“Not Applicable”
“Not Applicable”
This invention relates generally to drinking vessels and more particularly to devices, e.g., lids, for drinking vessels or drinking vessels including such devices for mixing a liquid agent in the device with a base liquid in the vessel and delivering the mixed liquid to a user.
Various drinking vessels for providing a beverage mixed from a base liquid and a flavoring agent have been disclosed in the patent literature. See for example: U.S. Pat. No. 6,372,270 (Denny); U.S. Pat. No. 7,172,095 (Marshall); U.S. Pat. No. 7,299,936 (Singh et al.); U.S. Pat. No. 8,230,777 (Anson et al.); U.S. Pat. No. 8,657,158 (Snell); Published Application US2003/0072850 (Burniski); Published Application US2006/0021996 (Scott III, et al.); and Published Application US2014/0230659 (Waggonner et al.). Moreover various drinking vessels for providing a mixed beverage are commercially available. Examples of such commercially available vessels are those sold by Coolgear, Inc. under the trade designations Coolgear 20 oz. Aquaburst Bottle, Coolgear 20 oz. Ledge Double Wall Bottle, Coolgear 22 oz. Horizon Bottle, and Coolgear 56 oz. Infusion Bottle. Other such vessels are sold by CamelBak Products, LLC under the trade designations CamelBak Eddy. 75 L, CamelBak Eddy.Insulated, and CamelBak Groove 0.75 L. Still other commercially available vessels are the Thermos 18 oz. Hydration Bottle, the Nalgene MultiDrink bottle and the Brita Hard-Sided Bottle.
While such prior art drinking vessels are generally suitable for their intended purposes, they nevertheless leave much to be desired from one or more of various standpoints, e.g., ability to provide repeated desired concentrations of a mixed liquid or beverage, resistance to backflow into the base liquid, ease of use, simplicity of construction, Thus a need exists for a device for use with a drinking vessel or for a drinking vessel incorporating a device which overcomes the various disadvantages or needs of the prior art. The subject invention does that.
In accordance with one aspect of this invention a device for use with a vessel in which a base liquid is located is provided. The device is configured for dispensing a portion of a liquid agent into a portion of the base liquid drawn from the vessel. The device comprises a spout, an agent chamber and a conduit. The agent chamber is configured for holding the liquid agent therein. The conduit is coupled to the agent chamber and has a free end portion configured to be located adjacent the bottom of the vessel. The spout is coupled to the agent chamber and comprises a mixing space located within the spout and has an agent inlet port and a base liquid inlet port. The agent inlet port and the base liquid inlet port are in communication with the mixing space. The agent chamber comprises a wall portion having a base liquid orifice and a first agent metering orifice therein. The spout is selectively movable with respect to the agent chamber to any one of a first position, a second position, and a third position. The base liquid inlet port is isolated from the base liquid orifice and the agent inlet port is isolated from the first agent metering orifice when the spout is in the first position. The base liquid inlet port is in communication with the conduit via the base liquid orifice and the agent inlet port is isolated from the first agent metering orifice when the spout is in the second position, whereupon base liquid from the vessel can to be drawn through the base liquid orifice and the base liquid port into the mixing space. The first agent metering orifice is in communication with the agent inlet port and the base inlet port is in communication with the conduit via the base liquid orifice when the spout is in the third position to enable a portion of the base liquid from the vessel to be drawn through the base liquid orifice and the base liquid port into the mixing space and to enable a portion of the liquid agent within the agent chamber to be drawn through the first agent metering orifice and the agent inlet port into the mixing space for mixing with the base liquid in the mixing space.
In accordance with some preferred aspects of this invention the agent chamber has a second agent metering orifice and a third metering orifice therein. The second agent metering orifice is of a different size than the first agent metering orifice. The spout is also selectively moveable with respect to the agent chamber to a fourth position. The second agent metering orifice is in communication with the agent inlet port and the base inlet port is in communication with the conduit via the base liquid orifice when the spout is in the fourth position to enable a portion of the base liquid from the vessel to be drawn through the base liquid orifice and the base liquid port into the mixing chamber and to enable a portion of the liquid agent within the agent chamber to be drawn through the second agent metering orifice and the agent inlet port into the mixing space for mixing with the base liquid in the mixing space. The third agent metering orifice is of a different size than the first and second agent metering orifices. The spout is also selectively moveable with respect to the agent chamber to a fifth position. The third metering orifice is in communication with the agent inlet port and the base inlet port is in communication with the conduit via the base liquid orifice when the spout is in the fifth position to enable a portion of the base liquid from the vessel to be drawn through the base liquid orifice and the base liquid port into the mixing chamber and to enable a portion of the liquid agent within the agent chamber to be drawn through the third agent metering orifice and the agent inlet port into the mixing space for mixing with the base liquid in the mixing space.
Another aspect of this invention entails method for dispensing either a base liquid or a mixture of a base liquid and a liquid agent into the mouth of a user from a vessel. The method comprises providing a vessel configured for holding a base liquid therein and a dispensing device is coupled to the vessel. The dispensing device has a spout, an agent chamber, a conduit, a base liquid inlet port, and an agent inlet port. The conduit is in fluid communication with the base liquid in the vessel. The agent chamber is configured for holding a liquid agent therein and comprises a first agent metering orifice in fluid communication with the liquid agent and a base liquid orifice in fluid communication with the conduit. The dispensing device is configured so that a portion thereof can be moved to any one of a first, second and third positions. The base liquid inlet port is isolated from the base liquid orifice and the agent inlet port is isolated from the first agent metering orifice when the portion of the device is in the first position. The base liquid inlet port is in communication with the conduit via the base liquid orifice and the agent inlet port is isolated from the first agent metering orifice when the portion of the device is in the second position. The first agent metering orifice is in communication with the agent inlet port and the base inlet port is in communication with the conduit via the base liquid orifice when the portion of the device is in the third position. A portion of the device is moved from the first position to either the second position or the third position. The user sucks on the spout when the device is in either the second or third position. If the device is in the second position the sucking on the spout draws a portion of the base liquid from the vessel through the base liquid orifice and the base liquid port into the mouth of the user. If the device is in the third position the sucking on the spout draws a portion of the base liquid from the vessel through the base liquid orifice and the base liquid port and also draws a portion of the liquid agent within the agent chamber through the first agent metering orifice and the agent inlet port to mix the portions together and dispense the mixture into the mouth of the user.
In accordance with one preferred aspect of the method of this invention the portion of the dispensing device that is moved is the spout, e.g., the spout can be pivoted to any one of the various positions.
Referring now to the various figures of the drawing wherein like reference characters refer to like parts, there is shown at 20 in
The liquid agent may be in the form of a liquid which is introduced as such into the agent chamber or may be in the form of a frangible or otherwise rupturable canister or cartridge holding the liquid agent for disposition within the agent chamber and when in the chamber the canister or cartridge is ruptured to release the liquid agent into the agent chamber. In any case, once in the agent chamber the liquid agent is available to be mixed with the base liquid from the vessel to provide the user with either the base liquid alone or a mixture of the base liquid and the liquid agent. To that end, the dispensing devices are constructed so that the user can readily establish the concentration of the liquid agent in the mixture from none to a maximum concentration. In particular, in the exemplary embodiments to be described hereinafter, the user can move, e.g., pivot, the spout from a first or “closed” position, where no liquid can be drawn from it, or to any one of a second, third, fourth or fifth “open” positions where liquid is delivered to the user. In a second open position or state the spout only enables the base liquid to be drawn from it and delivered to the user when the user sucks on the spout. In the third open position or state the spout enables the liquid agent and the base liquid to be mixed within the spout in a low or minimum concentration for delivery to the user when the user sucks on the spout. In the fourth open position or state the spout enables the liquid agent and the base liquid to be mixed within the spout in a medium concentration for delivery to the user when the user sucks on the spout. In the fifth open position or state the spout enables the liquid agent and the base liquid to be mixed within the spout in a high or maximum concentration for delivery to the user when the user sucks on the spout.
Before describing the details of the construction and operation of the first exemplary lid assembly 20, a brief description of the drinking vessel 22 is in order. To that end, as shown in the exemplary embodiment of
The top portion of the sidewall of the inner vessel 22B is thickened to form the annular rim 22C of the vessel 22 and is undercut on its outer surface for engagement with the top edge of the outer vessel 22A when the inner vessel is located within the outer vessel. The inner and outer vessels are secured together by a welded, e.g., ultrasonically welded, joint at the interface where the undercut surface of the top portion 22C of the inner vessel meets the top surface of the outer vessel. With the inner vessel 22A located within the outer vessel the outer surface of the inner vessel is disposed opposite and confronting the inner surface of the outer vessel, but is spaced slightly therefrom to form an annular thermally insulating space therebetween. If desired, and if at least the outer vessel is transparent (or if the outer vessel includes a transparent window), a decorative wrap (not shown) or some other decorative item may be located within the insulating space to be visible through the outer wall or window to enhance the aesthetically pleasing appearance of the vessel. While not shown in the drawing, the outer diameter of the outer surface of the portion 22C is slightly greater than the outer diameter of the top edge of the outer vessel to create a slight undercut surface thereat. This undercut surface is arranged to be engaged by an elastomeric ring of the lid assembly to facilitate the releasable securement of the lid assembly on the vessel 22 and to form a good liquid-tight interface therebetween.
Turning now to
Turning now to
The spout is best seen in
The base liquid inlet port 52 is configured to cooperate with a base liquid metering orifice (to be described later) forming a portion of the agent chamber to enable a portion of the base liquid to be drawn from the vessel 22 into the spout through passageway 56 to the mixing space 48 and hence into the user's mouth when the spout is pivoted to any one of the second, third, fourth and fifth open positions or states and the user sucks on the spout. The agent liquid inlet port 54 is configured to cooperate with any one of three liquid metering orifices (to be described later) forming a portion of the agent chamber 28 to enable the liquid agent to be drawn from the agent chamber into the spout through passageway 58 to the mixing space 48 for mixing with the base liquid delivered thereto by the passageway 56 and hence into the user's mouth when the spout is in any one of the heretofore mentioned third, fourth or fifth open positions and the user sucks on the spout.
The agent chamber 28 basically comprises the heretofore identified recess portion 40, an annular wall 60, and a cup-shaped base 62. The annular wall 60 projects downward from the undersurface of the top wall 34 and surrounds the recess portion 40. The outer surface of the annular wall 60 includes an external helical thread 64. The cup-shaped base 62 is of circular profile and includes an internal helical thread 66 to screw onto the thread 64 on the annular wall 60. A tubular projection or collar 68 projects downward from the center of the cup-shaped base and serves as the means for mounting the conduit or straw 32 to it. The conduit or straw 32 is a tubular member of sufficient length such that when it is mounted on the collar 68 the free end 70 (
As mentioned earlier the agent chamber includes a metering orifice for the base liquid to pass therethrough into the base liquid inlet port 52 of the spout, and three metering orifices for the liquid agent to pass therethrough into the agent liquid inlet port 54 of the spout. In particular, as best seen in
The upper wall 40 of the agent chamber 28 also includes three liquid agent orifices 84, 86 and 88 for the liquid agent to pass therethrough to establish the concentration of the liquid agent delivered to the mixing space in the spout. The liquid agent metering orifice 84 is of the smallest diameter, e.g., 0.04 in. The liquid agent metering orifice 88 is of the largest diameter, e.g., .06 in and the liquid agent metering orifice 86 is of intermediate diameter, e.g., 0.075 in. The elastomeric member 74 on the top surface of the upper wall of the agent chamber 28 includes three holes in it. Each hole is axially aligned with a respective one of the orifices 84, 86 and 88 and is of a coextensive size. As best seen in
The liquid agent metering orifice 84 is arranged to be in fluid communication with the agent inlet port 54 when the spout is in the third open position, such as shown in
The metering orifice 86 is arranged to be in fluid communication with the agent inlet port 54 when the spout is in the fourth position, such as shown in
The metering orifice 88 is arranged to be in fluid communication with the agent inlet port 54 when the spout is in the fifth position, such as shown in
As best seen in
The pivotable mounting of the spout 26 within the recess 40 is achieved by means of a pair of notches 104 (
With the spout pivotably mounted in the recess 40 as described above the peripheral surface of the bottom portion 42 of the spout contiguous with the base liquid inlet port 52 forms a good fluid-tight seal with the portion of the elastomeric sealing member 74 surrounding the slot 76 irrespective of the angular position of the spout. Moreover, the portion of the mesa 80 of the elastomeric sealing member 78 surrounding the hole 82 forms a good fluid tight seal between the upper wall 40 of the agent chamber 28 and the cup-shaped member 62 forming the bottom wall of that chamber. Thus, when the spout is in any one of the second, third, fourth or fifth open positions the base liquid from the conduit 32 will be enabled to flow into the base liquid inlet port 52 of the spout from the base liquid metering orifice 72, without leakage into the interior of the agent chamber 28. The peripheral surface of the bottom portion 42 of the spout contiguous with the liquid agent inlet port 52 forms a fluid-tight seal with the elastomeric member 74 surrounding the openings in that seal which are aligned with the liquid agent metering orifices 84, 86 and 88. Thus, when the spout is in any one of the third, fourth or fifth open positions the liquid agent from the agent chamber 28 will be enabled to flow directly into the base liquid inlet port 54 of the spout. When the spout is in the first or closed position, the base liquid inlet port 52 of the spout will be isolated from the base liquid metering orifice 72 and the liquid agent inlet port 54 will be isolated from each of the liquid agent metering orifices 84, 86 and 88, so that no liquid can flow into the spout.
As should be appreciated by those skilled in the art the use of the sealing member 74 renders tolerances between the spout and the agent chamber unimportant, so long as the sealing member 74 is of sufficient durometer to form good liquid-tight seal surrounding the interface of the inlet port 54 and the liquid agent orifices 84, 86, and 88. Such action provides a continuous path for the liquid agent to flow into the spout while preventing its leakage out of that interface. Similarly, the sealing member 78 ensures that the base liquid can flow directly from the conduit 32 into the base liquid inlet port 52 without leakage into the liquid agent chamber so long as the sealing member 78 is of sufficient durometer to form good liquid-tight seal surrounding that liquid path through the agent chamber when the cup-shaped member 62 is screwed onto the annular wall 60.
The liquid agent chamber 28 is arranged to be filled with the liquid agent by means of a filling portal 108. That portal is best seen in
The heretofore identified cap 30 serves to close off the inlet portal 108 when it is not in use to fill the agent chamber. The cap 30 is best seen in
As best seen in
In order to close off the vent holes 126A and 126B when the lid assembly is in its closed position or state, to thereby prevent any leakage of liquid through those vent holes, the spout 26 includes a pair of nubs or projections 128 (
In accordance with one preferred aspect of this invention and in the interest of simplicity of construction (e.g., a low parts count), ease of manufacturing and assembly, the elastomeric member 124 forms one portion of an integral elastomeric member 130 (
The use of a vessel on which a lid assembly 20 is mounted will now be discussed. To that end, the user removes the lid assembly 20 from the vessel 22, if it was previously on the vessel, by pulling on a tab 136 (
Should the user wish to drink a mixture of the base liquid and the liquid agent wherein the mixture has the minimum concentration of the liquid agent in it, all that the user has to do is to pivot the spout to the third (open) position and then suck on the free end of the spout. With the spout in the third position the base liquid inlet port 52 of the spout is in fluid communication with the base liquid orifice 72 via the slot 76, and the liquid agent inlet port 54 is in fluid communication with the small liquid agent metering orifice 84. Accordingly, the suction produced by the user will draw the base liquid into the conduit from whence it will flow into the inlet port of the spout. From there the base liquid will flow through the passageway 56 to the mixing space 58. At the same time a portion of the liquid agent within the agent chamber 28 will be drawn through the liquid agent metering orifice 84 into the liquid agent inlet port 54 of the spout from whence it will flow through the passageway 58 to the mixing space. Accordingly, the small amount of liquid agent will mix with the base liquid in the mixing space and that mixture will pass out through the free end of the port into the user's mouth.
As should be appreciated by those skilled in the art, because the spout is double barreled (i.e., has separate or discrete passageways 56 and 58 for the base liquid and the liquid agent, respectively) and has a mixing space located immediately adjacent the free end of the spout, the flavoring agent and the base liquid are not mixed until they reach the mixing space, which is remote from the interior of the vessel. Thus, if there is any backflow from the mixing space into the interior of the vessel, there would only be a very tiny amount of liquid agent, i.e., that which entered the mixing space, that could flow back through the conduit into the base liquid in the vessel.
Use of the vessel with the lid assembly 20 to enable the user to drink an intermediate strength mixture of the liquid agent is achieved in a similar manner. To that end, all that the user has to do is to pivot the spout to the fourth (open) position. With the spout in the fourth position the base liquid inlet port 52 of the spout is in fluid communication with the base liquid orifice 72 via the slot 76, and the liquid agent inlet port 54 is in fluid communication with the intermediate size liquid agent metering orifice 86. Accordingly, the suction produced by the user will draw the base liquid into the conduit from whence it will flow into the inlet port of the spout. From there the base liquid will flow through the passageway 56 to the mixing space 58. At the same time a portion of the liquid agent within the agent chamber 28 will be drawn through the liquid agent metering orifice 86 into the liquid agent inlet port 54 of the spout from whence it will flow through the passageway 58 to the mixing space. Accordingly, the intermediate amount of liquid agent will mix with the base liquid in the mixing space and the mixture will pass out through the free end of the port into the user's mouth.
Use of the vessel with the lid assembly 20 to enable the user to drink a maximum strength mixture of the liquid agent is achieved in a similar manner. To that end, all that the user has to do is to pivot the spout to the fifth (open) position. With the spout in the fifth position the base liquid inlet port 52 of the spout is in fluid communication with the base liquid orifice 72 via the slot 76, and the liquid agent inlet port 54 is in fluid communication with the large size liquid agent metering orifice 88. Accordingly, the suction produced by the user will draw the base liquid into the conduit from whence it will flow into the inlet port of the spout. From there the base liquid will flow through the passageway 56 to the mixing space 58. At the same time a portion of the liquid agent within the agent chamber 28 will be drawn through the liquid agent metering orifice 88 into the liquid agent inlet port 54 of the spout from whence it will flow through the passageway 58 to the mixing space. Accordingly, the maximum amount of liquid agent will mix with the base liquid in the mixing space and the mixture will pass out through the free end of the port into the user's mouth.
After the user has used the vessel with the lid assembly on this invention on it to drink from the vessel, all that the user has to do to close the vessel to prevent any leakage of liquid from the spout is to pivot the spout back to the first (closed) position. Should the user wish to clean the vessel and/or the lid assembly, all that is required is to remove the lid assembly from the vessel by pulling on the lid's tab 136.
Turning now to
Turning now to
Turning now to
Turning now to
It should be pointed out at this juncture that the liquid agent that is used by the subject invention to make the mixed liquid e.g., a flavored beverage, need not be initially in liquid form for use in a device constructed in accordance with this invention. Thus, the subject invention contemplates that some ingredient(s), dry or a slurry or a gel or other non-liquid form and from which the liquid agent can be made, can be provided into a device constructed in accordance with this invention, and then made into the liquid agent therein. Then that liquid agent can be provided to the agent chamber. For example, a canister or cartridge containing a dry, e.g., granular agent, which when mixed with water or some other liquid produces the liquid agent, can be disposed in a chamber in a lid assembly constructed in accordance with this invention and then water or some other liquid introduced into that chamber to produce the liquid agent within that chamber, whereupon the liquid agent can be conveyed into the agent chamber. In fact the chamber for producing the liquid agent may in fact be the liquid agent chamber.
As should be appreciated by those skilled in the art, the subject invention provides numerous advantages over prior art devices. For example, it enables one to readily configure the lid assembly to provide a desired intensity or concentration of the liquid agent in a base liquid. Moreover, the mixing is accomplished in the lid assembly, not in the vessel itself. Thus, with one fill of a base liquid in the vessel and an one fill of the liquid agent in the agent chamber, a user can use the invention at different times, each time selecting a desired concentration of the mixed liquid to be delivered. In the exemplary embodiments the concentration of the liquid agent is selectable from one of three discrete concentrations, i.e., low, medium and high. However, those embodiments are merely exemplary of various modifications that can be made to the invention. Thus, the subject invention contemplates providing lid assemblies or other devices configured for providing only a single concentration, two discrete concentrations or three or more discrete concentrations. Moreover the lid assemblies or other devices constructed in accordance with the invention enable one to select a desired liquid agent concentration without requiring any one-way valve or similar mechanism to prevent leakage of liquid agent into base liquid in the vessel. Furthermore, as pointed out above, tolerances between the spout and the agent chamber are unimportant, so long as there is a material of sufficient durometer to form seals surrounding the interface of the ports of the spout and the metering orifices of the agent chamber to thereby provide a continuous path for the liquid agent to flow while preventing its leakage out of that interface. Further still, because of the double-barreled spout the flavoring agent and the base liquid are not mixed until they reach the mixing chamber which is at a location immediately adjacent the user's mouth and remote from the interior of the vessel holding the base liquid the danger of any backflow of the liquid agent into the base liquid is minimized. Further yet, the lid assemblies or other devices constructed in accordance with this invention will work on a vessel irrespective of the orientation of the vessel when the user drinks from it. Thus, the user can drink from the vessel holding it at any orientation, not merely at an orientation above horizontal. All that is required is to hold the vessel at any comfortable orientation, pivot the spout to establish the desired mixture concentration and then suck on the spout to draw the liquid into the mouth. In fact, the construction of the subject invention enables equal flow at all vessel orientations. The lid assemblies and other devices constructed in accordance with this invention also have the advantage of a relatively low parts count, and their construction enables them to be easily disassembled for cleaning and then reassembled for use. Further yet, lid assemblies and other devices constructed in accordance with this invention can make use of a very simple and inexpensive canister or cartridge holding the liquid agent and need not include any valve or other metering mechanism, since the metering to establish the amount of the liquid agent concentration is achieved independent of the canister or cartridge, i.e., it is established by the cooperation of the spout's inlet ports and the agent chamber's metering orifices. Lastly, it should be pointed out that while the above examples of subject invention has been described in the form of a lid assembly, it should be clear that the subject invention also contemplates that the lid assembly or other device can form a part of the drinking vessel itself.
Without further elaboration the foregoing will so fully illustrate our invention that others may, by applying current or future knowledge, adopt the same for use under various conditions of service.
This application is a continuation of and claims the benefit under 35 U.S.C. §120 of U.S. application Ser. No. 14/926,315, filed on Oct. 29, 2015, entitled DRINKING VESSELS INCLUDING DEVICES FOR PROVIDING A MIXED LIQUID THEREFROM. The entire contents of the foregoing application is expressly incorporated herein by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
5065909 | Pino et al. | Nov 1991 | A |
5477994 | Feer et al. | Dec 1995 | A |
5615809 | Feer et al. | Apr 1997 | A |
D408623 | Shaanan | Apr 1999 | S |
6372270 | Denny | Apr 2002 | B1 |
6523711 | Hughes | Feb 2003 | B1 |
7172095 | Marshall | Feb 2007 | B2 |
7299936 | Singh et al. | Nov 2007 | B2 |
8167174 | Berger | May 2012 | B2 |
8191727 | Davies et al. | Jun 2012 | B2 |
8230777 | Anson et al. | Jul 2012 | B2 |
8413844 | Arett et al. | Apr 2013 | B2 |
8550304 | Berger | Oct 2013 | B2 |
8657158 | Snell | Feb 2014 | B1 |
8668106 | Joy et al. | Mar 2014 | B1 |
8672174 | McMullin | Mar 2014 | B1 |
20030072850 | Burniski | Apr 2003 | A1 |
20060021996 | Scott, III et al. | Feb 2006 | A1 |
20100170902 | Britto et al. | Jul 2010 | A1 |
20120305559 | Steininger | Dec 2012 | A1 |
20140230659 | Waggoner et al. | Aug 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20170225855 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14926315 | Oct 2015 | US |
Child | 15499979 | US |