Not Applicable
The invention relates generally to infusion systems, and more particularly, to a drip rate monitor for use with an intravenous infusion set.
An intravenous infusion set is used to provide liquid intravenously to patients. An elevated drip-chamber is typically provided as part of a gravity feed administration set with tubing connected to the top and bottom of the chamber. The administrator of the fluids can control the flow of fluids by adjusting a clamp attached to the tubing that pinches the tubing thereby restricting the flow.
After the drip rate of the fluid is initially set, patient movement can adversely affect the flow. The tubing may become kinked by the patient rolling onto the tubing, thus reducing the flow of fluids. Excessive movement by the patient may cause changes to the resistance dynamics of the tubing causing a steady stream of fluid to pass through the tube into the drip-chamber rather than at the desired drip rate. Such changes in the flow of fluid when falling outside an acceptable range of drip rate variation can be dangerous to the patient, particularly when the change goes unnoticed for a length of time.
There are a number of devices that control the flow of fluids by mechanically adjusting the amount the tube is pinched based on a variety of factors. However, these devices are complicated, bulky and expensive. Further, if there is a mechanical malfunction or power source failure, there is no alarm to alert the administrator. Furthermore, none of the existing devices adequately alert the administrator of unacceptable variations in the drip rate of the fluids without first completely shutting down the flow. Accordingly, there is a need for a compact apparatus for monitoring and detecting unacceptable variations in the drip rate in a drip-chamber and alerting the administrator by sounding an audible signal.
In accordance with the present invention, there is provided an apparatus for monitoring the drip rate of an infusion fluid being administered by an intravenous infusion set. The apparatus comprises a housing, drop sensor, alarm and processor. The housing is attachable to a drip chamber, and the drop sensor is positioned in the housing to detect drops of the infusion fluid being administered by the intravenous infusion set. The processor determines a first amount of time required for the drop sensor to detect a first set of drops of infusion fluid having a predetermined number of drops, determines a second amount of time required for the drop sensor to detect a second set of drops of infusion fluid having the predetermined number of drops, compares the second amount of time to a range of time having a minimum that is less than the first amount of time and a maximum that is greater than the first amount of time, and activates the alarm if the second period of time is not within the range of time.
In addition, the present invention provides a portable apparatus for monitoring the drip rate of an infusion fluid being administered by an intravenous infusion set comprising a housing, flexible member for attaching the housing to a drip chamber of the intravenous infusion set, and a drop sensor positioned in the housing for detecting the drops in a drip chamber. The flexible member is detachable from the housing.
Still further the present invention provides a method of monitoring the drip rate of an infusion fluid being administered by an intravenous infusion set comprising the steps of detecting the drops of infusion fluid being administered by the intravenous infusion unit, determining a first amount of time required to detect a first set of drops of infusion fluid having a predetermined number of drops, determining a second amount of time required to detect a second set of drops of infusion fluid having the predetermined number of drops, comparing the second amount of time to a range of time having a minimum that is less than the first amount of time and a maximum that is greater than the first amount of time, and providing an alarm if the second period of time is not within the range of time.
Other advantages and applications of the present invention will be made apparent by the following detailed description of the preferred embodiment of the invention.
Referring to
Each of raised areas 34 and 36 has a clear section 38 and 40 respectively so that infrared transmitter 20 can transmit infrared light through drip chamber 12 and infrared detector 22 can detect the transmitted infrared light. Clear sections 38 and 40 can be made of acrylic or other suitable clear material. A circuit board assembly 58, on which processor 24 and alarm 26 are mounted, is located inside housing 28. Circuit board assembly 58 has arms 60 and 62 on which infrared transmitter 20 and infrared detector 22 are mounted respectively. Arm 60 is positioned inside raised area 36 adjacent clear area 40, and arm 62 is positioned inside raised area 34 adjacent clear area 38. Circuit board assembly 58 has an aperture 64 through which screw 52 passes and a notch 66 that mates with point 48 to provide a configuration for easy assembly and rigid construction. Electrical connectors 61 and 63 extend from the battery chamber through wall 56 and connect to circuit board assembly 58 to provide power from the batteries (not shown) to circuit board assembly 58.
Drip rate monitor 10 has a switch 68 for turning drip rate monitor 10 on and off, and a switch 70 for selecting the percentage variance in the drip rate allowed, as is explained in detail in relation to
Referring to
A flow chart for implementing the present invention is shown in
It is to be understood that variations and modifications of the present invention can be made without departing from the scope of the invention. It is also to be understood that the scope of the invention is not to be interpreted as limited to the specific embodiments disclosed herein, but only in accordance with the appended claims when read in light of the foregoing disclosure.
This application is related to and claims priority to U.S. Provisional Application Ser. No. 60/426,249, filed Nov. 14, 2002, entitled METHOD AND APPARATUS FOR MONITORING VARIATIONS IN THE FLOW OF FLUIDS THROUGH AN ADMINISTRATION SET, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4432761 | Dawe | Feb 1984 | A |
4509943 | Hanzawa | Apr 1985 | A |
4551134 | Slavik et al. | Nov 1985 | A |
4623331 | Cewers et al. | Nov 1986 | A |
4718896 | Arndt et al. | Jan 1988 | A |
5045069 | Imparato | Sep 1991 | A |
5211626 | Frank et al. | May 1993 | A |
5415641 | Yerlikaya et al. | May 1995 | A |
5609576 | Voss et al. | Mar 1997 | A |
5899665 | Makino et al. | May 1999 | A |
6638263 | Theeuwes et al. | Oct 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20040171994 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
60426249 | Nov 2002 | US |