The invention relates to a drip stopper for preventing the undesired falling of drops during pouring from a bottle, particularly a wine bottle, into a drinking vessel or the like.
The problem of undesired drops during pouring from bottles into glasses is known from the food service industry and the private domain. Frequently, due to a single drop of red wine, an otherwise clean table cloth must be changed. In order to solve this problem, different inserts or attachments in or on a bottleneck have been described in the prior art.
The international patent application PCT/EP 2012/061880 describes an insertion device for drip stoppers and thin-walled drip stoppers, having short thin lamellas for sealing to be used with this insertion device. Even though these drip stoppers serve the intended purpose, it has become apparent that they are difficult to produce and are thus too expensive.
The problem addressed by the invention is that of providing a drip stopper that overcomes the above disadvantages and offers additional advantages.
This problem is solved by the initially described drip stopper with the characterizing features of claim 1.
The drip stopper according to the invention offers the technical possibilities of use in the packaging described below as well as in an insertion device as described in the aforementioned patent application. The drip stopper, designed as one-piece, is made of resilient plastic which is permitted for the use with foodstuff, e.g. PE. An elastic folding device makes it possible that the diameter of the drip stopper can be changed progressively. The drip stopper is thus universally suitable for bottlenecks with different inner diameters, e.g. from 17 mm to 19.5 mm. It is short and can be inserted into other drip stoppers to save space. In addition, it is stackable and can be adjusted to the aforementioned insertion device. It is simple to produce and use, also as a disposable article.
In the following, preferred embodiments shall be described using the attached drawings.
The drip stopper shown in
The upper opening of the pouring-out part 4 is shaped such that a defined pouring-out edge 4 is formed. In the present example, this is achieved by cutting the pipe part at the top at an angle to its axis. Between the pouring-out part 4 and the insertion part 3, a plurality of radially outwardly oriented position elements 6 are arranged which, in the inserted state of the drip stopper, rest on the upper edge of the bottleneck, thus delimiting the insertion depth. At the lower end section of the insertion part 3, a plurality of guide elements 7 are attached through molding. They are oriented downward obliquely to the axis of the insertion part 3 and facilitate the accurate insertion of the drip stopper in narrower bottlenecks.
On the side opposite of the pouring-out edge 5, the substantially cylindrical wall of the pipe part has a nook-shaped recess 8 which extends in axial direction over the entire length of the pipe part and is formed by two side walls 9 and a rear wall 10. As shall be explained in the following using
The rear wall 10 is tensioned and slightly bent toward the axis of the insertion part 3. The tilting side walls 9 are forced to position themselves between the rear wall 10 and the outer wall. Inevitably, the rear wall 10 is also radially pulled outward, as can be seen in
The force required to insert the drip stopper in the bottleneck generates a tension in the insertion part 3 as well as in the side walls 9 and the rear wall 10 of the folding zone 8. The functioning of the sealing is thus based on pressure and counter-pressure generated between the insertion part 3 and the folding zone 8 due to the narrowing when the drip stopper is pushed into the bottleneck. The angle adjustments between rear wall 10, side walls 9, and insertion part 3 determine, how and in which direction the side walls 9 must move, when the insertion part 3 is narrowed.
In order to ensure this function, primarily the pressing against the inner side of the bottleneck, it is necessary that the front edges 11 and the inner edges between rear wall 10 and the side walls 9 are able to transfer tension forces between the adjacent areas. In other words, they must not be bent so sharply that they can be folded free from tension. Preferably, this is achieved in that the edges have a curvature radius of a few millimeters.
Due to the narrowing of the insertion part 3, the folding zone 8 is tensioned, while this tension simultaneously presses the insertion part 3 everywhere and evenly against the bottleneck, thus generating a seal. As a result, no wine can penetrate between insertion part 3 and bottleneck.
Wine can also not flow through the area of the folding zone 8 because this is prevented by the backwards flowing air. In addition, if poured correctly, the wine only flows in the lower area of the passage.
The drip stoppers can be stacked by inserting one into another to save space. In order to make this possible, the following is provided:
The pouring-out part 4 has thinner walls than the insertion part 3. The inner diameter of the pouring-out part 4 corresponds approximately to the outer diameter of the insertion part 3. As a result, on the wall inner side between the pouring-out part and the insertion part, a continuous recess is created in the area, in which the position elements 6 are attached on the outside through molding. In the area of the pouring-out part 4, on the same level with the upper edge of the folding zone 8, a support is molded on the inside. The lower area of the insertion part is tapered in a short section in order to facilitate the insertion into the bottleneck. For the same length as said tapering, the folding zone 8 is omitted. The guide elements 7 are arranged such that they are located in the stack on the side of the folding zone 8 and the support. Therefore, when the drip stoppers are inserted into one another, the insertion part 3 of the upper drip stopper sits on the folding zone 8 and the support of the lower drip stopper. When stacked, a drip stopper only takes up space that is equal to the length of the insertion part 3.
The drip stopper is made of resilient, tough, hydrophobic plastic, e.g. PE.
There are several possibilities for designing the folding zone. For example, an inward bulge can be formed instead of the side walls and the rear wall. The principle remains the same.
The packaging comprises a decorative, flat cardboard box with a folding lid, similar to a box of chocolates. In the interior, there is a foil 20 which is downwardly deep-drawn, having a flat surface. This foil 20 comprises a plurality of annular indentations as staking space 21, in which drip stoppers 1 can be stored individually or preferably stacked with the pouring-out parts 4 on top.
The outer diameter of this stacking space 21 corresponds approximately to the outer diameter of the circle of the end sections of the position elements 6. An also deep-draws column 22 if formed in the center of the stacking space 21, said column 22 being adjusted, at some distance, to the inner contours of the drip stopper 1. The column serves as an orientation element.
The drip stoppers 1 are thus oriented and stacked in the stacking space 21 at a depth, where they cannot be touched by fingers, i.e. a gap is formed between the surface of the packaging and the pouring-out edge 5 of the topmost drip stopper 1. The stacking space, in which the drip stoppers are located, is smaller than the thickness of a finger.
In the stack, the upper drip stopper 1 sits in the pouring-out part 4 of the corresponding subjacent drip stopper 1. The inner diameter of the pouring-out part 4 of each of the subjacent drip stoppers 1 corresponds, as mentioned before, approximately to the outer diameter of the insertion part of the next drip stopper 1 above, and so the upper drip stopper is held slightly by the subjacent drips stopper 1.
In the lower area, the indentations in the foil 20 are designed so as to be narrower than in the upper area. The lower area of the indentation is adjusted to the drip stopper such that the position elements 5 of the lowermost drip stopper are slightly clamped. Since, as a result, the drip stopper is pressed against the packaging, and the upper drip stoppers are held by the corresponding subjacent ones, there is no danger that the stack can slide out of the packaging, even if it is turned on its head.
The insertion device 25 shown in
For removal from the packaging and insertion in the bottleneck, the insertion tool is gripped by the handle and the push part is guided into the annular indentation of the packaging, i.e. into the stacking space 21. In the indentation, a drip stopper 1 points upward with its pouring-out part 4. The pipe, having a short expansion in the lower section, is pulled over this pouring-out part 4. The pipe clamps the pouring-out part 4 of the drip stopper and holds it tight by pressing it together. Simultaneously, the circumference of the insertion part 3 of the drip stopper 1 is becoming smaller, and so it can come loose from the lower drip stopper. The pipe (handle) is lifted with the clamped pouring-out part 4. Now the drip stopper with the insertion device 25 is pressed into the bottleneck until the position elements 6 are positioned on the edge of the bottleneck. The drip stopper 1 is now securely positioned in the bottleneck.
Due to the pressing into the bottleneck, the diameter of the drip stopper 1 as well as the diameter of the pouring-out part 4 becomes smaller. The pouring-out part 4 thus comes loose from the insertion device 25. The insertion device 25 can be lifted and placed into the packaging, or a new drip stopper can be collected and inserted in a bottleneck.
In a different version, the pipe is supplemented by a flat section in the receiving space for the pouring-out part 4, said flat section being located in the interior of the insertion part 3, when receiving the drip stopper, and pressing slightly against the rear wall 10. This flat section can extend to the lower end section of the insertion part 3. This version is advantageous with a very short pouring-out part. Of course, the deep-drawn packaging foil 20 is adjusted.
Number | Date | Country | Kind |
---|---|---|---|
0123/15 | Feb 2015 | CH | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/050625 | 1/14/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/124365 | 8/11/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
184315 | Armstrong | Nov 1876 | A |
2272549 | Deschner | Feb 1942 | A |
2317046 | Fleming | Apr 1943 | A |
2649090 | Parsons | Aug 1953 | A |
2750063 | Opsitnik | Jun 1956 | A |
2763402 | Livingstone | Sep 1956 | A |
2848145 | Livingstone | Aug 1958 | A |
2908426 | Goldstein | Oct 1959 | A |
3217935 | Burt | Nov 1965 | A |
4222504 | Ackerman | Sep 1980 | A |
4501361 | Rose, Jr. | Feb 1985 | A |
5435467 | Ekkert | Jul 1995 | A |
7097076 | Giblin | Aug 2006 | B1 |
7407067 | Kerkhof | Aug 2008 | B2 |
8091746 | Gotler | Jan 2012 | B2 |
8459513 | Harrower | Jun 2013 | B2 |
20170320641 | Geiger | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
1020238 | Sep 2003 | NL |
Number | Date | Country | |
---|---|---|---|
20180009568 A1 | Jan 2018 | US |