The present invention relates to a drilling unit and method for slot drilling and a slotting device. In the slot drilling a plurality of holes are drilled closely together so as to form a slot in a rock material. A slot may be formed in a rock surface or into rock mass by drilling a plurality of holes in the surface at a pitch substantially equal to the diameter of the holes. In the slot drilling a special slotting device is needed for guiding the drilling tool along a previously drilled hole. The object of the invention is disclosed more closely in the preambles of the independent claims.
Slot drilling is a method used in underground and surface mining. In the slot drilling holes are successively drilled very close to each other and when a new hole is drilled next to a previously drilled hole, the wall of rock between the holes is broken. In this manner, a continuous slot is formed by the holes as they are successively drilled. Such continuous slots i.e. elongated voids can be used in the surface blasting to protect buildings near a blasting site. In this manner propagation of the shock waves outside the blasting site is prevented. In the underground mining elongated voids or slots can be drilled in solid rock for example in a tunnel face in order to form a primary open space whereto a broken rock material can expand in blasting. This is needed e.g. in stope opening or drifting.
When a single hole is drilled into rock, the fully circumferential wall of the hole remains intact and radial forces acting from the wall of the hole on the drill bit tend to cancel each other. However, in the slot drilling, when a plurality of holes are formed in a row so as to form a slot, the wall of rock between a previously drilled hole and a new hole being drilled is broken as the new hole is being drilled, and the radial forces acting from the partially circumferential wall of the new hole on the drill bit result in a net force that is directed toward the previously drilled hole.
Therefore, the drill bit as it drills the new hole tends to be displaced radially off a desired course under the combination of radial forces thus applied. To prevent the drill bit from being displaced, it has been a conventional practice to use a guide rod supported parallel to the drill rod and having a diameter, which is substantially the same as or slightly smaller than the diameter of holes to be formed. Before a new hole is drilled, the guide rod is inserted into a previously drilled hole next to the position of the new hole so as to stabilize the support for the drill rod. By placing the guide rod in the previously drilled hole, the support for the drill rod is prevented from shifting position even when large radial forces are imposed on the drill rod as it drills the new hole.
U.S. Pat. No. 5,690,184 discloses a rock drilling unit for slot drilling. The drilling unit includes a guide rod fixed to a support for the drill rod at the front end of the feeding beam, whereby the guide rod extends to the front of the feeding beam. Thus, the drilling unit is designed only for slot drilling.
WO 99/45 237 discloses a slotting device, which includes a down-hole rock drilling machine inside a body portion of the slotting device and a parallel guide tube arranged by means of a strut to the body portion. One disadvantage of the disclosed slotting device is that stress waves generated by a percussion device of the drilling machine are transmitted not only to a tool but also to the body structure and to the guide tube. The stress waves may cause serious damages to the body and the guide of the slotting device. This said disadvantage concerns especially top hammer applications.
The object of the invention is to provide a new and improved drilling unit and method for slot drilling and further a new and improved slotting device.
The drilling unit of the invention is characterized in that between the body portion of the slotting device and the tool there is at lest one axial volume chamber containing fluid so as to dampen transmission of the impact stress waves from the percussion device to the slotting device.
The slotting device of the invention is characterized in that the slotting device is provided with at least one axial volume chamber between the body portion and the tool; and wherein the slotting device comprises at least one flow channel for directing fluid into the chamber, whereby the fluid in the chamber is arranged to transmit axial forces from the tool to the body portion.
The method of the invention is characterized in that it comprises the steps of transmitting the feed force to the body of the slotting device in the drilling direction by means of fluid in at lest one axial volume chamber between the tool and the body portion; and dampening transmission of the impact stress waves from the percussion device to the slotting device by means of the fluid in the at least one axial volume chamber.
According to the present invention the slotting device comprises an axial volume chamber that contains flushing fluid so as to dampen transmission of the impact stress waves from a percussion device to the slotting device. Accordingly, impact stress waves are transmitted to a tool, but their transmission to a slotting device attached to the tool is damped. Further, during drilling feed force in the drilling direction is transmitted to the body of the slotting device by means of fluid.
An advantage of the invention is that in normal drilling situation there is an axial gap in drilling direction between the mechanical counter surfaces of the tool and the body of the slotting device, whereby the energy of the stress waves generated by a percussion device are not transmitted to the body and to the guide of the slotting device. Thanks to this, stress waves do not damage the structure of the slotting device and the operating life of the slotting device may longer.
It is the idea of an embodiment that the slotting device is a dismountable auxiliary device connected to a shank of the rock drilling machine or to a drill rod connected to the shank. This being so, the slotting device can be easily connected and disconnected to a standard rock drilling machine according to the need. When the slotting device is disconnected, the rock drilling machine can be used in drilling normal single holes.
It is the idea of an embodiment that fluid is provided to flush drilling waste from a hole being drilled. Preferably, the fluid flows through an axial volume chamber that is defined between a body portion of a slotting device and the tool, and the flushing fluid damps transmission to the slotting device of impact stress waves generated by a percussion device.
It is the idea of an embodiment that the slotting device is capable of dislodging itself in the event the slotting device becomes jammed in the slot.
It is the idea of an embodiment that the slotting device provides valve means regulating a flow of fluid through the axial volume chamber. The valve means restricts the fluid flow thereby increasing fluid pressure and providing additional force to move the slotting device if it becomes jammed.
It is the idea of an embodiment that the guide portion comprises a tube that is spaced from and parallel to the body portion. Further the tube may comprise a cutout in which an edge of the bit may rotate. This eliminates the risk that the drill bit comes in contact with the tube.
It is the idea of an embodiment that the guide portion comprises at least one elongated guiding flange extending longitudinally along a peripheral surface of the guide portion. These elongated guide flanges ensure that the distance of the hole being drilled is correct in relation to the previous hole.
In the following the invention will be described in greater detail by means of exemplary embodiments with reference to the attached drawings, in which
a is a schematic illustration of a rock drilling rig;
b is a schematic illustration of a rock drilling unit;
a-2c are schematic illustrations showing how a slot is formed by successively drilling closely together a plurality of holes;
In the Figures, some embodiments are shown in a simplified manner for the sake of clarity. In the Figures, like parts are denoted with like reference numerals.
a is a schematic illustration of a rock drilling rig 1, that includes a boom 2, at the end of which there is a rock drilling unit 60. The rock drilling unit 60, which is shown more detailed in
Referring more particularly to
The feed pump 12, impact pump 13, rotation pump 14 and flushing pump 21 are typically driven by motors 12a, 13a, 14a, 21a, respectively. For the sake of clarity,
Referring now to
As shown in
Referring now to
The guide portion 110 may be provided with one or more longitudinally extending elongated guiding flanges 112a, 112b. Preferably, the guiding flanges 112a, 112b are disposed on the peripheral surface of the guide portion and are positioned on either side of the broken partition between the two previously drilled holes 52, 54. The guiding flanges 112a, 112b facilitate locating the guide portion 110 in the previously drilled hole 54, particularly with regard to the absence that results from the broken partition. Alternatively, a single flange that extends on the peripheral surface of the guide portion 110 beyond the opposite ends of the broken partition may also facilitate locating the guide portion 110 in the previously drilled hole.
Referring now to
The slotting device 100 comprises one or more struts 130 for connecting the guide portion 110 to the body portion 120. The strut 130 provide a structural link to convey movement of the body portion 120 to the guide portion 110, i.e., the guide portion 110 is displaced in the previously drilled hole in response to movement of the body portion 120. Thus, the connection between the guide portion 110 of the slotting device 100 and the rock drilling apparatus 1 is, preferably, solely via the strut 130 and the body portion 120 of the slotting device 100.
The body portion 120 of the slotting device 100 is disposed in the hole being drilled, and is coupled to the tool 7 via a mutually defined axial volume chamber 140 that contains flushing fluid to damp transmission of the impact stress waves from the percussion device 4 to the slotting device 100.
The body portion 120 includes a sleeve 122 that defines a bore 124 in which extends the tool 7. The bore 124 includes a first diameter portion 124a, a second diameter portion 124b that is smaller than the first diameter portion 124a, a shoulder portion 124c that extends between and couples the first and second diameter portions 124a, 124b, and a third diameter portion 124d that is smaller than the second diameter portion 124b. The portion of the tool 7 that extends through the bore 124 includes a piston portion 7a and a rod portion 7b, which is proximal to the bit 8. Preferably, the piston and rod portions 7a, 7b are mechanically coupled between the drill rods 10a, 10b, 10c, if any, and the bit 8; but may alternatively be integrally formed as part of the tool 7. Thus, the impact stress waves generated by the percussion device 4 are transmitted via a direct mechanical coupling, i.e., via the tool 7 including the piston and rod portions 7a, 7b, to the bit 8.
The first diameter portion 124a of the bore 124 slidingly receives the piston portion 7a of the tool 7, and the second diameter portion 124b of the bore receives the rod portion 7b of the tool 7. Thus, the variable axial volume chamber 140 has an annular shape that is defined radially between the first diameter portion 124a of the bore 124 and the rod portion 7b of the tool 7, and is defined axially between the piston portion 7a of the tool 7 and the shoulder portion 124c of the bore 124. Preferably, flushing fluid is prevented from flowing between first diameter portion 124a and the piston portion 7a, such as with a seal 126.
The variable volume chamber 140 may contain flushing fluid, which is supplied via a flow passage 142 that connects a first internal passageway 144 that extends through the tool 7 and a second internal passageway 146 that also extends through the tool 7. With respect to the bit 8, the first internal passageway 144 is distally disposed, and the second internal passageway 146 is proximally disposed. Preferably, the second internal passageway 146 provides flushing fluid flow to the bit 8. The flow passage 142 includes an axial flow passage 142a, a first generally radial flow passage 142b, and a second generally radial flow passage 142c. The axial flow passage 142a is disposed radially between the rod portion 7b of the tool 7 and the second diameter portion 124b of the bore 124. The first generally radial flow passage 142b connects the first internal passageway 144 of the tool 7 to a first axial end of the axial flow passage 142a, and a second generally radial flow passage 142c connects a second axial end of the axial flow passage 142a to the second internal passageway 146 of the tool 7. The first and second generally radial flow passages 142b, 142c may extend obliquely or perpendicularly with respect to the axial flow passage 142a and to the first and second internal passageways 144, 146.
The third diameter portion 124d of the bore 124 in the sleeve 122 slidingly receives the rod portion 7b of the tool 7. Preferably, flushing fluid is prevented from flowing between third diameter portion 124d and the rod portion 7b, such as with a seal.
In
The slotting device 100 is advanced, i.e., the guide portion 110 is displaced in the previously drilled hole and the body portion 120 is displaced along with the tool 7, in accordance with the operation of the feeding device 9 and the flow of the flushing fluid along the tool 7 that fills the axial volume chamber 140. The flushing fluid in the axial volume chamber 140 affects on the first and second working pressures surfaces 70 and 72 generating a force in drilling direction D and further on a third working pressure surface 71 generating a force in reverse direction R. Thus the fluid transfers the force that is supplied from the feeding device 9, via the piston portion 7a of the tool 7, to the sleeve 122 of the body portion 120, via the working pressure surfaces 70, 72, and on to the guide portion 110 via the strut 130. But the flushing fluid contained in the axial volume chamber 140 damps transmission to the slotting device 100 of impact stress waves generated by the percussion device 4 of the rock drilling apparatus 1.
In
Preferably, the first generally radial flow passage 142b feeds into the variable volume chamber 140 during the first relationship between the body portion 120 of the slotting device 100 and the tool 7 of the rock drilling apparatus 1. As the piston portion 7a of the tool 7 is displaced relative to the sleeve 122 of the body portion 120 during the second relationship between the body portion 120 and the tool 7, the first generally radial flow passage 142b may feed into the axial flow passage 142a rather than the variable volume chamber 140, thus the primary flow of flushing fluid bypasses the variable volume chamber 140, which is also reduced in capacity. The reduced capacity of the variable axial volume chamber 140 enhances the ability to increase the fluid pressure for dislodging the slotting device 100, and by limiting flushing fluid communication between the variable volume chamber 140 and the flow passage 142, the flushing fluid provides less damping whereby impact stress waves generated by the percussion device 4 may be transmitted to the slotting device 100 to assist in dislodging the guide portion 110 with respect to the previously drilled hole.
Thus, the third diameter portion 124d and the second generally radial flow passage 142c act like a valve to automatically control the position of the sleeve 122 with respect to the tool 7, thereby automatically reacting to feeding resistance of the guide portion 110. When the guide portion is jammed in the previously drilled hole, the flow through the slotting device is blocked and the fluid pressure is increased. This can be monitored by means of one or more pressure sensor. Measuring results can be transmitted from the sensor to the control unit 63 including a control strategy. When a predetermined pressure limit is exceeded the control unit 63 may stop drilling and reverse the feed direction of the drilling machine.
Referring now to
Whereas the variable volume chamber 140 of the first preferred embodiment is in the shape of an annulus, with the tool 7 defining the piston portion 7a, the variable volume chamber 140a according to the second preferred embodiment has a generally cylindrical shape with a sleeve portion 122 and a dampening piston 128 disposed within a flow passage 142 that extends through the tool 7. The flow passage 142 includes at least one axial flow passage 142a (four are shown in
The piston 128 includes an interior portion 128a, an exterior portion 128b, and at least one coupling portion 128c. The exterior portion 128b may comprise two halves the inner surfaces of which include protrusions for forming coupling portions 128c, and wherein the halves are arranged against each other and coupled with the interior portion 128a for example by screw joints. Each coupling portion 128c defines a web that extends between and fixes together the interior and exterior portions 128a, 128b of the piston 128. The interior portion 128a defines a first working pressure surface 80 affecting in drilling direction D and a second working pressure surface 81 affecting in reverse direction R when pressure fluid is arranged to flow through the slotting device 100. During the first relationship, the same pressure affects to the working pressure surfaces 80, 81 having the same surface area, whereby forces affecting the piston 128 are in equilibrium and the piston is positioned in its middle position. The exterior portion 128b slidingly receives the tool 7 and contiguously engages the sleeve portion 122 during the first relationship between the slotting device 100 and the tool 7. There are axial gaps G in drilling direction D and in reverse direction R between the tool 7 and the damping piston 128 so as to prevent mechanical axial contact between them.
When the feeding resistance of the guide portion 110 increases the dampening piston 128 moves in reverse direction R in relation to the tool 7, as shown in
During the normal slot drilling the dampening piston 128 is not in mechanical axial contact with the tool 7. Forces affecting on the pressure working surfaces 80, 81 of the piston 128 ensure that no axial mechanical surfaces between the tool 7 and the piston 128 are against each other. The feed force is transmitted to the piston 128 by means of the fluid in the axial volume chamber 140a. Thereby the transmission of stress pulses to the slotting device is dampened.
Let it be mentioned that it is possible to conduct any other fluid than flushing fluid to one or more axial volume chamber of the slotting device. The fluid can be for example hydraulic fluid led from the feed pump 12, the impact pump 13 or the rotation pump 14. In this embodiment the tool 7 has to be provided with a special fluid channel and an axial volume chamber separated from the flushing system.
It will be obvious to a person skilled in the art that, as the technology advances, the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI2008/050161 | 4/3/2008 | WO | 00 | 9/30/2010 |