the ends engaging the groove on the bushing. These lock nuts are threaded until they engage the outer surface of the fitting providing a radially outward force on the fasteners preventing them from loosening from the fitting.
In another embodiment an annular casing head is coupled to the casing. The casing head can be threaded directly to the casing or may be coupled to the casing using a coupling. An annular groove is formed on the outer surface of the casing head. The annular groove has an annular upper surface and an annular base.
A quick connector fitting is mated to the casing head. The quick connector fitting has a flange that extends from an upper end of the fitting for providing an interface for connecting well related equipment.
An annular drilling flange nut is threaded on the lower outer surface of the quick connector fitting. Load key bolts are fitted through radial openings formed on the flange nut. A retainer is used to retain each bolt on the flange nut. A preferably arc-shaped load key located inside the flange nut is threadedly engaged by each load key bolt. As a load key bolt is turned it causes its corresponding load key to translate radially and into the groove formed on the outer surface of the casing head. The flange nut is then further torqued causing the load keys to contact and apply a force against the upper surface of the annular groove on the casing head. As result, a downward force is applied by the flange nut on the quick connector fitting causing the quick connector to further sit on the mouth of the casing head forming a tight connection.
With any of the above described embodiments, a wear bushing may be fitted such that it provides a protecting lining to the inner surface of the casing head and a portion of the quick connector inner surface extending above the casing head. Moreover, with all of these embodiments, the quick connector fittings are preferably fastened to a groove. As a result, the fittings can be oriented to any position over the casing mouth prior to being quickly and releasably connected to the casing.
This invention relates to quick connect assemblies which include a quick connector fitting (also referred to herein as a “quick connector”) that can be mounted quickly on a well casing providing an interface for the mounting of well related equipment such as blow out preventors (“BOP”). The quick connector fittings may be used and re-used on many different casings.
In a first embodiment, the quick connect assembly comprises a quick connector fitting 10 and a male receiver 12. The quick connector fitting 10 releasably connects to the male receiver 12 which is coupled to a well casing 14 (
The male receiver is typically a tubular member. The male receiver has a first end or mouth 18 for connecting with the quick connector fitting and a second end 20 for threading on the coupling. Two parallel annular lip protrusions are formed on the outer surface of the male receiver near it first end (
The coupling 16 is threaded to the casing 14. The male receiver is then torqued to the coupling. The male receiver may be torqued to the coupling using conventional tools such as tongs (not shown). Once the male receiver is torqued in place, the quick connector is fitted over the male receiver. The quick connector has a first larger cylindrical section 50 which tapers via a tapered section 52 to a second smaller cylindrical section 54 (
The larger cylindrical section of the quick connector is placed over the male receiver such that its tapered section contacts and mates with the sloping upper surface 19 of the upper lip 22 at the mouth of the male receiver. At least two internally threaded holes 58 are formed circumferentially on the larger cylindrical section of the quick connector. When in position over the male receiver, the holes 58 are aligned with an upper portion of the groove 26 formed between the lips on the male receiver (
Preferably, two annular grooves 28 are formed on the inner surface of the first cylindrical section above the threaded holes 58. A pressure or mechanically energized seal 30 is fitted in each groove. A single groove fitted with a single seal may suffice. When the quick connector is mounted on the male receiver, the seals 30 also contact the outer surface of the upper lip of the male receiver. As such, the seals form a seal against the upper lip as well as against the inner surface of the first cylindrical section of the quick connector fitting. Alternatively, the grooves 28 may be formed on the outer surface of the upper lip of the male receiver instead of the quick connector first section inner surface. The seals 30 are then seated on the grooves such that when the fitting is positioned over the male receiver, the seals will again seal against the inner surface of the first section of the quick connector and against the upper lip of the male receiver. Alternatively, the groove(s) and seal(s) may be positioned so that the seal(s) seal against the male receiver lower lip and the inner surface of the first cylindrical section of the quick connector. In a further embodiment, a seal or multiple seals may be used to form a seal against the inner surface of the quick connector and the male receiver upper lip while a second seal or second set of seals may be used to form a seal between the quick connector and the male receiver lower lip.
In an alternate embodiment, a quick connector fitting 62 is used that fits directly over the outer casing 14 (
One, but preferably two, spaced apart annular grooves 80 are formed on the inner surface of the body below the inner annular lip (
The quick connector is slid over the outer surface of the casing 14 until the lower face 70 of the inner lip 66 rests against the mouth 86 of the casing. In the embodiment where the inner annular grooves 80 are fitted with seals, the seals must be fitted in the grooves prior to the installation of the quick connector over the casing.
A retainer slip 88 is fitted over the quick connect. The retainer slip is preferably in four pieces, each forming a 90 degree arc. However, a two or more piece retainer slip may also be used. The retainer slip consists of a lower annular lip 90 extending radially inward. Teeth 92 are formed on the inner surface of the lower annular lip. The retainer slip also has an upper inwardly extending annular lip 94 that has a shape complementary to the shape of the groove 72 formed on the outer surface of the quick connector body. As such, the lower surface 96 of the retainer slip upper lip slopes downwardly in a radially outward direction such that it is complementary to the bottom sloped surface 78 of the annular external groove formed on the quick connector body.
A slip retainer clamp 98 is clamped around the retainer slip so as to hold all the retainer slip pieces in place. As is apparent to one skilled in the art, it may be preferable to place the retainer slip and clamp over the casing prior to the placement of the quick connector body over the casing. In this regard, when the body is fitted over the casing, the slip may be easily moved over the quick connector body and clamped into place.
Initially, the clamp is tightened just enough to hold the retainer slip pieces in place as shown in
If the body has injection and pressure relief fittings, a sealing material 81 may be injected into the annular grooves through the injection fittings 82 until it is relieved through the pressure relief fittings 84 to form a seal between the casing and the connector.
A production or inner casing 102 is always fitted within the casing 14 (i.e., the outer casing) forming an annulus 104 therebetween (
For proper sealing, the Department of Oil and Gas (“DOG”) requires that the annulus is completely filled with cement. As such, enough cement must be pumped to fill the annulus If more cement than required to fill the annulus is pumped, the cement will stay within the bottom of the production casing creating a blockage. As such, operators are inclined to be conservative in the amount of cement pumped into the production casing. As a result, sometimes the amount of cement pumped may be insufficient and does not fill the annulus completely. In these situations, the DOG permits the use of an automatic casing hanger 106—or with a pack-off hanger (not shown) or with a mandrel casing hanger (not shown)—fitted within the quick connector as a supplement for sealing the annulus. Automatic casing hangers, pack-off hangers and mandrel casing hangers are well known in the art. When a hanger is used for sealing, the quick connector becomes a permanent fixture of the casing and thus, cannot be used with another casing. For economic purposes, however, it is recommended that the retainer clamp 98 and retainer slip 88 are removed so that they can be re-used. In their stead, the lower edge 108 of the quick connector body is welded to the outer casing.
In a further embodiment, an annular bushing 110 is threaded hand tight on the outer threads 111 formed on the outer surface of the casing head 112 (
The quick connector fitting has an upper and a lower section. The lower section defined by an annular lip wall 128 which defines a first opening with a diameter slightly larger than the bushing outer surface diameter. At least two internally threaded holes 126 are defined circumferential through the wall 128. A second opening 132 is defined in the upper section of the fitting. The second opening concentric to and in communication with the first opening and has a diameter preferably equal to the inner diameter of the mouth of the casing head. A flange 134 is formed at the mouth 136 of the upper section for mating with a BOP or other well related equipment. An internal annular shoulder 138 is formed at the interface between the upper and lower sections of the flange member An annular groove 140 is formed on the shoulder to accommodate a pressure or mechanically energized seal 141.
The fitting is fitted over the bushing and rotated to a desired position. When the flange is fitted over the casing head, the seal sits on the mouth 127 of the casing head. When the fitting is seated on the casing head mouth, the threaded hole 126 centers will be located at a level aligned with an upper portion of the bushing circumferential groove. Lock down screws 142 having a threaded head 145 are then threaded through the threaded holes. The lock down screw heads have a tip portion 144 that is frusto-conical in shape having a frusto-conical surface 143. As the lock down screws are threaded into the holes their tip portions first engage the sloping upper surface 146 of the bushing groove. As they are further threaded on the fitting they ride against the groove upper sloping surface pulling the quick connector fitting further downward and creating a tight seal between the fitting shoulder, the seal, and the mouth of the casing head. Consequently, the fitting is locked on the bushing and thereby on the casing head. Because the fitting locks against a groove (i.e., the bushing groove 146), the fitting can be rotated and locked at any desired position.
In a further embodiment, the lock down screws 142 have a section 150 of their shaft threaded. This threaded shaft section is spaced apart from the threaded head section of the screws which engage the threaded holes 126. A lock nut 152 is threaded on the threaded section 150 formed on the shaft of each screw after the screws have locked the fitting on the bushing. The lock nut 152 has a central threaded bore section 154 which extends into a non-threaded bore section 156. The non-threaded bore section has a diameter larger than the threaded bore section. As the nut is screwed on the threaded shaft, its unthreaded bore section contacts the fitting annular wall 128 outer surface. As it is further screwed, it exerts a radial outward force on the screw which is threaded on the fitting wall, thereby locking the screw in place. A retainer ring 158 may then be fitted on the screw behind the nut to prevent the nut from getting lost if it were to loosen. The screw with lock nut can be preassembled with the retainer ring in place.
In another embodiment an annular casing head 212 is coupled to the casing 214 using an annular coupling member 216 (
The coupling member 216 is a cylindrical member having inner threads. Preferably two sets of threads are formed beginning on the inner surface of the coupling member, one set at either end. The first set of threads 228 are matched to the outer threads 224 formed on the second portion of the casing head (
An annular groove 234 is formed on the outer surface of the first portion of the casing head near the intersection of the first portion with the truncated cone shaped portion. The annular groove has an annular upper surface 236 and an annular base 238.
A quick connector fitting 240 is then mated to the casing head. The quick connector fitting has a first section 242 which extends into a second section 244 forming an inner annular shoulder 246 at interface between the first and second section inner surfaces. In other words, the fitting first section has an inner diameter is larger than the inner diameter of the second section. The length of the first section as measured from the annular shoulder should be slightly less then the length 250 measured from the mouth of the casing head to the upper surface of the annular groove. A flange extends from the end of the second section opposite the first section providing an interface for connecting well related equipment.
Preferably two annular grooves 254 are formed on the inner surface of the first section, preferably on the upper thicker wall portion of the section. A flange seal 256, which is typically an 0-ring seal, is fitted into each groove. An annular wall 252 defines the fitting first section. The annular wall 252 is thinner at the open or lower end of the first section. However, the inner diameter of the first section in constant throughout the length of the section. Threads 260 are formed on the outer surface of the lower thinner portion 258 of the fitting first section.
An annular drilling flange nut 262 has an annular upper section 264, an annular intermediate section 266 and an annular lower section 268 (
The outer surface of the drilling flange nut 242 preferably has an octagonal shape providing grip 274 areas for torquing on to the fitting using a wrench or a hammer (
A tip portion 286 of each load key bolt shaft extending radially beyond its corresponding radial opening 276 is threaded. Each load key bolt is able to freely rotate relative to its corresponding opening 276 formed on the flange nut. An arc shaped load key 288 is threaded to each threaded shaft portion 286. In a preferred embodiment, eight load keys are used, one for each load key bolt. Each load key is an eighth of a ring section. The load key bolt is threaded to a threaded opening 290 formed on the center section of the load key causing the load keys to translate radially outward and rest against the annular channel 272 formed on the flange nut.
The inner surface diameter of the quick connector first section 242 is slightly greater than the outer surface diameter of the casing head first portion 218. The quick connector is slid over the casing head until the annular shoulder 246 sits on the mouth 292 of the casing head (
The flange nut is then threaded to the outer threads 260 formed on the first section of the fitting. The flange nut may also be pre-threaded on the first section of the fitting prior to mounting the fitting over the casing head. When the flange nut is threaded on the fitting, the load keys are sandwiched between the lower portion 288 of the flange nut 262 and the lower end 243 of the fitting first section.
The flange nut is threaded sufficiently for aligning the load keys with the groove 234 formed on the outer surface of the casing head. Each load key bolt is then rotated causing its respective load key to unthread from the load key bolt and travel radially inward into the groove 234 formed on the casing head (
The flange nut is then further torqued on the lower portion of the fitting first section causing the load keys to contact and apply a force against the upper surface 236 of the annular groove 234 on the casing head (
In an alternate embodiment, a casing head 312 is directly threaded on to the casing 314 (
With any of the above described embodiments, a wear bushing 400 (
With any of the aforementioned embodiments, the BOP 8 (
Although the present invention has been described and illustrated to respect to multiple embodiments thereof, it is to be understood that it is not to be so limited, since changes and modifications may be made therein which are within the full intended scope of this invention as hereinafter claimed.
More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,199,914. The reissue applications are reissue application Ser. No. 10/325,047 filed on Dec. 20, 2002 and the present reissue application which is a divisional of reissue application Ser. No. 10/325,047. This application claims priority and is based on Provisional Application 60/088,586 filed on Jun. 9, 1998.
Number | Name | Date | Kind |
---|---|---|---|
190965 | Foster, Jr. | May 1877 | A |
503432 | McIntyre | Aug 1893 | A |
1122422 | Ross | Dec 1914 | A |
1193923 | Rateike | Aug 1916 | A |
1232129 | Wafer | Jul 1917 | A |
1455971 | Rickenbacker et al. | May 1923 | A |
1512298 | Mueller | Oct 1924 | A |
1607430 | Brewster | Nov 1926 | A |
1898617 | Church | Feb 1933 | A |
1993372 | Jones | Mar 1935 | A |
2044302 | Holton | Jun 1936 | A |
2067773 | Long | Jan 1937 | A |
2075899 | Humason | Apr 1937 | A |
2112352 | Vetrano | Mar 1938 | A |
2178699 | Penick et al. | Nov 1939 | A |
2220359 | Tschappat | Nov 1940 | A |
2284869 | Hinderliter | Jun 1942 | A |
2391632 | Knight et al. | Dec 1945 | A |
2927642 | Meredith, Jr. et al. | Mar 1960 | A |
3177013 | Rector | Apr 1965 | A |
3239248 | Jones | Mar 1966 | A |
3321217 | Ahlstone | May 1967 | A |
3325190 | Eckert et al. | Jun 1967 | A |
3345087 | Hanes et al. | Oct 1967 | A |
3427048 | Brown | Feb 1969 | A |
3435895 | Lee | Apr 1969 | A |
3606393 | Huntsinger et al. | Sep 1971 | A |
3608932 | Brown | Sep 1971 | A |
3827728 | Hynes | Aug 1974 | A |
3955835 | Farrington | May 1976 | A |
4056272 | Morrill | Nov 1977 | A |
4068865 | Shanks, II | Jan 1978 | A |
4114928 | Lochte | Sep 1978 | A |
4124231 | Ahlstone | Nov 1978 | A |
4209193 | Ahlstone | Jun 1980 | A |
4335904 | Saliger et al. | Jun 1982 | A |
4402533 | Ortloff | Sep 1983 | A |
4441740 | Cowan et al. | Apr 1984 | A |
4452472 | Crase | Jun 1984 | A |
4479669 | Hynes | Oct 1984 | A |
4522430 | Stromberg | Jun 1985 | A |
4524998 | Brisco | Jun 1985 | A |
4541490 | Bigbie et al. | Sep 1985 | A |
4606557 | Coffey | Aug 1986 | A |
4610465 | Boyadjieff | Sep 1986 | A |
4923006 | Hartmann et al. | May 1990 | A |
4974676 | Duhn et al. | Dec 1990 | A |
5141257 | Taylor | Aug 1992 | A |
5145213 | Marrison et al. | Sep 1992 | A |
5149143 | Howell | Sep 1992 | A |
5176409 | Brooks | Jan 1993 | A |
5333911 | Watkins | Aug 1994 | A |
5362109 | Pacht | Nov 1994 | A |
5441310 | Barrett et al. | Aug 1995 | A |
5611398 | Duhn et al. | Mar 1997 | A |
6123363 | Burgard et al. | Sep 2000 | A |
6138762 | Sweeney et al. | Oct 2000 | A |
6328343 | Hosie et al. | Dec 2001 | B1 |
Number | Date | Country |
---|---|---|
05010490 | Jan 1993 | JP |
06213379 | Aug 1994 | JP |
Number | Date | Country | |
---|---|---|---|
60088586 | Jun 1998 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09274857 | Mar 1999 | US |
Child | 11581229 | US |