The present disclosure relates to drink cups, and particularly to lids for drink cups. More particularly, the present disclosure relates to a lid formed to include a liquid-discharge outlet and liquid-overflow pan near the liquid-discharge outlet.
According to the present disclosure, a liquid container comprises a lid adapted to mate with the brim of a cup. The lid is formed to include a liquid-discharge outlet communicating with an interior region formed in the cup when the lid is mounted on the brim of the cup so that consumers can drink liquid stored in the cup and expelled through the liquid-discharge outlet formed in the lid while the lid is mounted on the brim of the cup.
In illustrative embodiments, the lid includes a central closure formed to include the liquid-discharge outlet and a ring-shaped brim mount arranged to surround the central closure. The brim mount of the lid is configured to mate with the brim of the cup to hold the central closure in a stationary position closing a cup mouth opening into the interior region of the cup and placing the liquid-discharge outlet in fluid communication with any liquid stored in the interior region of the cup.
In illustrative embodiments, the central closure and the surrounding brim mount cooperate to form a ring-shaped low-elevation liquid-retention channel therebetween. The central closure includes an elevated basin formed to include the liquid-discharge outlet. The elevated basin rises upwardly from a floor of the liquid-retention channel and extends above the top edge of the surrounding brim mount.
In illustrative embodiments, the elevated basin is also formed to include a raised liquid-collection region located below the liquid-discharge outlet and above the low-elevation liquid-retention channel surrounding the base of the elevated basin. The elevated basin is also formed to include first and second side-discharge channels. Each side-discharge channel is configured to provide means for conducting any overflow liquid leaking inadvertently out of the container through the liquid-discharge outlet into the raised liquid-collection region formed in the elevated basin downwardly along an exterior surface of the elevated basin into the ring-shaped low-elevation liquid-retention channel.
In illustrated embodiments, the elevated basin includes an upstanding drink spout formed to include the liquid-discharge outlet in a top wall thereof, an upstanding ridge arranged to extend away from the upstanding drink spout, and a raised basin floor arranged to extend between the drink spout and the upstanding ridge to form the raised liquid-collection region. A peak of each of the upstanding drink spout and upstanding ridge and the raised basin floor is arranged to lie above the brim mount.
In illustrative embodiments, the first side-discharge channel is an inclined curved liquid-conducting channel arranged to lie along a first side of the upstanding ridge and formed to include an inlet end communicating with a first side of the liquid-collection region and an outlet end communicating with the liquid-retention channel. The second side-discharge channel is an inclined curved liquid-conducting channel arranged to lie along an opposite second side of the upstanding ridge and formed to include an inlet end communicating with an opposite second side of the liquid-collection region and an outlet end communicating with the liquid-retention channel. The first side-discharge channel winds in a clockwise direction about a vertical central axis associated with the lid from its inlet end to its outlet end while the second side-discharge channel winds in a counterclockwise direction about the vertical central axis from its inlet end to its outlet end.
In illustrative embodiments, the annular floor of the ring-shaped low-elevation liquid-retention channel is provided by an annular radially outwardly extending flange that is coupled to a perimeter edge of the base of the elevated basin and a series of liquid-retention cells aligned with cell-inlet apertures formed in the flange and arranged to extend downwardly from the flange in a direction away from the elevated basin. Any overflow liquid discharged from the elevated basin into the liquid-retention channel will begin to fill these liquid-retention cells that are designed and configured to trap liquid therein to minimize sloshing and splashing of liquid flowing into the liquid-retention channel from higher elevations in the elevated basin.
Additional features of the present disclosure will become apparent to those skilled in the art upon consideration of illustrative embodiments exemplifying the best mode of carrying out the disclosure as presently perceived.
The detailed description particularly refers to the accompanying figures in which:
A liquid container 10 includes a cup 12 and a lid 14 as shown in
As shown in
In an illustrative embodiment, a consumer can drink liquid 26 stored in cup 12 while lid 14 remains mounted on the brim 20 of cup 12 through the liquid-discharge outlet 28 formed in lid 14. In an illustrative embodiment, central closure 16 of lid 14 includes a drink spout 43 formed to include liquid-discharge outlet 28. Drink spout 43 is adapted to be received in the mouth of a consumer desiring to drink liquid 26 stored in cup 12.
As suggested in
An elevated basin 36 included in central closure 16 is formed to include a raised liquid-collection region 40 located below liquid-discharge outlet 28 and above liquid-retention channel 30 and is also formed to include first and second side-discharge channels 41, 42 as suggested in
In illustrated embodiments, elevated basin 36 includes an upstanding drink spout 43 formed to include liquid-discharge outlet 28 in a top wall 43T thereof, an upstanding ridge 44 arranged to lie in spaced-apart relation to and extend away from upstanding drink spout 43, and a raised basin floor 46 arranged to extend between drink spout 43 and ridge 44 to form raised liquid-collection region 40 as shown, for example, in
First side-discharge channel 41 is an inclined curved liquid-conducting channel arranged to lie along a first side 441 of upstanding ridge 44 and formed to include an inlet end 41I communicating with a first side of liquid-collection region 40 and an outlet end 41O communicating with liquid-retention channel 30. Second side-discharge channel 42 is an inclined curved liquid-conducting channel arranged to lie along an opposite second side 442 of upstanding ridge 44 and formed to include an inlet end 42I communicating with an opposite second side of liquid-collection region 40 and an outlet end 42O communicating with liquid-retention channel 30. First side-discharge channel 41 winds in a clockwise direction about a vertical central axis 14A associated with lid 14 from inlet end 41I to outlet end 41O while second side-discharge channel 42 winds in a counterclockwise direction about vertical central axis 14A from inlet end 42I to outlet end 42O as suggested in
In illustrative embodiments, an annular floor of the ring-shaped low-elevation liquid-retention channel 30 is provided by an annular radially outwardly extending flange 38 that is coupled to a perimeter edge of the base of elevated basin 36 and a series of liquid-retention cells 48 aligned with cell-inlet apertures 47 formed in flange 38 as suggested in
Central closure 16 rises upwardly above brim mount 20 and includes an upstanding drink spout 43 that is formed to include a high-elevation liquid-discharge outlet 28 and an upstanding ridge 44 as suggested in
Each of the upstanding drink spout 43 and ridge 44 is crescent-shaped as shown, for example, in
Three potential flow paths of liquid 26 leaking out of liquid-discharge outlet 28 formed in top wall 43T of upstanding drink spout 43 are included in elevated basin 36 as illustrated in
Liquid-retention cells 48 formed in central closure 16 and associated with low-elevation liquid-retention channel 30 as shown, for example, in
This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application Ser. No. 61/510,851, filed Jul. 22, 2012, which is expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5390810 | Stroble et al. | Feb 1995 | A |
5894952 | Mendenhall et al. | Apr 1999 | A |
D437223 | Coy et al. | Feb 2001 | S |
6929143 | Mazzarolo | Aug 2005 | B2 |
8430268 | Weiss et al. | Apr 2013 | B2 |
20020027139 | O'Neill | Mar 2002 | A1 |
20060071008 | Sadlier | Apr 2006 | A1 |
20060180028 | Burchard | Aug 2006 | A1 |
20060255038 | Hollis et al. | Nov 2006 | A1 |
20090272742 | Dybala | Nov 2009 | A1 |
20120024871 | Hundley et al. | Feb 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20130020338 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
61510851 | Jul 2011 | US |