This application claims priority to EP Application Serial No. 15179295.9 filed Jul. 31, 2015, the disclosure of which is hereby incorporated in its entirety by reference herein.
The subject matter of the present invention relates to a drip control device for a boom microphone and a boom microphone fitted therewith.
The term “boom microphone” refers to two types of microphones. The first type, which is not the subject matter of this invention, is positioned on a large “gallows” arm which, during filming, is held by a second person in such a manner that the microphone always remains outside the frame. The second type to which this invention refers comprises extremely miniaturized microphones that are attached to the end of a long, thin, wire-like structure, where the wire-like structure, the boom, is either part of a so-called headset (headworn microphone) or mounted on the head of the user in such a manner that the microphone on the end of the boom is positioned as closely as possible near the mouth of the user. For practical reasons, positioning the microphone in front of the mouth of the user is not feasible although it would be desirable for acoustic reasons. Applications include theater productions, operetta and musical productions, panel discussions and many other events. The data recorded by the microphone is, as a rule, transmitted via a radio transmitter which is conveniently attached to the body of the user and connected to the microphone, in most cases by means of a cable.
One of the main technical problems associated with the use of this type of boom microphones is the perspiration of the user, especially since microphones in most cases are used during athletic activities or under intense spotlights, and since frequently considerable physical effort on the part of the user is involved. Thus, it can happen that individual beads of perspiration run along the boom and, on its end, reach the microphone, the opening of which, though located on the side facing away from the boom, is usually smaller than the bead of perspiration so that, because of capillary effects, it is highly possible for the beads of perspiration to enter into the microphone, which in this case generally leads to the destruction of the microphone.
As a prophylactic measure, the state of the art provides for the use of small disks which are usually pushed from the back surface of the boom microphone along the boom up to a short distance from the microphone and which are intended to serve as drip control devices since they prevent the beads of perspiration from continuing along their path, and once a sufficiently large bead has accumulated, cause the beads of perspiration to drip off. The material used for these drip control disks is generally silicone.
In spite of this general use, the success of these drip control disks leaves much to be desired, and perspiration continues to flow into the microphone and often enough causes the microphone to be destroyed.
Thus, the problem to be solved by the present invention is to remedy this situation and to provide a drip control device which works considerably more reliably than the devices known from the prior art.
According to the present invention, this problem is solved by the features mentioned in the present claims. In other words, by using a drip control device which, in the direction of the boom, is considerably larger than in the direction perpendicular to the boom (the radial direction) may solve the problem. This drip control device preferably consists of a silicone thread that is wound around the boom or of an elongated hollow cylinder with a specially structured outer jacket surface.
As a result of this drip control device which is reminiscent of a helical spring or a cylinder with surface protrusions, a drop of considerable size is formed so that, during the movement of the user, the inertial forces which promote dripping are by far greater than the surface forces which promote a continued flow of the drop along the boom, thus reliably preventing the drop from continuing its flow. In addition, because of the elasticity of the silicone thread, mounting and dismounting is considerably simplified and the replacement, which is desirable for hygienic reasons but which is often neglected because the replacement is cumbersome, can now be done easily and therefore frequently.
The invention will be explained in greater detail based on the drawing. As can be seen:
As can be seen,
In the lower end region of the silicon screw 5, which is adjacent to the microphone 3, a bead of perspiration 6 is indicated, which bead, on the silicone screw 5, has grown to a considerable size due to the helical and/or loose screw-like structure of said screw and which, because of its high mass, much more readily tends to drip off instead of continuing to run along the boom into region 4 of the boom. It should be noted that the proportions of the microphone 3 relative to the bead of perspiration 6 accurately reflect the proportions actually encountered with boom microphones 1 which are the subject matter of the present invention.
With respect to the conventional prior-art drip control disks, the extension in the radial direction (best described by the diameter relative to the fictitious axis of the boom 2) is comparable to the dimensions of the diameter D of the drip control device according to the present invention; however, because of the character of the small disk, the extension in length is reduced to nearly zero and significantly shorter than D. This has the effect that only very small droplets are formed which tend “to climb over” the disk and subsequently continue to run along the boom 2 until they reach the microphone. The physical cause of this phenomenon is that the surface forces are greater than the inertial forces.
The use of a silicone thread or band that is “wound” around the boom 2 is a very simple and inexpensive variation; it is, of course, also possible to use structures which by nature have, broadly speaking, (essentially) the shape of a hollow cylinder and a radial cut 7 across the entire length and thickness (
The material to be used can be silicone identical to that of the prior-art drip control disks. It is also possible to use a hydrophilic, or at least a non-hydrophobic material, as the surface material of such a drip control structure, especially in combination with a hydrophobic boom surface, in particular, in the region 4 between the drip control device 5 and the microphone 3, so as to ensure the formation of large, and therefore readily dropping, drops. An absorptive material does not offer any better results since, given the normal accumulation of perspiration, the absorptive capacity is rapidly exhausted and subsequently does nothing to contribute to the performance.
Number | Date | Country | Kind |
---|---|---|---|
15179295.9 | Jul 2015 | EP | regional |