The present invention relates to an impact-driven threaded nail that is driven into various materials by being hit with a hammer or the like, and that is used, for example, to fix the materials to each other.
A nail constituted by forming a head at an end of a shank having a pointed tip at an opposite end of the shank, the nail being generally called a round nail, is widely used as means for fixing, for example, wood materials to each other. There are also used a nail including a helical thread, which is called a screw nail, and a nail including ring-shaped projections formed on a shank, which is called a ring nail. In addition, threaded nails screwed into materials by employing a tool, such as an electrical screwdriver, are further used in many cases.
The round nail is driven into a material by hitting a nail head with a hammer, for example. Because the tip is pointed, the material such as a wood material, for example, into which the round nail is driven, is elastically deformed by the action of a wedge, and the shank is forced to thrust into the inside of the material. Hence the shank is fixedly held by elasticity of the material while undergoing gripping pressure. The round nail can be comparatively easily driven into woods or the likes. However, attachment strength of the round nail is given only by frictional resistance force under the gripping pressure due to the elasticity of the material, and the round nail is held in the material by frictional force. Therefore, the round nail has the problem that holding force is not so large and is apt to loosen. Furthermore, when pulling out the round nail, a special nail puller has to be used, and the surface of the material to which the round nail has been attached may be damaged.
The so-called screw nail includes a pointed tip in the form of a quadrangular pyramid, and a shank having an outer circumference along which helical ridges and grooves are formed in multiple threads. By hitting a head of the screw nail with a hammer, the screw nail is forced to thrust into woods, for example, while the shank is caused to rotate. Because the helical ridges and grooves are formed along the outer circumference of the shank, resistance against force in a pulling-out direction is large, and high holding force is obtained.
The so-called ring nail includes a pointed tip in the form of a quadrangular pyramid, and a shank having an outer circumference on which ring-shaped projections or recesses are formed. When the ring nail is driven into a material, the material is pushed to spread outward by outer circumferential portions of the rings. After being driven, when the ring nail is subjected to a pulling-out action, the outer circumferential portions of the rings come into, due to a restoration phenomenon of the material such as a wood material, a state caught by the restoring wood, and holding force is generated. The holding force is larger than that obtained with the round nail, but it is not so large.
On the other hand, the screw nail provides larger holding force than the round nail because, when the screw nail is driven into a material, it is forced to thrust into the material while rotating about a shank axis, and is fixedly held by engagement between a screw and the material. However, the screw nail has the problems that the screw nail is slightly pulled back even with a low load, and that there is a difficulty in entirely pulling out the screw nail and removing the attached material.
The threaded nail (see paragraph [0002]) driven into a material by employing an electrical screwdriver, for example, is generally called a coarse thread. The coarse thread is the so-called half-thread screw that includes a head having a cross (+)-shaped recess formed to allow screwing by the electrical screwdriver, and a shank in which a portion of the entire length of the threaded nail closer to the head remains in the form of an element shank without being threaded, and in which a single-thread screw with a lead angle of about 20° is formed over the remaining shank portion from the above portion up to a tip. Thus, that type of threaded nail is intended to obtain higher attachment strength than the round nail, the screw nail, and the ring nail when used to attach wood materials to each other (see
In trying to attach an attached material, which is a wood material or the like, to an underlying material, which is also a wood material or the like, with the above-mentioned type of threaded nail by employing the electrical screwdriver, for example, at a time when the threaded nail is screwed into the attached material from its surface and a tip of the threaded nail is just going to be screwed into the underlying material after penetrating through the attached material, the nail tip does not immediately come into the underlying material while the threaded nail advances relative to the attached material with continued rotation. Thus, due to the so-called time lag, the threaded nail is screwed into the underlying material in a state that a gap is generated between the underlying material and the attached material. To cope with the above-mentioned problem, the coarse thread is formed as the so-called half-thread screw without forming the thread over the entire length of the shank up to the head. Accordingly, it can be said that, even though high holding force relative to the underlying material is obtained with the threaded portion, the threaded portion is not present in a region corresponding to the attached material, and the attachment strength of the attached material with respect to the underlying material, which has been attached with the above-mentioned type of threaded nail, is at a level obtained with holding only by the driven head of the threaded nail.
Aiming to solve the above-described problems with the related-art nails, the inventor has developed an impact-driven threaded nail that includes a threaded portion formed in a shank, and has gained Japanese Patent (see Patent Literature (PTL) 1 denoted below). The patented impact-driven threaded nail has succeeded in significantly solving the problems with the related-art nails.
The threaded nail disclosed in PTL 1 is easier to be driven into and pulled out from a material than the related-art nails, and provides larger attachment strength than the other types of nails because the threaded portion bites into the material. However, the inventor has found that, when the attached material is a thin sheet such as plywood, a slight gap is generated between the attached material and the underlying material upon application of external force even in the case of the external force being fairly small. The inventor has further found that, looking at the head of the threaded nail in such an event, the head is slightly rotated in a backward direction, i.e., a loosening direction of the threaded nail. The reason presumably resides in that the patented threaded nail has been developed as an impact-driven threaded nail, and that a lead angle of the thread is set to be fairly large, i.e., about 45°, in comparison with the lead angle of an ordinary screwing threaded nail such that the threaded portion can be screwed into the material while rotating with application of impact. Thus, when external force acts in a direction to pull back the attached material from the underlying material as mentioned above, a portion of the threaded nail, the portion being present within the underlying material, is subjected to force acting on the threaded nail to pull out it from the underlying material, and is caused to rotate in a direction opposite to that when the nail has been driven.
However, when the attached material is pulled back from the underlying material with application of external force as described above, a portion of the threaded nail, the portion being present within the attached material, is caused to rotate forward due to the presence of the thread in that portion. Thus, the portion of the threaded nail present within the underlying material and the portion of the threaded nail present within the attached material are caused to rotate in the opposite directions. In the ordinary case, there are no problems because the threaded nail is an integral member and rotational forces are cancelled out. However, when the thickness of the attached material is small as described above, the threaded nail is rotated in the loosening direction as a whole under an influence resulting from the fact that the rotation force exerted on the nail portion within the underlying material is larger than the rotational force exerted on the nail portion within the attached material. This brings the threaded nail into a state substantially similar to the state where the attached material is pulled back from the underlying material. As a result, a slight gap is generated between the underlying material and the attached material, and the so-called loosening occurs.
Accordingly, an object of the present invention is to provide means capable of giving a preventive effect of preventing an impact-driven threaded nail from being easily rotated in a direction opposed to that when the nail is driven, even with application of external force to between an underlying material and an attached material, the external force acting to cause the above-described loosening of the nail.
To achieve the above object, the present invention is constituted as follows. The present invention set forth in claim 1 provides an impact-driven threaded nail, similar to that disclosed in the above-cited PTL 1, including a threaded portion with a lead angle of about 45°, the threaded portion being formed along an outer circumference of a nail shank that has one end in the form of a pointed tip, and a head having a larger diameter than the nail shank, the head being integrally provided at the other end of the nail shank, wherein a tapered portion of the head on a back-surface side in continuation with the nail shank is formed in a pyramidal shape having a regular polygonal cross-section with a diameter decreasing gradually toward the nail shank. Preferably, the tapered portion has a regular hexagonal sectional shape.
Among screwing threaded nails that are screwed into materials with screwdrivers, for example, there is a nail including a head, often called a flexible head, provided with several ribs on a conical circumferential surface on the back-surface side (see
In addition to the loosening preventive means stated in paragraph 0014, preferably, a groove engageable with a screwdriver for the purpose of pulling out the threaded nail is formed in an upper surface of the head. An outer circumferential portion of the head may be formed in a hexagonal shape allowing the head to be engaged with a spanner instead of or in addition to the groove for engagement with the screwdriver.
Furthermore, preferably, the upper surface of the nail head is chamfered (or rounded in some cases) to be relatively lowered at its outer circumferential portion in order to maximally allow smooth rotation of the threaded nail in a contact region between a hitting hammer and the upper surface of the nail head when hit by the hammer, and to make hitting force received at a central region of the head upper surface.
Moreover, in the impact-driven threaded nail according to the present invention, the lead angle is set to a fairly large value, i.e., about 45°, as described above while the lead angle of the screwing threaded nail is about 20°. Therefore, in trying to rotate and loosen the impact-driven threaded nail with, e.g., an electrical screwdriver to remove the attached material from the underlying material, larger torque needs to be applied corresponding to the larger lead angle. Moreover, when the attached material has a large thickness, the threaded nail having a large entire length has to be used. If the threaded nail is threaded over the entire length, even larger torque is needed in rotating and loosening the threaded nail to remove the attached material from the underlying material. In some cases, frictional resistance force generated in the threaded portion becomes excessively large, thus causing a problem that the so-called “thread breakage” may occur.
One conceivable solution to such a problem is to reduce the frictional resistance force by reducing the number of threads formed in the threaded portion. However, the number of threads is preferably as large as possible because the threaded nail according to the present invention is the impact-driven threaded nail and the hitting force is to be converted to rotating force of the threaded nail.
Another problem is that, in the case of strong external force acting on the underlying material and the attached material in the attached state to separate both the materials from each other, the threaded nail may be torn off at an external-force applied position because the threaded portion is present in both the underlying material and the attached material over such a region as generating tensile force in excess of the allowable tensile strength of the threaded nail in its cross-section corresponding to the external-force applied position.
Accordingly, when the entire length of the threaded nail is very long, regions where an element shank remains in a state without being threaded are preferably provided at multiple positions along the entire length so as to interrupt the threaded portion in the discrete form (as illustrated in
With the impact-driven threaded nail according to the present invention, the tapered portion present on the back-surface side of the nail head in continuation with the nail shank is formed in the pyramidal shape having the regular polygonal cross-section with the diameter decreasing gradually toward the nail shank. Therefore, when the impact-driven threaded nail is driven into a material, regular polygonal surfaces of the nail head are subjected to contact surface pressure due to elastic deforming force generated in the material by making the pyramidal tapered portion buried into the material surface. In addition, when two attached materials undergo external force acting to separate those materials from each other, the regular polygonal surfaces of the nail head are subjected to higher contact surface pressure. As a result, the rotation preventive effect can be obtained.
An embodiment of the present invention will be described in detail below. In an impact-driven threaded nail 1 illustrated in
A threaded portion 5 is formed along an outer circumference of the shank 2. In this embodiment, the threaded portion 5 is divided into upper and lower parts such that an unthreaded shank portion 6 having a circular columnar shape and being not threaded remains between both the parts. An upper threaded portion (on the head side) A has a lead angle of 42°, and a lower threaded portion (on the tip side) B has a larger lead angle, i.e., 45°.
Although the threaded portion is divided into the portions A and B, the upper threaded portion and the lower threaded portion are formed in the discrete form allowing the lead angles in those portions and a length of the unthreaded shank portion 6 to be adjusted such that, when the driving of the nail is progressed, the upper threaded portion is driven in a good matched relation to screwing tracks of the lower threaded portion. The reason why the lead angle of the tip-side threaded portion B is relatively large and the lead angle of the head-side threaded portion A is relatively small resides in causing the upper threaded portion to be closely engaged in the screwing tracks formed by the lower threaded portion, and in ensuring reliable fixing.
The threaded portions A and B are each in the form of a quadruple-thread screw, and thread ridges have a shape as per illustrated in
The thread ridge is shaped, as illustrated in
The head has a shape as per illustrated in
In the illustrated example, the head has a circular shape in a plan view, and a cross (+)-shaped groove is formed in an upper surface of the head. A screwdriver is to be engaged with the groove when the nail is pulled out. Depending on cases, the groove may have a hexagonal, rectangular, or minus (−)-like shape. The upper surface of the nail head is chamfered or rounded in some cases to be relatively lowered at its outer circumferential portion such that the hitting force is maximally concentrated to a central region.
In the illustrated example, the internal angle defining the pyramidal portion of the head, denoted by the Greek letter in
In this embodiment, as illustrated in
In use, the threaded nail according to this embodiment is driven into a material, such as a wood material, by employing a hammer or the like. When driven, the threaded nail is forced to thrust into the material while rotating about the shank axis. The driving of the threaded nail with a hammer or the like, is performed until the head is buried in the material.
In the above fixed state, even when external force acts on the nail in the direction to rotate it, the nail is not easily rotated because the nail head having the pyramidal shape is engaged with an inner surface of a hole that is formed in the attached material by the driving of the nail. As a result, both the materials are hard to loosen. In addition, since the shank includes the multiple unthreaded shank portions, a satisfactory effect can also be obtained against external force acting in a side direction of the threaded nail, i.e., in a shearing direction.
By modifying only the tip of the impact-driven threaded nail into a bombshell-like shape (see
While the above EXAMPLES provide the impact-driven threaded nails each having the thread with the lead angle of about 45°,
As is apparent from the above description, since the impact-driven threaded nail according to the present invention is harder to loosen than related-art various types of nails and threaded nails, it is possible to not only increase attachment strength, but also to carry out work in a manner of, as described in, e.g., paragraph [0021], successively driving and fixing many nails with the aid of an air gun, which is widely used for nailing, instead of employing a hammer or the like. Furthermore, when the impact-driven threaded nail according to the present invention is applied as in EXAMPLE described in paragraph [0036], the modified screw nails can be momentarily driven and firmly fixed using the air gun. It is hence apparent that the impact-driven threaded nail according to the present invention exhibits very good characteristics and can be effectively used in various fields, such as wood working and building.
Number | Date | Country | Kind |
---|---|---|---|
2014-267286 | Dec 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/086154 | 12/17/2015 | WO | 00 |