Underground drilling involves drilling a bore through a formation deep in the Earth using a drill bit connected to a drill string. During rotary drilling, the drill bit is typically rotated by a top drive or other rotary drive means at the surface, where a quill and/or other mechanical means connects and transfers torque between the rotary drive mechanism and the drill string. During drilling, the drill bit is rotated by a drilling motor mounted in the drill string proximate the drill bit, and the drill string may or may not also be rotated by the rotary drive mechanism.
Drilling operations can be conducted on a vertical, horizontal, or directional basis. Vertical drilling typically refers to drilling in which the trajectory of the drill string is vertical, i.e., inclined at less than about 10° relative to vertical. Horizontal drilling typically refers to drilling in which the drill string trajectory is inclined horizontally, i.e., about 90° from vertical. Directional drilling typically refers to drilling in which the trajectory of the drill string is inclined directionally, between about 10° and about 90°. Correction runs generally refer to wells that are intended to be vertical but have deviated unintentionally and must be steered or directionally drilled back to vertical.
Various systems and techniques can be used to perform vertical, directional, and horizontal drilling. For example, steerable systems use a drilling motor with a bent housing incorporated into the bottom-hole assembly (BHA) of the drill string. A steerable system can be operated in a sliding mode in which the drill string is not rotated and the drill bit is rotated exclusively by the drilling motor. The bent housing steers the drill bit in the desired direction as the drill string slides through the bore, thereby effectuating directional drilling. Alternatively, the steerable system can be operated in a rotating mode in which the drill string is rotated while the drilling motor is running.
Rotary steerable tools can also be used to perform directional drilling. One particular type of rotary steerable tool can include pads or arms located on the drill string near the drill bit and extending or retracting at some fixed orientation during some or all of the revolutions of the drill string. Contact between the arms and the surface of the wellbore exerts a lateral force on the drill string near the drill bit, which pushes or points the drill bit in the desired direction of drilling.
Directional drilling can also be accomplished using rotary steerable motors which include a drilling motor that forms part of the BHA, as well as some type of steering device, such as the extendable and retractable arms discussed above. In contrast to steerable systems, rotary steerable motors permit directional drilling to be conducted while the drill string is rotating. As the drill string rotates, frictional forces are reduced and more bit weight is typically available for drilling. Hence, a rotary steerable motor can usually achieve a higher rate of penetration during directional drilling relative to a steerable system or a rotary steerable tool, since the combined torque and power of the drill string rotation and the downhole motor are applied to the bit.
Directional drilling requires real-time knowledge of the angular orientation of a fixed reference point on the circumference of the drill string in relation to a reference point on the wellbore. The reference point is typically magnetic north in a vertical well, or the high side of the bore in an inclined well. This orientation of the fixed reference point is typically referred to as toolface. For example, drilling with a steerable motor requires knowledge of the toolface so that the pads can be extended and retracted when the drill string is in a particular angular position, so as to urge the drill bit in the desired direction.
When based on a reference point corresponding to magnetic north, toolface is commonly referred to as magnetic toolface (MTF). When based on a reference point corresponding to the high side of the bore, toolface is commonly referred to as gravity tool face (GTF). GTF is usually determined based on measurements of the transverse components of the local gravitational field, i.e., the components of the local gravitational field perpendicular to the axis of the drill string. These components are typically acquired using an accelerometer and/or other sensing device included with the BHA. MTF is usually determined based on measurements of the transverse components of the Earth's local magnetic field, which are typically acquired using a magnetometer and/or other sensing device included with the BHA.
Obtaining, monitoring, and adjusting the drilling direction conventionally requires that the human operator must manually scribe a line or somehow otherwise mark the drill string at the surface to monitor its orientation relative to the downhole tool orientation. That is, although the GTF or MTF can be determined at certain time intervals, the top drive or rotary table orientation is not known automatically. Consequently, the relationship between toolface and the quill position can only be estimated by the human operator, or by using specialized drilling equipment such as that described in co-pending application Ser. No. 12/234,584, filed Sep. 19, 2008, to Nabors Global Holdings, Ltd. It is known that this relationship is substantially affected by reactive torque acting on the drill string and bit.
It is understood in the art that directional drilling and/or horizontal drilling is not an exact science, and there are a number of factors that will cause a well to be drilled on or off course. The performances of the BHA are affected by downhole formations, the weight being applied to the bit (WOB), drilling fluid pump rates, and various other factors. Directional and/or horizontal wells are also affected by the engineering, as well as the execution of the well plan. At the end of the drilling process there is not presently much attention paid to, much less an effective method of, evaluating the performance of the driller at the controls of the drilling rig. Consequently, there has been a long-felt need to more accurately evaluate a driller's ability to keep the toolface in the correct orientation, and to be able to more accurately evaluate a driller's ability to keep the well on target, such as at the correct inclination and azimuth.
The invention encompasses a method of evaluating drilling performance in a wellbore by monitoring an actual toolface orientation of a downhole steerable motor and a drilling operation parameter indicative of a difference between the actual toolface orientation and a recommended toolface orientation referred to as the toolface advisory, recording the difference between the actual toolface orientation and the toolface advisory, and scoring the difference between the actual toolface orientation and the toolface advisory by assigning a value to the difference that represents drilling performance and varies depending on the difference. Preferably, the invention further encompasses providing the value to an evaluator.
The invention encompasses a method of evaluating drilling performance of a driller (e.g., a rig operator) and driller job performance in drilling a wellbore by monitoring the actual toolface orientation of a downhole steerable motor and a toolface advisory, by monitoring a drilling operation parameter indicative of a difference between the actual toolface orientation, recording the difference between the actual toolface orientation and the toolface advisory, and scoring the difference between the actual toolface orientation and a toolface advisory by assigning a value to the difference that represents drilling performance and varies depending on the difference. Preferably, the invention further encompasses providing the value to an evaluator. In a preferred embodiment in every aspect of the invention, the evaluator can be the driller or the driller's peer(s), or both.
In one embodiment, recording the difference is performed at regularly occurring time intervals during a portion of wellbore drilling. In another embodiment, scoring the difference is performed for each of a plurality of drillers that have operated the drilling rig. In yet another embodiment, recording the difference is performed at regularly occurring length or depth intervals in the wellbore.
In a preferred embodiment, the method alternatively, or further, includes monitoring an actual weight on bit parameter associated with a downhole steerable motor, monitoring a weight parameter measured at the surface, recording the actual weight on bit parameter, recording the weight parameter measured at the surface, recording the difference between the actual weight on bit parameter and a desired weight on bit parameter, and scoring the difference between the actual weight on bit parameter and the desired weight on bit parameter. The weight parameter measured at the surface may be compared to the actual weight on bit parameters to gain an understanding of the relationship between surface weight and actual weight on the bit.
In a preferred embodiment, the method further includes monitoring an actual inclination angle of a downhole steerable motor by monitoring a drilling operation parameter indicative of a difference between the actual inclination angle and a desired inclination angle, recording the difference between the actual inclination angle and the desired inclination angle, and scoring the difference between the actual inclination angle and the desired inclination angle. In yet a different preferred embodiment, the method further includes monitoring an actual azimuthal angle of the downhole steerable motor by monitoring a drilling operation parameter indicative of a difference between the actual azimuthal angle and a desired azimuthal angle; recording the difference between the actual azimuthal angle and the desired azimuthal angle; and scoring the difference between the actual azimuthal angle and the desired azimuthal angle.
The invention also encompasses a system for evaluating drilling performance in drilling a wellbore that includes means for monitoring an actual toolface orientation of a downhole steerable motor by monitoring a drilling operation parameter indicative of a difference between the actual toolface orientation and a toolface advisory, means for recording the difference between the actual toolface orientation and the toolface advisory, means for scoring the difference between the actual toolface orientation and the toolface advisory by assigning a value to the difference that is representative of drilling accuracy and varies depending on the difference; and, optionally but preferably, means for providing the value to an evaluator.
In one embodiment, the means for recording the difference is adapted to record at regularly occurring time intervals during a portion of wellbore drilling. In another embodiment, the means for scoring the difference is performed for each of a plurality of drillers that have operated the drilling rig. In yet a further embodiment, the means for recording the difference is adapted to record at regularly occurring length or depth intervals in the wellbore.
In a preferred embodiment, the system further includes means for monitoring an actual inclination angle of the tool by monitoring a drilling operation parameter indicative of a difference between the actual inclination angle and a desired inclination angle, means for recording the difference between the actual inclination angle and the desired inclination angle, and means for scoring the difference between the actual inclination angle and the desired inclination angle. In another preferred embodiment, the system further includes means for monitoring an actual azimuthal angle of the tool by monitoring a drilling operation parameter indicative of a difference between the actual azimuthal angle and a desired azimuthal angle, means for recording the difference between the actual azimuthal angle and the desired azimuthal angle, and means for scoring the difference between the actual azimuthal angle and the desired azimuthal angle.
The invention also encompasses a drilling-accuracy scoring apparatus for evaluating performance in drilling a wellbore, which apparatus includes a sensor configured to detect a drilling operation parameter indicative of a difference between an actual toolface orientation of a downhole steerable motor and a toolface advisory, and a controller configured to calculate and score a difference between the actual toolface orientation and the toolface advisory by assigning a value to the difference that varies depending on the size of the difference and is representative of drilling accuracy, and optionally, but preferably, a display adapted to provide at least the calculated score to an evaluator. In one embodiment, the display may be a printout that includes the calculated score. In another embodiment, the display may be a current score displayed on a human machine interface. This score may be displayed in real-time or with a short lag behind real-time, so as to provide more immediate feedback to the driller.
In a preferred embodiment, the apparatus further includes a recorder to record the difference between the actual toolface orientation and the toolface advisory. In another embodiment, the apparatus further includes a sensor configured to detect a drilling operation parameter indicative of a difference between the actual inclination angle and the desired inclination angle, and a controller configured to calculate and score the difference between the actual inclination angle and a desired inclination angle. In another embodiment, the apparatus further includes a sensor configured to detect a drilling operation parameter indicative of a difference between the actual azimuthal angle and the desired azimuthal angle; and
a controller configured to score the difference between the actual azimuthal angle and the desired azimuthal angle. In yet another embodiment, the evaluator includes a driller, a team of drillers, a drilling supervisor, or a combination thereof.
The present disclosure is best understood from the following detailed description when read with the accompanying figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of various embodiments. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
It has been determined that techniques for evaluating drilling accuracy can be surprisingly useful in self-feedback mechanisms. If the capabilities of the driller at the controls of a rig are known, for example, better decisions can be made to determine if the rig requires more or less supervision. A driller who knows his or her accuracy can work to increase accuracy in future drilling. The general assumption is that the driller is not skilled in adequately maintaining the toolface orientation and this causes the well to be drilled off target. As a result, directional drillers are supplied to the job to supervise the rig's driller. A system, apparatus, or method according to aspects of the present invention can advantageously help determine if the driller is at fault, or if unexpected formations or equipment failures or imminent failures may be the cause of inaccurate drilling.
Referring to
The HMI 100 can be used by the directional driller while drilling to monitor the BHA in three-dimensional space. The control system or computer which drives one or more other human-machine interfaces during drilling operation may be configured to also display the HMI 100. Alternatively, the HMI 100 may be driven or displayed by a separate control system or computer, and may be displayed on a computer display (monitor) other than that on which the remaining drilling operation screens are displayed. In one embodiment, the control system is a closed loop control system that can operate automatically once a well plan is input to the HMI.
The control system or computer driving the HMI 100 can include a “survey” or other data channel, or otherwise can include an apparatus adapted to receive and/or read, or alternatively a means for receiving and/or reading, sensor data relayed from the BHA, a measurement-while-drilling (MWD) assembly, and/or other drilling parameter measurement means, where such relay may be, e.g., via the Wellsite Information Transfer Standard (WITS), WITS Markup Language (WITSML), and/or another data transfer protocol. Such electronic data may include gravity-based toolface orientation data, magnetic-based toolface orientation data, azimuth toolface orientation data, and/or inclination toolface orientation data, among others. In an exemplary embodiment, the electronic data includes magnetic-based toolface orientation data when the toolface orientation is less than about 7° relative to vertical, and alternatively includes gravity-based toolface orientation data when the toolface orientation is greater than about 7° relative to vertical. In other embodiments, however, the electronic data may include both gravity- and magnetic-based toolface orientation data. The toolface orientation data may relate the azimuth direction of the remote end of the drill string relative to magnetic North, wellbore high side, and/or another predetermined orientation. The inclination toolface orientation data may relate the inclination of the remote end of the drill string relative to vertical.
As shown in
The symbols 110, 115, 120 may indicate only the most recent toolface (110, 115) and quill position (120) measurements. However, as in the exemplary embodiment shown in
The HMI 100 may also include a data legend 125 linking the shapes, colors, and/or other parameters of the data symbols 110, 115, 120 to the corresponding data represented by the symbols. The HMI 100 may also include a textual and/or other type of indicator 130 of the current toolface mode setting. For example, the toolface mode may be set to display only gravitational toolface data, only magnetic toolface data, or a combination thereof (perhaps based on the current toolface and/or drill string end inclination). The indicator 130 may also indicate the current system time. The indicator 130 may also identify a secondary channel or parameter being monitored or otherwise displayed by the HMI 100. For example, in the exemplary embodiment shown in
The HMI 100 may also include a textual and/or other type of indicator 135 displaying the current or most recent toolface orientation. The indicator 135 may also display the current toolface measurement mode (e.g., gravitational vs. magnetic). The indicator 135 may also display the time at which the most recent toolface measurement was performed or received, as well as the value of any parameter being monitored by a second channel at that time. For example, in the exemplary embodiment shown in
The HMI 100 may also include a textual and/or other type of indicator 140 displaying the current or most recent inclination of the remote end of the drill string. The indicator 140 may also display the time at which the most recent inclination measurement was performed or received, as well as the value of any parameter being monitored by a second channel at that time. For example, in the exemplary embodiment shown in
The HMI 100 may also include a textual and/or other type of indicator 145 displaying the current or most recent azimuth orientation of the remote end of the drill string. The indicator 145 may also display the time at which the most recent azimuth measurement was performed or received, as well as the value of any parameter being monitored by a second channel at that time. For example, in the exemplary embodiment shown in
As shown in
Referring to
As also shown in
In the embodiment shown in
In view of the above, the Figures, and the references incorporated herein, those of ordinary skill in the art should readily understand that the present disclosure introduces a method of visibly demonstrating a relationship between toolface orientation and quill position, such method including: (1) receiving electronic data preferably on an on-going basis, wherein the electronic data includes quill position data and at least one of gravity-based toolface orientation data and magnetic-based toolface orientation data; and (2) displaying the electronic data on a user-viewable display in a historical format depicting data resulting from a most recent measurement and a plurality of immediately prior measurements. The distance between the bit and sensor(s) gathering the electronic data is preferably as small as possible while still obtaining at least sufficiently, or entirely, accurate readings, and the minimum distance necessary to obtain accurate readings without drill bit interference will be known or readily determined by those of ordinary skill in the art. The electronic data may further include toolface azimuth data, relating the azimuth orientation of the drill string near the bit. The electronic data may further include toolface inclination data, relating the inclination of the drill string near the bit. The quill position data may relate the orientation of the quill, top drive, Kelly, and/or other rotary drive means or mechanism to the bit and/or toolface. The electronic data may be received from MWD and/or other downhole sensor/measurement equipment or means.
The method may further include associating the electronic data with time indicia based on specific times at which measurements yielding the electronic data were performed. In an exemplary embodiment, the most current data may be displayed textually and older data may be displayed graphically, such as a preferably dial- or target-shaped representation. In other embodiments, different graphical shapes can be used, such as oval, square, triangle, or shapes that are substantially similar but with visual differences, e.g., rounded corners, wavy lines, or the like. Nesting of the different information is preferred. The graphical display may include time-dependent or time-specific symbols or other icons, which may each be user-accessible to temporarily display data associated with that time (e.g., pop-up data). The icons may have a number, text, color, or other indication of age relative to other icons. The icons preferably may be oriented by time, newest at the dial edge, oldest at the dial center. In an alternative embodiment, the icons may be oriented in the opposite fashion, with the oldest at the dial edge and the newer information towards the dial center. The icons may depict the change in time from (1) the measurement being recorded by a corresponding sensor device to (2) the current computer system time. The display may also depict the current system time.
The present disclosure also introduces an apparatus including: (1) apparatus adapted to receive, or a means for receiving, electronic data on an on-going basis or alternatively a recurring basis, wherein the electronic data includes quill position data and at least one of gravity-based toolface orientation data and magnetic-based toolface orientation data; and (2) apparatus adapted to display, or a means for displaying, the electronic data on a user-viewable display in a historical format depicting data resulting from a most recent measurement and a plurality of immediately prior measurements.
Embodiments within the scope of the present disclosure may offer certain advantages over the prior art. For example, when toolface and quill position data are combined on a single visual display, it may help an operator or other human personnel to understand the relationship between toolface and quill position. Combining toolface and quill position data on a single display may also or alternatively aid understanding of the relationship that reactive torque has with toolface and/or quill position. These advantages may be recognized during vertical drilling, horizontal drilling, directional drilling, and/or correction runs. For example, the quill can be rotated back and forth, or “rocked,” through a desired toolface position about ⅛ to about 8 revolutions in each direction, preferably through about ½ to about 4 revolutions, to decrease the friction in the well during drilling. In one embodiment, the quill can oscillate 5 revolutions in each direction. This rocking can advantageously be achieved by knowledge of the quill position, particularly when taken in combination with the toolface position data.
In this embodiment, the downhole tool and the top drive at the surface can be operatively associated to facilitate orientation of the toolface. The WOB can be increased or decreased and torqued to turn the pipe and therefore pull the toolface around to a new direction as desired. In a preferred embodiment, back and forth rocking can be automated and used to help steer drilling by setting a target, e.g., 1000 ft north of the present location, and having the HMI direct the drill towards that target. When the actual drilling is manual, the scoring discussed herein can be tracked and applied to make improved drilling a challenging game rather than merely a job task. According to an embodiment of the invention, the oscillation can be asymmetrical, which can advantageously facilitate turning the toolface and the drilling to a different direction. For example, the pipe can be rotated 4 revolutions clockwise and then 6 counter-clockwise, or 7 times clockwise and then 3 counter-clockwise, and then generally as needed randomly or in a pattern to move the drilling bearing closer to the direction of the target. This rocking can all be achieved without altering the WOB. The asymmetrical degree of oscillation can be reduced as the toolface and drilling begin to approach the desired pre-set heading towards the target. Thus, for example, the rocking may begin with 4 clockwise and 6 counter-clockwise, then become 4½ and 5½, then become symmetrical once a desired heading is achieved. Additional points in between at ⅛ or ¼ revolution increments (or larger, like ½ or 1) may be selected to more precisely steer the drilling to a target heading.
Referring to
Referring to
Referring to
Alternatively or in addition to, the scorecard 300 may be kept for an automated drilling program, such as, for example, the Rockit™ Pilot available from Nabors Industries. The scorecard 300 could be used as part of an incentive program to reward accurate drilling performance, as noted herein. Alternatively, or in addition, the score 350 may be displayed on the HMI 100. The automated drilling system can be scored against itself, or alternatively, itself under various drilling conditions, based on certain types of geologic formations, or the like. The automated drilling system can also, in one embodiment, be compared against human drillers on the same rig.
Referring to
In an exemplary embodiment, a scorecard could include one or more scorecards 200, 300 and/or 400 or information from one or more of these scorecards in any suitable arrangement to track progress in drilling accuracy. Alternatively, or in addition, the score 250, 350, or 450 may be displayed on the HMI 100. This progress can include that for a single driller over time, for two or more drillers on the same rig or working on the same well plan, or for a team of drillers, e.g., those drilling in similar underground formations. Other embodiments within the scope of the present disclosure may use additional or alternative measurement parameters, such as, for example, depth, horizontal distance from the target, vertical distance from the target, time to reach the target, vibration, length of pipe in the targeted reservoir, and length of pipe out of the targeted reservoir. In an exemplary embodiment, the method can include or can further include monitoring an actual weight parameter associated with a downhole steerable motor (e.g., measured near the motor, such as within about 100 feet), monitoring a weight parameter measured at the surface, recording the actual weight on bit parameter, recording the weight parameter measured at the surface, recording the difference between the actual weight on bit parameter and a desired weight on bit parameter, and scoring the difference between the actual weight on bit parameter and the desired weight on bit parameter. The weight parameter measured at the surface may be compared to the actual weight on bit parameters to gain an understanding of the relationship between surface weight and actual weight on the bit. This relationship will provide an ability to drill ahead using downhole data to manage feedoff of an autodriller or a driller.
Furthermore, scoring could also be affected by drilling occurrences, such as mud motor stalls or unplanned equipment sidetracks or the need to withdraw the entire drill string, which would typically carry a heavy scoring penalty.
In view of the above, the Figures, and the references incorporated herein, those of ordinary skill in the art should readily understand that the present disclosure introduces a method of evaluating performance in drilling a wellbore, the method including: (1) monitoring an actual toolface orientation of the downhole steerable motor by monitoring a drilling operation parameter indicative of a difference between the actual toolface orientation and a toolface advisory; (2) recording the difference between the actual toolface orientation and a toolface advisory; and (3) scoring the difference between the actual toolface orientation and a toolface advisory. The recording the difference between the actual toolface orientation and a toolface advisory may be performed at regularly occurring time intervals and/or at regularly occurring length intervals. The scoring the difference between the actual toolface orientation and a toolface advisory may be performed for various drillers that may occupy the controls of the drilling rig.
The method may further or alternatively include: (1) monitoring an actual inclination angle of a downhole steerable motor by monitoring a drilling operation parameter indicative of a difference between the actual inclination angle and a desired inclination angle; (2) recording the difference between the actual inclination angle and a desired inclination angle; and (3) scoring the difference between the actual inclination angle and a desired inclination angle. The method may further or alternatively include: (1) monitoring an actual azimuthal angle of the downhole steerable motor by monitoring a drilling operation parameter indicative of a difference between the actual azimuthal angle and a desired azimuthal angle; (2) recording the difference between the actual azimuthal angle and a desired azimuthal angle; and (3) scoring the difference between the actual azimuthal angle and a desired azimuthal angle.
The present disclosure also introduces an apparatus for evaluating performance in drilling a wellbore, the apparatus including: (1) a sensor configured to detect a drilling operation parameter indicative of a difference between the actual toolface orientation of a downhole steerable motor and a toolface advisory; and (2) a controller configured to score the difference between the actual toolface orientation and a toolface advisory. The apparatus may further include: a recorder to record the difference between the actual toolface orientation and a toolface advisory. The apparatus may further include: (1) a sensor configured to detect a drilling operation parameter indicative of a difference between the actual inclination angle and a desired inclination angle and (2) a controller configured to score the difference between the actual inclination angle and a desired inclination angle. The apparatus may further include: (1) a sensor configured to detect a drilling operation parameter indicative of a difference between the actual azimuthal angle and a desired azimuthal angle; and (2) a controller configured to score the difference between the actual azimuthal angle and a desired azimuthal angle.
The present disclosure also introduces a system for evaluating drilling performance, the system including means for monitoring an actual toolface orientation of the downhole steerable motor by monitoring a drilling operation parameter indicative of a difference between the actual toolface orientation and a toolface advisory, means for recording the difference between the actual toolface orientation and the toolface advisory, means for scoring the difference between the actual toolface orientation and the toolface advisory by assigning a value to the difference that is representative of drilling accuracy and varies depending on the difference; and, optionally but preferably, means for providing the value to an evaluator. The means for providing the value may include, i.e., a printout, an electronic display, or the like, and the value may be simply the score or it may be or include a comparison based on further calculations using the value compared to values from the same driller, another driller, or an automated drilling program on the same day, at the same rigsite, or another variable where drilling accuracy is desired to be compared.
In one embodiment, the invention can also encompass a method of evaluating an automated drilling system that takes control of the establishing and maintaining the toolface, as well as driller job performance in a wellbore, by monitoring the actual toolface orientation of a tool, such as a downhole steerable motor assembly, by monitoring a drilling operation parameter indicative of a difference between the actual toolface orientation and a toolface advisory, recording the difference between the actual toolface orientation and the toolface advisory, and scoring the difference between the actual toolface orientation and the toolface advisory by assigning a value to the difference that represents drilling performance and varies depending on the difference. Optionally, but preferably, the values between the automated drilling system and the driller job performance can be compared to provide a difference. Preferably, the invention further encompasses providing the value or values to an evaluator.
The term “quill position,” as used herein, may refer to the static rotational orientation of the quill relative to the rotary drive, magnetic North, and/or some other predetermined reference. “Quill position” may alternatively or additionally refer to the dynamic rotational orientation of the quill, such as where the quill is oscillating in clockwise and counterclockwise directions about a neutral orientation that is substantially midway between the maximum clockwise rotation and the maximum counterclockwise rotation, in which case the “quill position” may refer to the relation between the neutral orientation or oscillation midpoint and magnetic North or some other predetermined reference. Moreover, the “quill position” may herein refer to the rotational orientation of a rotary drive element other than the quill conventionally utilized with a top drive. For example, the quill position may refer to the rotational orientation of a rotary table or other surface-residing component utilized to impart rotational motion or force to the drill string. In addition, although the present disclosure may sometimes refer to a display integrating quill position and toolface orientation, such reference is intended to further include reference to a display integrating drill string position or orientation at the surface with the downhole toolface orientation.
The term “about,” as used herein, should generally be understood to refer to both numbers in a range of numerals. Moreover, all numerical ranges herein should be understood to include each whole integer within the range.
The foregoing outlines features of several embodiments so that those of ordinary skill in the art may better understand the aspects of the present disclosure. Those of ordinary skill in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those of ordinary skill in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure. Moreover, it will be understood that the appended claims are intended to cover all such expedient modifications and embodiments that come within the spirit and scope of the present invention, including those readily attainable by those of ordinary skill in the art from the disclosure set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
1891329 | Le Compte et al. | Dec 1932 | A |
2005889 | Dillon et al. | Jun 1935 | A |
2724574 | Ledgerwood, Jr. | Nov 1955 | A |
3223183 | Varney | Dec 1965 | A |
3265359 | Bowden | Aug 1966 | A |
3407886 | Bennett | Oct 1968 | A |
3550697 | Hobhouse | Dec 1970 | A |
4492276 | Kamp | Jan 1985 | A |
4535972 | Millheim et al. | Aug 1985 | A |
4662608 | Ball | May 1987 | A |
4854397 | Warren et al. | Aug 1989 | A |
4958125 | Jardine et al. | Sep 1990 | A |
5103920 | Patton | Apr 1992 | A |
5205163 | Sananikone | Apr 1993 | A |
5358059 | Ho | Oct 1994 | A |
5390748 | Goldman | Feb 1995 | A |
5467832 | Orban et al. | Nov 1995 | A |
5474142 | Bowden | Dec 1995 | A |
5551286 | Booer | Sep 1996 | A |
5713422 | Dhindsa | Feb 1998 | A |
5730234 | Putot | Mar 1998 | A |
5738178 | Williams et al. | Apr 1998 | A |
5842149 | Harrell et al. | Nov 1998 | A |
6026912 | King et al. | Feb 2000 | A |
6029951 | Guggari | Feb 2000 | A |
6050348 | Richarson et al. | Apr 2000 | A |
6065332 | Dominick | May 2000 | A |
6092610 | Kosmala et al. | Jul 2000 | A |
6152246 | King et al. | Nov 2000 | A |
6155357 | King et al. | Dec 2000 | A |
6192998 | Pinckard | Feb 2001 | B1 |
6233498 | King et al. | May 2001 | B1 |
6293356 | King et al. | Sep 2001 | B1 |
6382331 | Pinckard | May 2002 | B1 |
6405808 | Edwards et al. | Jun 2002 | B1 |
6757613 | Chapman et al. | Jun 2004 | B2 |
6802378 | Haci et al. | Oct 2004 | B2 |
6820702 | Niedermayr et al. | Nov 2004 | B2 |
6892812 | Niedermayr et al. | May 2005 | B2 |
7000710 | Umbach | Feb 2006 | B1 |
7032689 | Goldman et al. | Apr 2006 | B2 |
7044239 | Pinckard et al. | May 2006 | B2 |
7059427 | Power et al. | Jun 2006 | B2 |
7085696 | King | Aug 2006 | B2 |
7096979 | Haci et al. | Aug 2006 | B2 |
7243735 | Koederitz et al. | Jul 2007 | B2 |
7357196 | Goldman et al. | Apr 2008 | B2 |
7546209 | Williams | Jun 2009 | B2 |
7584788 | Baron et al. | Sep 2009 | B2 |
7665533 | Hopwood et al. | Feb 2010 | B2 |
7775297 | Hopwood et al. | Aug 2010 | B2 |
7823655 | Boone et al. | Nov 2010 | B2 |
20020104685 | Pinckard et al. | Aug 2002 | A1 |
20030024738 | Schuh | Feb 2003 | A1 |
20040028476 | Payne et al. | Feb 2004 | A1 |
20060185899 | Alft et al. | Aug 2006 | A1 |
20070181343 | Russell et al. | Aug 2007 | A1 |
20070203651 | Blanz et al. | Aug 2007 | A1 |
20070256861 | Hulick | Nov 2007 | A1 |
20080156531 | Boone et al. | Jul 2008 | A1 |
20080173480 | Annaiyappa et al. | Jul 2008 | A1 |
20080281525 | Boone | Nov 2008 | A1 |
20090058674 | Papouras et al. | Mar 2009 | A1 |
20090078462 | Boone et al. | Mar 2009 | A1 |
20090090555 | Boone et al. | Apr 2009 | A1 |
20090152005 | Chapman et al. | Jun 2009 | A1 |
20090159336 | Boone | Jun 2009 | A1 |
20090250264 | Dupriest | Oct 2009 | A1 |
20100121776 | Stenger | May 2010 | A1 |
Number | Date | Country |
---|---|---|
0774563 | Jul 2002 | EP |
WO 9312318 | Jun 1993 | WO |
WO 2004055325 | Jul 2004 | WO |
WO 2006079847 | Aug 2006 | WO |
WO 2007073430 | Jun 2007 | WO |
WO 2008070829 | Jun 2008 | WO |
WO 2009039448 | Mar 2009 | WO |
WO 2009039453 | Mar 2009 | WO |
Entry |
---|
Dupriest, F., “Comprehensive Drill-Rate Management Process to Maximize Rate of Penetration,”SPE Annual Technology Conference and Exhibition, San Antonio, TX, SPE 102210, pp. 1-9 (Sep. 24-27, 2006). |
The International Searching Authority, “Written Opinion of the International Searching Authority,” PCT/US2007/86768, mailed Jun. 11, 2008. |
Brown, et al., “In-Time Data Delivery,” Oilfield Review, 11(4): 34-55, http://www.slb.com/media/services/resources/oilfieldreview/ors99/win99/pages34—55.pdf (Winter 1999/2000). |
Gurari, E., “CIS 680: Data Structures: Chapter 19: Backtracking Algorithms;” http://www.cse.ohio-state.edu/%7Egurari/course/cis680/cis680Ch19.html (1999). |
Leine, et al., “Stick-Slip Whirl Interaction in Drillstring Dynamics,” J. of Vibration and Acoustics, 124: 209-220 (2002). |
Maidla, et al., “Understanding Torque: The Key to Slide-Drilling Directional Wells,” IADC/SPE Drilling Conference, IADC/SPE 87162 (2004). |
Dupriest, et al., “Maximizing Drill Rates with Real-Time Surveillance of Mechanical Specific Energy,” SPE/IADC Drilling Conference 92194, Amsterdam, The Netherlands, p. 1-10 (Feb. 23-25, 2005). |
Dupriest, F., “Maximizing ROP with Real-Time Analysis of Digital Data and MSE,” International Petroleum Technology Conference, Doha, Qatar, p. 1-8 (Nov. 21-23, 2005). |
Hartley, et al., “New Drilling Process Increases Rate of Penetration, Footage Per Day,” Offshore, 66(1): 1-5 (2006). |
Young, Jr., “Computerized Drilling Control,” Journal of Petroleum Technology, 21(4): 483-96 (1969). |
Brett, et al., “Field Experiences with Computer-Controlled Drilling,” Society of Petroleum Engineers 20107, presented at Permian Basin Oil and Gas Recovery Conference, Midland, TX (Mar. 8-9, 1990). |
“Wildcat ADS Automated Drilling System,” Product Brochure, National Oilwell Varco, Inc. (2006). |
“40223705-Series Wildcat Services Pneumatic Automated Drilling System,” available at http://www.nov.com/Drilling/Control—and—Advisiory—Systems/Drawworks—Control—Auto—Drilling/Auto—Drillers.aspx (last visited Oct. 8, 2009). |
Petroleum Extension Service, “Controlled Directional Drilling,” N. Janicek (ed.), Third Edition, pp. 18-33 and 44-45, 1984. |
Goldman, “Artificial Intelligence Applications Enhance Directional Control,” Petroleum Engineer International, pp. 15-22, Feb. 1993. |
Bonner, et al., “Measurements at the Bit: A New Generation of MWD Tools,” Oilfield Review, pp. 44-54, Apr./Jul. 1993. |
Jackson, et al., “Portable Top Drive Cuts Horizontal Drilling Costs,” World Oil Magazine, vol. 214 Issue 11, pp. 81-89, Nov. 1993. |
Murch, “Application of Top Drive Drilling to Horizontal Wells,” Society of Petroleum Engineers—SPE 37100, 1996. |
Plaintiff's Original Complaint; Case 6:09-cv-00414; Doc. 1; Sep. 16, 2009. |
Answer to Plaintiff's Complaint; Case 6:09-cv-00414-LED; Doc 25; Nov. 6, 2009. |
Defendant Helmerich & Payne's Invalidity Contentions; Case 6:09-cv-00414-LED; Mar. 25, 2010. |
Defendant Omron Oilfield and Marine, Inc's Patent Rule 3-3 Disclosures; Case 6:09-cv-00414-LED; Mar. 25, 2010. |
Defendant Omron Oilfield and Marine, Inc's Patent Rule 3-4 Disclosures; Case 6:09-cv-00414-LED; Mar. 25, 2010. |
Helmerich & Payne, Inc.'s First Amended Answer and Counterclaims to Plaintiff's Original Complaint; Case 6:09-ev-00414-LED; Doc 55; Mar. 25, 2010. |
U.S. Appl. No. 12/855,035, filed Aug. 12, 2010, Boone. |
Canrig's Answers to Omron Oilfield and Marine, Inc.'s First Set of Interrogatories, Civil Action No. 6:09-cv-00414, May 7, 2010. |
Canrig Drilling Technology Ltd.'s Objections and Responses to Helmerick & Payne's First Set of Interrogatories, Civil Action No. 6:09-cv-00414, Aug. 23, 2010. |
Defendant's Joint Preliminary Claim Construction and Extrinsic Evidence, Civil Action No. 6:09-cv-00414LED, Sep. 24, 2010. |
Plaintiff Canrig's Local Patent Rule 4-2 Disclosures, Civil Action No. 6:09-cv-00414, Sep. 24, 2010. |
Joint Claim Construction Statement, Civil Action No. 6:09-cv-00414LED, Oct. 25, 2010. |
The International Searching Authority, “Written Opinion of the International Searching Authority,” PCT/US2010/024105, mailed Sep. 14, 2010. |
Number | Date | Country | |
---|---|---|---|
20100217530 A1 | Aug 2010 | US |