For simplicity, the same symbol or label is used for the same element for the description of a preferred embodiment of the drive apparatus for bistable displayer and method thereof in accordance with the present invention.
Referring to
According to the display principle of a bistable displayer, the longer the time of applying a potential level, the brighter (or the darker) is the display color of the pixel 10. Therefore, the display drive unit 14 produces a waveform signal 16 based on the gray level 15, and the pulse width of the waveform signal is related to the value of the gray level, and the display drive unit 14 transmits the waveform signal 16 to a corresponding pixel 10 to drive the pixel 10 to be displayed, and an image is formed by transmitting the waveform signal 16 to all pixels 10. The image can be maintained for a specific long time until the screen is updated next time, then initialization unit 12 produces at least one initial potential level 121 and transmits the initial potential to all pixels 10 to drive all pixels 10 to display an initial gray level, and clears the previous screen, and then displays a new image based on the foregoing contents.
Before the initialization unit 12 provides the initial potential level 121 to the pixel 10, a pulse signal 122 can be produced and provided to the pixel 10 if needed as shown in
Vmax−Vref>=Vref−Vmin
The foregoing bistable displayer is an electrophoretic display (EPD) or a bistable liquid crystal display screen. The pixel 10 preferably includes at least one thin film transistor (TFT).
Referring to
The drive apparatus 3 comprises a receiving unit 37, a display drive unit 36 and an initialization unit 35. If a user wants to update a screen of the electrophoretic display, the initialization unit will produce an initialization signal 382 having a pulse component and an initial voltage component (as shown in
Then, the receiving unit 37 receives a gray level data 39 of a user's desired displaying image and converts each gray level data 39 into a waveform signal 381 through the display drive unit 36, and the pulse width of the waveform signal 381 is directly or inversely proportional to the value of the gray level. If the pulse width of the waveform signal 381 is directly proportional to the value of the gray level, it means that the higher the value of the gray level, the longer is the pulse width of the waveform signal 381. For example, the pulse width of the waveform signal of the value 250 of the gray level is greater than the pulse width of the waveform signal of the value 150 of the gray level. Regardless of the previous display gray level of this pixel, the display drive unit 36 produces the waveform signals with the same pulse width based on the same value of the gray level.
Referring to
Step 41: providing at least one initial potential level signal to all pixels;
Step 42: receiving a plurality of gray levels, and each gray level is displayed at every pixel;
Step 43: producing a waveform signal based on the gray level, and its pulse width is related to the value of the gray level; and
Step 44: transmitting the waveform signal to a corresponding pixel to drive the pixel to be displayed.
Referring to
Step 51: using an initialization unit 35 to produce an initialization signal 382, and transmitting the initialization signal 382 to a source of a thin film transistor 32 of all pixel units 31 through a source line 302, and this initialization signal 382 includes a pulse component and an initial potential level component;
Step 52: providing a pulse signal 303, and transmitting the pulse signal 303 to a gate of all thin film transistors 32 through a gate line 301 to control all thin film transistors 32 to enter into an ON state to perform an initialization;
Step 53: using a receiving unit 37 to receive a gray level data 39 of the desired displaying image;
Step 54: producing a corresponding waveform signal 381 based on the value of every gray level data 39, and the pulse width of the waveform signal 381 is directly or inversely proportional to the value of the corresponding gray level data 39; and
Step 55: transmitting all waveform signals 381 to a source of a thin film transistor 32 of the corresponding pixel unit 31 through a source line 302, and controlling all thin film transistors 32 to enter into an ON state, such that every electrophoretic display unit 34 receives the corresponding waveform signal 381 for performing the display.
While the invention has been described by way of example and in terms of a preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Date | Country | Kind |
---|---|---|---|
095126409 | Jul 2006 | TW | national |