1. Field of the Invention
This invention relates in general to offshore well riser adapters and, in particular, to a system for connecting riser adapters to subsea equipment with subsea functionality.
2. Brief Description of Related Art
In offshore drilling operations, the operator will perform drilling operations through a drilling riser. The drilling riser extends between the subsea wellhead assembly at the seafloor and the drilling vessel. The drilling riser is made up of a number of individual joints or sections. These sections are secured to each other and run from a riser deploying floor of the drilling vessel. The drilling riser also normally has a number of auxiliary conduits that extend around the main central pipe. The auxiliary conduits supply hydraulic fluid pressure to the subsea blowout preventer and lower marine riser package.
The lower end of the drilling riser has an adapter that couples to a lower marine riser package (LMRP) for connecting the riser to the LMRP. Various adapters have been employed. The adapter connections include bolted flanges and locking segments radially moveable by screws. The LMRP attaches to a blowout preventer assembly (BOP). The BOP couples by a hydraulic connector to a subsea wellhead assembly at the sea floor. The LMRP also includes an emergency disconnect to quickly release from the BOP. The various hydraulically driven components of the LMRP are supplied with hydraulic fluid and controlled by lines leading to the surface vessel.
In both types of riser adapters, workers use wrenches to make up the bolts or screws. Making up the individual bolts is time consuming. Often when moving the drilling rig from one location to another, the riser has to be pulled and stored. In very deep water, pulling and rerunning the riser is very expensive. At least one automated system is shown in U.S. Pat. No. 6,330,918 for making up riser locking segment screws.
In addition, the automated and non-automated riser adapters fail to provide a way to break out the connection between the riser and the LMRP once the adapter and assembly are on the sea floor. Thus, where emergency events necessitate the ability to quickly disconnect an existing riser from the riser adapter while the LMRP remains on the sea floor, operators cannot quickly do so. This can potentially further exacerbate an already potentially dangerous situation. The emergency disconnect is controlled from the vessel, and the control line could be lost.
These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by preferred embodiments of the present invention that provide a drilling riser adapter with subsea functionality, and a method for using the same.
An embodiment of the present invention provides a system for connecting a lower marine riser package (LMRP) to a marine riser. The LMRP and BOP will be placed subsea at a wellhead so that the riser will extend from the wellhead to a drilling rig located at a sea surface. The system comprises a drilling riser adapter, and a control panel. The drilling riser adapter has a hydraulically actuated engagement assembly. The engagement assembly selectively engages and disengages a lower end of the marine riser. The control panel communicatively couples to the engagement assembly and actuates the engagement assembly to engage and disengage the lower end of the marine riser. The control panel also has a hydraulic fluid pressure receptacle for engagement by a remotely operated vehicle for use subsea.
Another embodiment of the present invention provides a system for connecting a lower marine riser package (LMRP) to a marine riser. Again, the LMRP and BOP will be placed subsea at a wellhead so that the riser extends from the wellhead to a drilling rig located at a sea surface. The system comprises a plurality of engaging members, an engagement assembly, and a control panel. These engaging members are moveable between an engaged position radially inward and a disengaged position radially outward. The engagement assembly is configured to actuate the engaging members between the engaged and the disengaged positions. A crossover riser joint inserts into the drilling riser adapter and has an upper end that couples to the riser. The crossover riser joint has a lower end profile for mating with the engagement assembly when the engagement assembly is in the engaged position. The control panel communicatively couples to the engagement assembly and actuates the engagement assembly to engage to and disengage the lower end of the marine riser. The control panel includes a hydraulic fluid pressure receptacle for engagement by a remotely operated vehicle (ROV) to supply hydraulic fluid pressure to the engagement assembly.
Yet another disclosed embodiment provides a method for disconnecting a lower marine riser joint from a lower marine riser package. The method begins by providing a marine riser adapter having a hydraulically actuated engagement assembly and a control panel with a hydraulic fluid pressure receptacle. Next, the method connects the adapter to the LMRP. An end of a riser joint is then inserted into a central bore of the marine riser adapter. Next, the method supplies hydraulic fluid to actuate the engagement assembly into engagement with the riser joint. The LMRP, marine riser adapter, and riser joint are then lowered to a subsea location. An ROV then stabs a probe into the hydraulic fluid pressure receptacle and supplies hydraulic fluid to actuate the engagement assembly to disengage the riser from the marine riser adapter.
In still another embodiment, a system is provided for connecting a lower marine riser package to a drilling rig located at a sea surface. The lower marine riser package (LMRP) is to be placed subsea at a wellhead. The system comprises a plurality of marine riser joints for extending between the drilling rig and the LMRP, each marine riser joint having at least one end coupleable to an adjacent marine riser joint. The system also includes a drilling riser adapter for mounting to the lower marine riser package. The drilling riser adapter has a hydraulically actuated engagement assembly for selectively engaging and disengaging a lower end of at least one marine riser joint of the plurality of marine riser joints. A control panel is mounted to the adapter and communicatively coupled to the engagement assembly. The control panel actuates the engagement assembly to engage and disengage the lower end of the marine riser. A receptacle for receiving hydraulic fluid pressure is mounted on the control panel for engagement by a remote operated vehicle (ROV). The ROV will supply hydraulic fluid pressure to the engagement assembly.
Another embodiment provides a system for connecting a lower marine riser package to a marine riser. Again, the lower marine riser package (LMRP) is to be placed subsea at a wellhead so that the riser will extend from the LMRP to a drilling rig located at a sea surface. The system comprises a blowout preventer (BOP) mounted at an upper end of the LMRP, and a drilling riser adapter mounted to the BOP. The drilling riser adapter has a hydraulically actuated engagement assembly for selectively engaging and disengaging a lower end of the marine riser, and a control panel mounted to the adapter. The control panel is communicatively coupled to the engagement assembly for actuating the engagement assembly to engage and disengage the lower end of the marine riser. The control panel includes a receptacle for receiving hydraulic fluid pressure on so that a remote operated vehicle (ROV) may engage the control panel to supply hydraulic fluid pressure to the engagement assembly.
Still another embodiment provides a method for connecting a marine riser joint to a marine riser adapter located at a subsea location. The method comprises first stabbing a probe of a remotely operated vehicle (ROV) into a hydraulic fluid pressure receptacle of a marine riser adapter having a hydraulically actuated engagement assembly and a control panel with a hydraulic fluid pressure receptacle. Next, the method supplies hydraulic fluid from the probe of the ROV to the hydraulic fluid pressure receptacle to actuate the engagement assembly to disengage a first riser joint from the riser adapter. Then, the first riser joint is removed from the riser adapter, and a second riser joint is disposed into the riser adapter. The method continues by stabbing the probe of the ROV into the hydraulic fluid pressure receptacle of the marine riser adapter, and then supplying hydraulic fluid from the probe of the ROV to the hydraulic fluid pressure receptacle to actuate the engagement assembly to engage the second riser joint with the riser adapter.
An advantage of the disclosed embodiments is that the disclosed drilling riser adapter reduces the time necessary to make up the connection between the LMRP/BOP assembly and the riser at the surface. In addition, the disclosed drilling riser adapter requires fewer workers to make up the connection. Embodiments of the present invention are suitable for use with any riser connection type with the addition of a crossover joint between the drilling riser adapter and the riser. Furthermore, the disclosed embodiments provide a drilling riser adapter that allows for connection and disconnection of the riser from the LMRP/BOP assembly in a subsea environment through the use of remotely operated vehicles. This can be accomplished in significantly less time and effort over prior art methods for making up and breaking out a riser from a wellhead assembly in a subsea environment.
So that the manner in which the features, advantages and objects of the invention, as well as others which will become apparent, are attained, and can be understood in more detail, more particular description of the invention briefly summarized above may be had by reference to the embodiments thereof which are illustrated in the appended drawings that form a part of this specification. It is to be noted, however, that the drawings illustrate only a preferred embodiment of the invention and are therefore not to be considered limiting of the invention's scope as the invention may admit to other equally effective embodiments.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings which illustrate embodiments of the invention. This invention may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout, and the prime notation, if used, indicates similar elements in alternative embodiments.
In the following discussion, numerous specific details are set forth to provide a thorough understanding of the present invention. However, it will be obvious to those skilled in the art that the present invention may be practiced without such specific details. Additionally, for the most part, details concerning drilling operations, rig operations, general riser make up and break out, and the like have been omitted inasmuch as such details are not considered necessary to obtain a complete understanding of the present invention, and are considered to be within the skills of persons skilled in the relevant art.
Referring to
Referring now to
Drilling riser adapter 11 also includes an engagement assembly 41, a remote operation assembly 43, and an upper flange 45. Upper flange 45 extends from an exterior portion of drilling riser adapter 11 proximate to, but axially lower than, an upper rim 47 of drilling riser adapter 11. Upper flange 45 defines a plurality of slotted openings 49 extending from a rim of upper flange 45 inward toward tubular member 33. Slotted openings 49 are of a size and shape to accommodate cylinder rods, described in more detail below. Upper flange 45 also defines slotted auxiliary openings 53 extending from a rim of upper flange 45 inward toward tubular member 33. Auxiliary openings 53 are generally larger than slotted openings 49 and are of a size and shape needed to accommodate auxiliary tubes 29. As shown on
Referring to
In the exemplary embodiment, each lower support plate 61 couples to a respective upper support plate 59 with four support rods 63. A person skilled in the art will understand that more or fewer support rods 63, or any other suitable coupling system providing support for base 69 of cylinder 65 is contemplated and included in the disclosed embodiments. Support rods 63 have a lower threaded end that passes through bores in lower support plate 61 and are secured by nuts having a sufficient strength rating to provide a react force to force exerted against lower support plate 61 by cylinder 65. Similarly, support rods 63 have an upper threaded end that passes through bores in the upper support plate 59 and are secured by nuts (not shown) having a sufficient strength rating to provide a react force to force exerted against upper support plate 59 by cylinder 65. Upper support plate 59 in turn couples to the lower surface of upper flange 45. In the illustrated embodiment, bores in upper support plate 59 align with threaded bores (not shown) extending inward from the lower surface of upper flange 45. Bolts 67 pass through the bores in upper support plate 59 and screw into the corresponding threaded bores in the lower surface of upper flange 45.
Referring to
In a similar operation, fluid will flow into chamber 72 through port 147 and, as chamber 72 fills, exert a force on piston head 70. In response, hydraulic fluid in chamber 68 will flow out port 149 until piston head 70 occupies the position shown in
Referring to
Referring to
Similarly, rod 71 includes a beveled surface 83 transitioning rod 71 from a wider diameter on a lower end of rod 71 to a narrower diameter approximately equivalent to the diameter of bore 79. The narrower diameter end of rod 71 inserts into bore 79. Rod 71 has an adapter portion 87 formed in an upper end of rod 71 that has a diameter smaller than the diameter of bore 79. A rod locker 89 inserts into counterbore 80 from the upper surface of cylinder coupler protrusion 77. Rod locker 89 has a diameter substantially equivalent to the diameter of counterbore 80 near the upper surface of cylinder coupler protrusion 77 and a beveled edge at a lower end of rod locker 89 that abuts bevel 85 of bore 79. Rod locker 89 secures to the adapter portion 87 of rod 71, thereby securing rod 71 to cylinder coupler protrusion 77. A person skilled in the art will understand that any suitable method to secure adapter portion 87 to rod locker 89 is contemplated and included in the disclosed embodiments. For example, the exterior diameter Surface of adapter portion 87 may be threaded, and the inner diameter surface of rod locker 89 may have a matching thread that allows rod locker 89 to screw onto adapter portion 87. In this manner, motion of rod 71 may transmit into motion of cylinder coupler protrusion 77 and cam ring 73 as described in more detail below.
Drilling riser adapter 11 may include a secondary engagement assembly 75 as described below. A person skilled in the art will understand that alternative embodiments of drilling riser adapter 11 may include secondary engaging assemblies other than those illustrated herein, or no secondary engagement assembly at all. Still referring to
A latch 99, comprising a substantially cylindrical member having a handle at a first end, inserts into chamber 93 from an exterior of base member 91. The handled end of latch 99 remains outside of base member 91 and chamber 93. A second end of latch 99 passes through chamber 93 and into chamber 95. A transmission rod 101 having bushing ends 103, 105 resides in chamber 95. Transmission rod 101 substantially fills the height of chamber 95. Transmission rod 101 has a length less than the length of chamber 95, allowing transmission rod to move radially within chamber 95. A bushing end 103 has an internal profile 107. The second end of latch 99 comprises a matching profile to internal profile 107. The second end of latch 99 inserts into bushing end 103 and mates with internal profile 107 such that lateral movement of latch 99 will cause transmission rod 101 to move radially in response. A bushing end 105 defines a threaded opening for a bolt or set screw 109. A spring pin 111 inserts into bushing end 105 and is secured to bushing end 105 by set screw 109. Spring pin 111 moves radially in response to lateral movement by transmission rod 101. Spring pin 111 passes from chamber 95 into chamber 97.
A latch dog 113 having an engaged and a disengaged position, resides within chamber 97. Latch dog 113 has an engaging end 114 having a height less than the height of latch dog 113. Engaging end 114 passes through an opening in chamber 97 to an exterior of base member 91 proximate to tubular member 33. The opening has a height substantially equal to engaging end 114 but less than the height of chamber 97 such that the opening defines a shoulder 98. In this manner, engaging end 114 may protrude from chamber 97, while latch dog 113 is prevented from completely exiting chamber 97 by shoulder 98. Latch dog 113 includes a recess 115 on an end opposite engaging end 114 protruding from chamber 97. Spring pin 111 inserts into recess 115 and is secured by a pin passing through a bore of spring pin 111 and latch dog 113. Recess 115 has a counterbore defining a spring seat. A spring 117 surrounds spring pin 111 and is interposed between a sidewall of chamber 97 proximate to chamber 95 and the spring seat of recess 115. In the illustrated embodiment, spring 117 biases latch dog 113 to the engaged position.
Still referring to
Secondary engagement assembly 75 has a locked or engaged position (
Cam ring assembly 57 has an engaged position illustrated in
In operation, cylinders 65 will actuate and pull rod 71 down into base member 69 (
Referring now to
Switches 137, 139 connect to control stems of valves 143, 145 (
In an operative example of the disengagement of drilling riser adapter 11, drilling riser adapter will be coupled inline in a marine riser as illustrated in
After disengaging each latch 99, the ROV may stab a hot stab into hot stab port 135. Valves 143, 145 will be closed, preventing hydraulic fluid flow through either engaging circuit 151 or disengaging circuit 153. The ROV may then manipulate switch 139 to open valve 145 and allow hydraulic fluid to pump through the ROV, the hot stab port 135, valve 145 and into disengaging circuit 153. Hydraulic fluid will then flow through disengaging circuit 153 and into ports 149 below piston head 70. As fluid pressure builds up below piston head 70, the resulting pressure will force piston head 70 and rod 71 up, thereby raising cylinder coupler protrusions 77 and cam ring 73. When rods 71 reach their highest stroke, as shown in
Similarly, in an operative example of the engagement of drilling riser adapter 11, drilling riser adapter 11 will be coupled to a subsea well head assembly 13 as illustrated in
The ROV may then stab a hot stab into hot stab port 135. Valves 143, 145 will be closed, preventing hydraulic fluid flow from passing through either engaging circuit 151 or disengaging circuit 153. The ROV may then manipulate switch 137 to open valve 143 and allow hydraulic fluid to pump through the ROV, hot stab port 135, valve 143 and into engaging circuit 151. Hydraulic fluid will then flow through engaging circuit 151 and into ports 147 above piston head 70 (
Next, the ROV will operate secondary engaging assemblies 75 to provide a backup engaging mechanism. The ROV may first grip each latch 99 in turn and rotate each latch 99 ninety degrees, thereby releasing key 123 from shoulder 94 of base member 91. The ROV may then release latch 99, allowing spring 117 to move latch dog 113 radially into engagement with engaging member 121 as shown in
In a similar manner, drilling riser adapter 11 may secure to crossover joint 31 while drilling riser adapter 11 and crossover joint 31 are at platform 19 prior to running of the wellhead assembly to it subsea location. The components of drilling riser adapter 11 will be in the positions illustrated in
The operator may then secure a hydraulic line to hot stab port 135. Valves 143, 145 will be closed, preventing hydraulic fluid flow from passing through either engaging circuit 151 or disengaging circuit 153. The operator may then manipulate switch 137 to open valve 143 and allow hydraulic fluid to pump through the hydraulic line, hot stab port 135, valve 143 and into engaging circuit 151. Hydraulic fluid will then flow through engaging circuit 151 and into ports 147 above piston head 70 (
Next, the operator will manually operate secondary engaging assemblies 75 to provide a backup engaging mechanism. The operator may first grip each latch 99 and rotate latch 99 ninety degrees, thereby releasing key 123 from shoulder 94 of base member 91. The operator may then release latch 99 allowing spring 117 to move latch dog 113 radially into engagement with secondary engaging member 121 as shown in
Accordingly, the disclosed embodiments provide numerous advantages over prior art riser adapters. For example, the drilling riser adapter disclosed herein provides a way to break out the connection between the LMRP/BOP and the riser once the LMRP/BOP assembly is at the subsea floor. Thus, where emergency events necessitate the ability to quickly disconnect an existing riser from the riser adapter and then reconnect a new riser or other device, the disclosed drilling riser adapter provides a means to do so.
In addition, the disclosed embodiments provide a drilling riser adapter that may be used with any type of riser joint with the addition of a suitable crossover joint that is easier and faster to secure to the riser. The drilling riser adapter accomplishes this with less man power needed, while also providing a backup system to ensure that the riser does not disconnect from the BOP until an operator specifically desires the release of the riser from the LMRP/BOP.
It is understood that the present invention may take many forms and embodiments. Accordingly, several variations may be made in the foregoing without departing from the spirit or scope of the invention. Having thus described the present invention by reference to certain of its preferred embodiments, it is noted that the embodiments disclosed are illustrative rather than limiting in nature and that a wide range of variations, modifications, changes, and substitutions are contemplated in the foregoing disclosure and, in some instances, some features of the present invention may be employed without a corresponding use of the other features. Many such variations and modifications may be considered obvious and desirable by those skilled in the art based upon a review of the foregoing description of preferred embodiments. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4097069 | Morrill | Jun 1978 | A |
4433859 | Driver et al. | Feb 1984 | A |
4688633 | Barkley | Aug 1987 | A |
4902044 | Williams et al. | Feb 1990 | A |
5433274 | Graff et al. | Jul 1995 | A |
6035938 | Watkins | Mar 2000 | A |
6129149 | Beall | Oct 2000 | A |
6328343 | Hosie et al. | Dec 2001 | B1 |
6330918 | Hosie et al. | Dec 2001 | B1 |
6793019 | Rodgers et al. | Sep 2004 | B2 |
7331395 | Fraser et al. | Feb 2008 | B2 |
7337848 | Fraser et al. | Mar 2008 | B2 |
7735561 | Johnson et al. | Jun 2010 | B2 |
20060042791 | Hosie et al. | Mar 2006 | A1 |
20090308658 | Larson et al. | Dec 2009 | A1 |
20100025044 | McKay et al. | Feb 2010 | A1 |
20120048566 | Coppedge et al. | Mar 2012 | A1 |
20120145406 | Kotrla et al. | Jun 2012 | A1 |
20120168167 | Baugh | Jul 2012 | A1 |
20120318516 | Beynet et al. | Dec 2012 | A1 |
20130014954 | Killeen | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
2414752 | Jul 2006 | GB |
2443776 | May 2008 | GB |
2006023690 | Mar 2006 | WO |
2008109280 | Sep 2008 | WO |
Entry |
---|
GB Search Report dated May 23, 2012 from corresponding Application No. GB1203404.7. |
Number | Date | Country | |
---|---|---|---|
20120222865 A1 | Sep 2012 | US |