Circulation loss is the uncontrolled flow of mud (drilling fluid) from the wellbore into the formation. During the drilling of oil and gas wells, circulation loss is commonly encountered. Circulation loss occurs in formations that are inherently fractured, cavernous, have high permeability, or are induced by improper drilling conditions, or drilling practices. In extreme cases, such as total circulation loss, there is zero return of the drilling fluid at the surface. In case of total circulation loss, the fluid level in the annular space between the casing of the wellbore and the tubing, where drilling fluid flows, is always below the outlet of the flow line to the mud tank. Under such circumstances, it is difficult to identify the actual fluid level which is a key parameter to calculate pore pressure of fluids within the pores of a reservoir. It is also difficult to identify the pressure required to induce fractures in rock at a given depth (fracture gradient) of shallow formations.
To maintain a hydrostatic pressure in the well for safety and wellbore integrity, drilling systems normally pump the drilling fluid, in addition to the conventional flow of drilling fluid from the drill pipe, from the back end of the tubing directly into the annulus. When the fluid level is unclear, it is impossible to make informed decisions on the required pump rate and the mud density. The determination of the fluid level in the wellbore determines the mud cap parameters, which will lead to savings and improved wellbore conditions if reducing mud cap rate or density is possible. The determination of the fluid level when all the drilling fluid pumped down the wellbore is lost (total loss of the drilling fluid) will also help making informed decisions on setting the depth of the differential valve (DV) tool, considering DV packer differential limitations, and hydrostatic supporting pressure of the fluid in the wellbore. This will lead to cost saving and reduction in the failure rate of the DV tool.
Accordingly, there exists a need for a drilling system that measures the fluid level in a wellbore during drilling of the wellbore.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In one aspect, embodiments disclosed herein relate to a drilling system that measures a fluid level in a wellbore. The drilling system may include a drill pipe and a sensor sleeve attached to the drill pipe. The sensor sleeve may include a transmitter that transmits a sensing signal in a direction of a fluid in the wellbore, a receiver that receives the sensing signal after the sensing signal is reflected on a surface of the fluid, and a repeater that determines a distance between the sensor sleeve and the fluid level from the transmitted and received sensing signal. The fluid level in the wellbore may be calculated using the distance determined by the repeater and a distance between the sensor sleeve and a surface of the wellbore.
In another aspect, embodiments disclosed herein relate to a drilling system that measures a fluid level in a wellbore. The drilling system may include a drill pipe comprising a sensor sleeve attached to the drill pipe, the drill pipe being configured to be lowered into the wellbore where a drilling fluid circulates. The sensor sleeve may include a pressure gauge that measures a hydrostatic pressure of the drilling fluid in the wellbore, and a repeater that determines a depth of the sensor sleeve in the drilling fluid based on the hydrostatic pressure and a density of the drilling fluid.
In yet another aspect, embodiments disclosed herein relate to a method of measuring a fluid level in a wellbore during drilling of the wellbore using a drilling system comprising a drill pipe. The method may include attaching a plurality of sensor sleeves along the drill pipe and drilling the wellbore with the drill pipe, while filling the wellbore with drilling fluid. The method may also include measuring the fluid level in the wellbore in time intervals by: transmitting a sensing signal from each sensor sleeve in a direction of the fluid level, receiving, by the plurality of sensor sleeves, each sensing signal reflected on the surface of the drilling fluid, determining a distance between each sensor sleeve and the fluid level from the transmitted and received sensing signals, determining the sensor sleeve that is closest to and above the fluid level, called the offset sensor sleeve, determining a fluid level offset, wherein the fluid level offset is a length of the drill pipe from the offset sensor sleeve to a surface of the wellbore, and determining the fluid level by adding the fluid level offset and the distance between the offset sensor sleeve and the fluid level.
Other aspects and advantages of the claimed subject matter will be apparent from the following description and the appended claims.
In the following detailed description of embodiments of the disclosure, numerous specific details are set forth in order to provide a more thorough understanding of the disclosure. However, it will be apparent to one of ordinary skill in the art that the disclosure may be practiced without these specific details. In other instances, well-known features have not been described in detail to avoid unnecessarily complicating the description.
Throughout the application, ordinal numbers (e.g., first, second, third, etc.) may be used as an adjective for an element (i.e., any noun in the application). The use of ordinal numbers is not to imply or create any particular ordering of the elements nor to limit any element to being only a single element unless expressly disclosed, such as using the terms “before”, “after”, “single”, and other such terminology. Rather, the use of ordinal numbers is to distinguish between the elements. By way of an example, a first element is distinct from a second element, and the first element may encompass more than one element and succeed (or precede) the second element in an ordering of elements.
In one aspect, embodiments disclosed herein relate to a drilling system that measures a fluid level in a wellbore, comprising: a drill pipe, wherein a sensor sleeve is attached to the drill pipe, and the sensor sleeve comprises: a transmitter that transmits a sensing signal in a direction of the fluid, a receiver that receives the sensing signal after the sensing signal is reflected on a surface of the fluid, and a repeater that determines a distance between the sensor sleeve and the fluid level from the transmitted and received sensing signal.
More specifically, the system includes a finite number of repeaters installed along the drill pipe in a format of sensor sleeves. The repeaters are electronic modules each equipped with on-board powering, computation, communication and sensing modules. The spacing between the neighbouring repeaters can be anywhere between one joint to a hundred joints (drill pipes) depending on the wellbore geometry. Each repeater has its unique ID that is correlated with drill pipe tally thus its position/depth can be identified at any time provided the ID number. The fluid level offset is measured by the sensors of the repeater that has the closest proximity to the fluid level. Once the fluid level offset is identified, the total fluid level is a sum of the repeater's position and the offset value. The data is transmitted among the repeaters by mean of optical communication.
Embodiments of the present disclosure may provide at least one of the following advantages. The drilling system measures the fluid level in a wellbore during drilling of the wellbore, even during total loss of the drilling fluid in the wellbore.
The drilling system 100 includes a derrick 114 with a block and tackle which includes a crown block 113, and a traveling block 111. The crown block 113 is the stationary end of the block and tackle and the traveling block 111 is the moving end of the block and tackle. For raising or lowering the traveling block 111, the drilling system 100 includes drawworks 107 with a spool that reels a drill line 112 in or out. The drill line 112 is a thick, stranded metal cable and is threaded between the crown block 113 and the traveling block 111. The traveling block 111 includes sheaves that move up and down the derrick 114. A wire rope is threaded through the sheaves and goes back to the crown block 113. This pulley system enables a drill string 125 to be lifted out of or lowered into the wellbore. A racking board 115 provides a catwalk along the side of the derrick 114. The racking board 115 is 35 to 40 feet long and begins from a floor 121 which is the main area where work is performed.
The drill string 125 is an assembled collection of a drill pipe, a heavy weight drill pipe, drill collars, and tools, connected and run into the wellbore to facilitate the drilling of the wellbore. The drill string 125 includes a drill bit 126, which is attached to the end of the drill string 125, that drills and breaks the rocks apart. The drill bit 126 contains jets through which the drilling fluid 101 exits. A hydraulically powered mud motor (not shown in
A swivel 118 is hooked to the traveling block 111, which is the top end of a kelly, and allows the rotation of the drill string 125 without twisting the traveling block 111. A square, hexagonal or octagonal shaped tubing, called kelly drive 119, is attached to the swivel 118. The kelly drive 119 is inserted through and is an integral part of a rotary table 120 that moves freely vertically while the rotary table 120 turns it. The interaction between the kelly drive 119 and the rotary table 120 is described more detailed in the description of
The rotary table 120 rotates the kelly, a kelly bushing, the drill string, and the attached tools and the drill bit. The kelly is a long square or hexagonal steel bar with a hole drilled through the middle for conduit of the drilling fluid 101. The kelly is used to transmit rotary motion from the rotary table 120 or the kelly bushing to the drill string, while allowing the drill string to be lowered or raised during rotation. The kelly goes through the kelly bushing, which is driven by the rotary table 120. The kelly bushing has an inside profile matching the kelly's outside profile, which is either square or hexagonal, but with slightly larger dimensions so that the kelly can freely move up and down inside.
The kelly bushing is an adapter that connects the rotary table 120 to the kelly. The kelly bushing has an inside diameter profile that matches the outside diameter of the kelly. The kelly bushing is connected to the rotary table 120 by four large steel pins that fit into mating holes in the rotary table 120. The rotary motion from the rotary table 120 is transmitted to the kelly bushing through the pins, and then to the kelly itself through the square or hexagonal flat surfaces between the kelly and the kelly bushing. The kelly then turns the entire drill string because it is screwed into the top of the drill string itself.
Blowout preventers (BOPs, not shown in
The standpipe 108 is a thick metal tubing and is arranged vertically along the derrick 114. The standpipe 108 facilitates the flow of drilling fluid 101. The standpipe 108 is attached to and supports one end of a kelly hose 109. The kelly hose 109 is a flexible, high pressure hose that connects the standpipe 108 to a gooseneck 110 on the swivel 118 above the kelly and allows free vertical movement of the kelly, while facilitating the flow of the drilling fluid 101 down the drill string 125. The gooseneck 110 is a thick metal elbow connected to the swivel 118 and the standpipe 108, that supports the weight of and provides a downward angle for the kelly hose 109 to hang from.
A setback 117 is a part of the drill floor 121 where a stand of the drill pipe stays upright. The setback 117 is made of a metal frame with large wooden beams disposed within the setback 117. The wood helps to protect the end of the drill pipe. Elevators (not shown in
A large metal flange, called a casing head 127, is welded or screwed on top of the casing and is used to bolt the surface equipment such as the blowout preventers. A degasser (not shown in
As described in the description of
In case the amount of drilling fluid 101 flowing out of the wellbore to the mud tank 129 through the flow line 128 is the same as the amount of the drilling fluid pumped down the wellbore, there is no circulation loss of the drilling fluid 101 in the wellbore and the drilling fluid 101 is fully circulating and the level of the drilling fluid is at the flow line 128.
In case all of the amount of the drilling fluid 101 pumped down the wellbore is lost in the wellbore, the drilling fluid 101 is lost totally and the level of the drilling fluid drops to the bottom of the annulus. In this case, not even a refill is able to keep the circulation of the of the drilling fluid 101.
The sensor sleeve 302 includes a housing (311 in
The sensor sleeve 302 includes a transmitter 310 that transmits a sensing signal. The sensing signal may be an optical sensing signal, an electromagnetic sensing signal, or an acoustic sensing signal.
In some embodiments, the transmitter 310 is an optical transmitter, such as an optical diode, a complementary metal-oxide-semiconductor (CMOS), or a camera sensor. In other embodiments, the transmitter 310 is an electromagnetic transmitter, such as a coil, or an antenna. Yet in other embodiments, the transmitter 310 is an acoustic transmitter, such as an acoustic transducer, or a microphone.
In one or more embodiments, the CMOS is a metal-oxide-semiconductor field-effect transistor (MOSFET). In one or more embodiments, the camera sensor is a digital image sensor. In one or more embodiments, the digital image sensor is a charge-coupled device (CCD) or an active-pixel sensor (CMOS sensor).
The sensor sleeve 302 further includes a receiver, integrated with the transmitter 310, that receives the sensing signal. In some embodiments, the receiver is an optical receiver, such as an optical diode, a complementary metal-oxide-semiconductor (CMOS), or a camera sensor. In other embodiments, the receiver is an electromagnetic receiver, such as a coil, or an antenna. Yet in other embodiments, the receiver is an acoustic receiver, such as a microphone.
The sensor sleeve also includes a repeater which is described in the description of
In
As shown in
The first tubing joint 308A on the left side of
The number of the tubing joints may be anywhere between one tubing joint to a hundred tubing joints of the drill pipe depending on the wellbore geometry.
The drilling system 400 includes a tally which is a list containing the number of each tubing joint, details, lengths, and other pertinent details of the tubing joints. Each repeater has its unique ID number that is correlated to the tally of the drill pipe. For example, the unique ID number is assigned to each repeater which is recognizable during the installation and running of the drill pipes. The tally is created as a record to keep an order of how the drill pipe is installed. With the unique ID number, the repeater position can be marked easily during the preparation of the tally. Thus, the position or depth of each repeater may be identified at any time in case the unique ID number of the repeaters are provided.
The number of the sensor sleeves to be installed on the drill pipe varies depending on the well geometry and required system redundancy. The spacing between the neighboring sensor sleeves may be anywhere between one tubing joint to a hundred tubing joints of the drill pipes.
A sensing signal 506 transmitted by the transmitter 310 of the sensor sleeve is reflected on a surface of the drilling fluid 101 and is received by the receiver of the sensor sleeve 302 (not shown in
The time of flight of the sensing signal is the time between transmitting the sensing signal 506 by the transmitter 310 and receiving the reflected sensing signal 508 by the receiver. In some embodiments, a distance D between the sensor sleeve 302 and the fluid level 202 of the drilling fluid 101 is determined from the time of flight of the sensing signal. The distance D is equal to the speed vsignal of the sensing signal in air multiplied by the time of flight tflight of the sensing signal: D=vsignal*tflight.
When the sensing signal 506 transmitted by the transmitter 310 is reflected on the surface of the drilling fluid 101, the reflected sensing signal 508 has a different phase than the sensing signal 506 transmitted by the transmitter 310. In other words, the sensing signal shifts phase when reflected on the surface of the drilling fluid 101. In some embodiments, the distance D is measured by the phase shift of the sensing signals when reflected on the surface of the fluid.
Furthermore, when the sensing signal 506 transmitted by the transmitter 310 is reflected on the surface of the drilling fluid 101, the reflected sensing signal 508 has a smaller amplitude than the sensing signal 506 transmitted by the transmitter 310. The decrease in amplitude results from an attenuation of the sensing signal when the sensing signal is reflected on the surface of the drilling fluid. In some embodiments, the distance D is measured by the attenuation of the sensing signal when reflected on the fluid surface.
A fluid level offset is determined by the sensor sleeve that has the closest proximity to the fluid level. Once the fluid level offset is determined, the fluid level is a sum of the fluid level offset and the position of the sensor.
A first sensor sleeve 302A is attached to an upper neck of the first tubing joint 308A, similar to
The transmitter 310 transmits a sensing signal 506 in a direction of the drilling fluid 101. The transmitted sensing signal 506 immerges in the drilling fluid 101 and is then received by the receiver 510. The distance D between the first sensor sleeve 302 and the fluid level 202 is determined by the attenuation of the sensing signal 506 when passing through the drilling fluid 101. Once the distance D is determined, the first sensor sleeve 302A sends a communication signal 512 including the distance D to the sensor sleeve of the tubing joint neighboring the first tubing joint 308A above. Sending the communication signal to the sensor sleeve of the neighboring tubing joint above is repeated until the distance D reaches the surface of the wellbore, where the distance D is readable by an operator in order to regulate the flow of the drilling fluid from the mud.
This drilling system 700 is similar to the drilling system 600 of
The fluid level is calculated from the measured hydrostatic pressure at the depth of the second sensor sleeve 302B and the known fluid density. The depth h is determined by
where p is liquid pressure, g is gravity, and p is the density of the drilling fluid.
The distance sensing module 802 measures the distance to the fluid level offset based on one or more measurement techniques including optics 804, electromagnetics 806, acoustic 808, and pressure 810. For example, a time of flight signal of the optics 804 or the acoustic 808 to and from the distance sensing module 802 to the fluid level offset may determine the distance. A signal attenuation of the electromagnetics 806 may determine the distance. The pressure 810 to determine the distance may be based on hydrostatic pressure when a pressure sensor is submerged and pipe in a vertical configuration.
The powering module 812 powers the microcontroller 826. In one or more embodiments, the powering module 812 includes a battery or a battery pack. The microcontroller 826 includes a timer 814, a CPU 816, I/O ports 818, a RAM 820, interrupts 822, and a ROM 824 to ensure a running of a program in the microcontroller 826 to execute an application.
The repeater 800 identifies the sensor sleeve next to the fluid level and measures the distance between the repeater 800 and the fluid level offset. Then the repeater 800 sends the data upwards to the next repeater or next few repeaters in the case of a redundant system design.
The distance sensing module 802 provides data to the microcontroller 826 to identify the repeater 800 of the sensor sleeve next to the fluid level. After the repeater 800 of the sensor sleeve next to the fluid level is identified and the distance to the fluid level offset is obtained, the data is transmitted to the surface through the chains of the repeaters via the optical communication module 828.
In a first step 902, sensor sleeves are attached to the drill pipe.
The sensor sleeves 302 are shaped tubularly with a length along the tubing joint 308 being larger than a width across the tubing joint 308. The sensor sleeves 302 may be attached to the tubing joint 308 at any place along the length of the tubing joint 308. The sensor sleeve 302 may be completely rigid or may have a flexible component. In case of a sensor sleeve 302 with a flexible component, the flexible component is stretched and the sensor sleeve is moved along the tubing joint 308. Once the sensor sleeve 302 reaches the position along the tubing joint 308 where the sensor sleeve 302 needs to be attached to the tubing joint 308, the flexible component is released to tighten the sensor sleeve 302 to the tubing joint 308.
In case of a completely rigid sensor sleeve 302, the sensor sleeve 302 may be attached to the tubing joint 308 by any means, such as screwing, welding, brazing, or soldering. In some embodiments, the sensor sleeve 302 may include two parts that are hinged with each other such that the sensor sleeve 302 may be opened and closed by the two parts.
Next, in step 904, the wellbore is drilled with the drill pipe, while the wellbore is filled with drilling fluid.
In order to drill the wellbore, the drill bit starts spinning as soon as the drill bit touches the surface of the ground. The drill bit cuts its way through the rocks of the formation. During the drilling, drilling fluid is pumped down the wellbore, as described in the next step.
The mud pump suctions drilling fluid from the mud tank as described in the description of
In step 906, the fluid level is measured in time intervals by the steps 908-918. The time intervals may be any time interval. In some embodiments, the time interval is 10 seconds, 1 minute, 5 minutes, or 10 minutes.
In step 908, a sensing signal is transmitted from each sensor sleeve in a direction of the fluid level. The sensing signal is a pulsed electromagnetic signal. Each sensing signal has an identifier that identifies the sensor sleeve that transmitted the sensing signal. The identifier may be a code that is part of the sensing signal.
In step 910, each sensing signal is received by the sensor sleeves.
Each sensor sleeve identifies the sensor sleeve that transmitted the sensing signal by the identifier of the received sensing signal.
In step 912, a distance between each sensor sleeve and the fluid level is determined from the transmitted and the received sensing signals.
In some embodiments, the transmitted sensing signal is reflected on the surface of the fluid and then received by a receiver of the same sensor sleeve. This case is similar to the case of
In other embodiments, the transmitted sensing signal immerges into the drilling fluid and is received by a receiver of a sensor sleeve that is below the fluid level. This case is similar to the case of
In step 914, the sensor sleeve that is closest to the drilling fluid level and is above the fluid level (offset sensor sleeve) is determined. For example, if out of an X number of sensor sleeves from top to bottom, an Y number of sensor sleeves are identified as submerged, the closest to and above the fluid level is the sensor sleeve number from subtracting Y from X. In some embodiments, each sensor sleeve has a sensor to detect whether the sensor sleeve is submerged. The sensor may be a wet sensor, a fluid detection sensor, or a pressure sensor.
In step 916, the length of the drill pipe from the offset sensor sleeve to a surface (fluid level offset) is determined.
In some embodiments, the drill pipe includes tubing joints (see description of
In some embodiments, the drill pipe includes a tally, and each sensor sleeve includes a unique ID number that is correlated to the tally for identifying a position of the sensor sleeve along the drill pipe.
The offset sensor sleeve is identified by its ID number. After the offset sensor sleeve is identified, the sensor sleeves above the offset sensor sleeve are counted. The number of the sensor sleeves above the offset sensor sleeve and their length determines the length of the drill pipe from the offset sensor sleeve to a surface (fluid level offset).
In step 918, the fluid level is determined by adding the fluid level offset and the distance between the offset sensor sleeve and the fluid level. Exemplary, it is assumed that the sensor sleeve nearest to and above the fluid level determines a distance D of about 1.5 m (5 ft) and the number of the sensor sleeves that are above the sensor sleeve nearest to and above the fluid level is 60. In case each of the sensor sleeves has a length of around 9 m (30 ft), the length of the drill pipe from the offset sensor sleeve to a surface (fluid level offset) is equal to 60·9 m (30 ft)=540 m (1800 ft). Adding the 1.5 m (5 ft) to the 540 m (1800 ft) results in a fluid level of 541.5 m (1805 ft).
Although only a few example embodiments have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the example embodiments without materially departing from this invention. Accordingly, all such modifications are intended to be included within the scope of this disclosure as defined in the following claims.