This application relates to European Patent Application No. 12165128.5, filed Apr. 23, 2012 and PCT/EP2013/000221, filed Jan. 25, 2013.
The present invention relates to a drive arrangement and more particularly relates to a drive arrangement for driving an electric motor in a motorized seat belt retractor. The seatbelt retractor may function as an electrical belt force limiter.
A motorized seat belt retractor is installed in a vehicle to wind in the slack in a seat belt in the event that the vehicle is involved in a crash situation (known as a pretensioner or pre-pretensioner function). The motorized retractor winds in the slack to pull the seat belt taught against an occupant wearing the seat belt so that the occupant is restrained correctly during the crash situation. The motorized retractor may also be used to limit the force on the seatbelt during or after the crash situation by allowing a payout of the belt to limit the deceleration of the occupant.
During normal vehicle operation, a conventional motorized seat belt retractor is connected to receive power from the vehicle's battery via the vehicle's electrical system. However, in a crash situation, the power supply connection between the vehicle's battery and the motorized retractor may be broken. In this instance, the motorized retractor is not able to function because the motor in the retractor is no longer connected to a source of power.
In other situations, the power supply connection between the vehicles battery and the motorized retractor may not be broken. In this case, the motorized retractor will operate correctly but the pulse of high current drawn by the retractor may disturb other electronic components in the vehicle.
There is a need for a drive arrangement to drive a motorized seat belt retractor so that the motorized retractor operates correctly during a crash situation when the motorized retractor is disconnected from the battery. There is also a need for a drive arrangement to supply a current to a motorized retractor to minimise the high current pulse in the vehicle's electrical system.
The present invention seeks to provide an improved drive arrangement.
According to one aspect of the present invention, there is provided a drive arrangement for driving a motor in a vehicle safety device, the arrangement including a power supply input configured to be connected to a primary power source, an auxiliary power source, a DC-DC converter circuit configured to operate in at least a voltage boost mode, the DC-DC converter circuit having an input that is connected to the auxiliary power source, a motor driver circuit having an input that is connected to an output of the DC-DC converter circuit and to the power supply input, and a control unit connected to the DC-DC converter circuit. The control unit being configured to activate the DC-DC converter circuit to operate in the voltage boost mode to increase the voltage input to the motor driver circuit if the voltage at the input to the motor driver circuit is below a predetermined level.
Preferably, the auxiliary power source is a supercapacitor.
Conveniently, the supercapacitor has a plurality of supercapacitor cells.
Advantageously, a shunt regulator is provided across each supercapacitor cell to regulate the voltage and current applied to each cell.
Preferably, the drive arrangement incorporates a voltage and current limiter to limit the voltage and current input to the supercapacitor.
Conveniently, the DC-DC converter circuit is a bi-directional converter that is also configured to operate in a buck convertor mode which, when activated, reduces the voltage of the primary power source to a lower level and inputs the reduced voltage into the supercapacitor.
Advantageously, the control unit is connected to control switches in the DC-DC converter circuit and the control unit is configured to modulate the switches in the DC-DC converter circuit so that the DC-DC converter circuit operates in either the buck mode or the boost mode in response to the sensed primary power source voltage and the sensed voltage across the supercapacitor.
Preferably, the control unit is configured to receive a signal from a crash sensor which is indicative of a crash situation or an anticipated crash situation.
Conveniently, the drive arrangement is connected to a motor in a motorised seat belt retractor.
Advantageously, the drive arrangement incorporates a speed sensor to sense the speed of rotation of the motor and output a speed signal to the control unit which is indicative of the speed of rotation of the motor.
Preferably, the motor driver circuit is an H-bridge motor driver circuit.
According to another aspect of the present invention, there is provided a seat belt retractor connected to a drive described herein.
Preferably the seat belt retractor is operable as a load limiter.
In order that the invention may be more readily understood, and so that further features thereof may be appreciated, embodiments of the invention will now be described, by way of example, with reference to the accompanying drawings in which:
Referring initially to
The drive arrangement 1 of this embodiment of the invention incorporates a voltage and current limiter 6 which limits the voltage and current drawn from the vehicle battery 5.
The drive arrangement 1 incorporates an auxiliary power source in the form of a supercapacitor 7. The supercapacitor 7 is connected between the positive power rail and the ground power rail of the drive arrangement 1. The supercapacitor 7 preferably includes a plurality of supercapacitor cells that are connected in series. However, in other embodiments, the auxiliary power source is a single supercapacitor or single supercapacitor cell.
The drive arrangement 1 incorporates a voltage boost circuit 8 which is connected in parallel with the supercapacitor 7. The voltage boost circuit 8 is a DC-DC converter which has a positive voltage input 9, a positive voltage output 10, and a ground connection 11. The voltage boost circuit 8 is connected to a control unit 12 which is configured to control the voltage boost circuit 8 to boost the voltage input to the positive voltage input terminal 9 to a higher voltage.
The positive voltage output 10 of the voltage boost circuit 8 is connected to an input 13 of a motor driver circuit 14. The motor driver circuit 14 also incorporates a ground input 15 which is connected to the ground rail of the drive arrangement 1. The motor driver circuit 14 is preferably an H-bridge circuit. The motor driver circuit is connected to the control unit 12 to receive control signals from the control unit 12.
The motor driver circuit 14 incorporates output terminals 16, 17 that are connected in use to an electric motor 18 inside a motorized seat belt retractor (not shown). In one embodiment, the motorized seat belt retractor is configured to function as a load limiter to limit the force on a seatbelt by allowing pay-out of the seat belt to limit the deceleration of an occupant wearing the seat belt.
The supercapacitor 7 is preferably an electric double-layer capacitor (EDLC) which is also known as a supercondenser, pseudocapacitor, or ultracapacitor. The supercapacitor 7 has a relatively high energy density as compared with a conventional electrolytic capacitor. In embodiments of the invention, the supercapacitor 7 is preferably rated at 0.4 F and 16V or greater. In a preferred embodiment, the supercapacitor 7 includes six supercapacitor cells each of 2.75V and 2.4 F. The capacitor voltage is preferably between 2V and 2.75V, depending on the supercapacitor technology and the operating temperature.
Referring now to
The drive arrangement 1 preferably incorporates a current control device 20 which regulates the current supplied to the supercapacitor 7. In one embodiment, the current control device 20 limits the current supplied to the supercapacitor 7 to 2A. The supercapacitor cells 7a-f therefore preferably charge in less than 4 seconds.
In this preferred embodiment, the voltage boost circuit 8 forms part of a combined bi-directional buck-boost DC-DC converter 21. The DC-DC converted incorporates four switches Q1-Q4 that are preferably field effect transistors (FET). The DC-DC converter 21 further includes an inductor L which is preferably of 3.3 pH with an operating current capability of at least 40 A. The DC-DC converter 21 also incorporates a capacitor C which is preferably of 1000 μF with an operating voltage of at least 25V.
Each of the switches Q1-Q4 is connected to the control unit 12 to receive switching signals from the control unit 12 to switch the switches Q1-Q4 on and off. The control unit 12 incorporates at least one voltage sensor which is connected to the positive voltage rail at the positive voltage end of the supercapacitor 7 as indicated by arrow 22 and to the positive voltage rail at the output of the DC-DC converter 21 as indicated by arrow 23. The control unit 12 is also connected to the current control device 20 so that the control unit 12 controls the current control device 20.
The output of the DC-DC converter 21 is connected to the high and low voltage rails of the motor driver circuit 14. The motor driver circuit 14 is preferably an H-bridge circuit which includes four switches Q5-Q8 that are connected in an H-bridge arrangement. The output terminals 16, 17 of the H-bridge arrangement are, in use, connected to a motor 18. A speed sensor 24 is preferably connected to the motor 18 to sense the speed of rotation of the motor 18. The speed sensor 24 is connected to the control unit 12 to transmit a signal indicative of the speed of the motor 18 to the control unit 12.
The vehicle battery 5 is connected to the positive voltage rail of the motor driver circuit 14 via a diode D. The diode D is preferably a power diode which is capable of operating at a current of up to 20 A and preferably at a current greater than 20 A. The control unit 12 is preferably connected to the vehicle's controller area network (CAN) so that the control unit 12 receives control signals from the vehicle's main control system. The control unit 12 is preferably connected to a crash sensor which is configured to sense a crash situation or an anticipated crash situation.
In operation, the control unit 12 senses the voltage provided by the vehicle battery 5 which is primary power source. The control unit 12 also senses the voltage across the supercapacitor 7. In this embodiment, the control unit 12 is configured to switch the switches Q1-Q4 in the DC-DC converter 8 to charge the supercapacitor 7 with a 2A current when the supply voltage from the battery 5 is greater than 12V and the voltage across the supercapacitor 7 is less than 16.5V. The control unit 12 is configured to operate the switches Q1-Q4 so that the DC-DC converter 8 provides a supply line voltage of preferably 12V to the H-bridge motor driver circuit 14.
The control unit 12 modulates the switches Q1-Q4 automatically so that the DC-DC converter circuit 8 operates in either a boost mode or a buck mode depending on the supply voltage from the battery 5 and the voltage across the supercapacitor 7. For instance, when the supply voltage from the battery 5 is less than 12V, the control unit 12 activates the DC-DC converter 8 to increase or decrease the voltage of the auxiliary power source originating from the supercapacitor 7 to maintain a 12V supply voltage to the motor driver circuit 14.
Referring now to
Phase 1: Buck Mode from the Power Supply Line to the Supercapacitor
When the control unit 12 senses that the voltage across the supercapacitor 7 is less than the supply line voltage from the battery 5, the control unit 12 operates the DC-DC converter 8 in a buck mode to charge the supercapacitor 7 with current drawn from the vehicle battery 5. The control unit 12 modulates switch Q4 with a pulse width modulation (PWM) signal to turn switch Q4 on and off. The control unit 12 modulates switch Q3 with a complimentary PWM signal so that switch Q3 acts as a synchronised rectification diode. The control unit 12 turns switch Q1 on and switch Q2 off. The control unit 12 controls the current supplied to the supercapacitor 7 by controlling the duty cycle of the PWM signals applied to switches Q3 and Q4.
Phase 2: Boost Mode from Power Supply Line to Supercapacitor
The control unit 12 turns switch Q4 on and switch Q3 off. The control unit 12 modulates switch Q2 with a PWM signal and modulates switch Q1 with a complimentary PWM signal so that switch Q1 acts as a synchronised rectification diode. The current supplied from the supply line to the supercapacitor is controlled by the duty cycle of the PWM modulation of switches Q1 and Q2.
The control unit 12 controls the DC-DC converter 8 to operate in either phase 1 or phase 2 during normal vehicle operation so that the DC-DC converter 8 automatically switches between buck and boost modes to keep the supercapacitor 7 charged.
If the vehicle is involved in a crash situation, the vehicle is subjected to forces that accelerate and decelerate the vehicle in a manner shown approximately in
The control unit 12 senses the drop in the voltage from the battery 5 and activates the DC-DC converter 8 to operate in a third phase in which the DC-DC converter 8 operates in a buck mode to reduce the voltage from the supercapacitor 7 to the same voltage as the supply line voltage of the battery 5.
Phase 3: Buck Mode from Supercapacitor to Supply Line
The control unit 12 modulates switch Q1 with a PWM signal and modulates Q2 with a complimentary PWM signal so that Q2 acts as a synchronised rectification diode. The control unit 12 turns switch Q4 on and switch Q3 off.
When the voltage from the supercapacitor 7 drops below the supply line voltage, the control unit 12 controls the DC-DC converter 8 to operate in a fourth phase in which the DC-DC converter 8 boosts the voltage from the supercapacitor 7 to the supply line voltage.
Phase 4: Boost Mode from the Supercapacitor to the Supply Line
The control unit 12 turns the switch Q1 on and the switch Q2 off. The control unit 12 modulates switch Q3 with a PWM command and modulates switch Q4 with a complimentary PWM command so that switch Q4 acts as a synchronised rectification diode.
Referring now to
In embodiments of the invention, the auxiliary power source in the form of the supercapacitor 7 provides a source of power to a motorized seat belt retractor in the event that the motorized retractor is disconnected from the vehicle's primary power source. In other situations where the motorized retractor is not disconnected from the vehicle's primary power source, the auxiliary power source provides current to supplement the current provided by the primary power source to the motorized retractor. This helps to limit the current drawn from the vehicle's primary power source. The drive arrangement therefore minimises the current spike produced in the vehicle's electrical system by the operation of the motorized retractor.
The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.
While the above description constitutes the preferred embodiment of the present invention, it will be appreciated that the invention is susceptible to modification, variation and change without departing from the proper scope and fair meaning of the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
12165128 | Apr 2012 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/000221 | 1/25/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/159842 | 10/31/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4655312 | Frantom | Apr 1987 | A |
4840324 | Higbee | Jun 1989 | A |
4874995 | Kawai | Oct 1989 | A |
5005777 | Fernandez | Apr 1991 | A |
5146104 | Schumacher | Sep 1992 | A |
5183291 | Shah | Feb 1993 | A |
5201385 | Browne | Apr 1993 | A |
5398185 | Omura | Mar 1995 | A |
5506775 | Tsurushima | Apr 1996 | A |
5605202 | Dixon | Feb 1997 | A |
5700034 | Lane, Jr. | Dec 1997 | A |
5710699 | King et al. | Jan 1998 | A |
5775618 | Krambeck | Jul 1998 | A |
5777225 | Sada | Jul 1998 | A |
5806008 | Takeuchi | Sep 1998 | A |
5816522 | Krambeck | Oct 1998 | A |
5835873 | Darby | Nov 1998 | A |
5929535 | Fendt | Jul 1999 | A |
6533054 | Fey | Mar 2003 | B1 |
6614129 | Mattes | Sep 2003 | B1 |
6726249 | Yano | Apr 2004 | B2 |
6737819 | Tanji | May 2004 | B2 |
6791463 | Iwasaki | Sep 2004 | B2 |
6827308 | Fujii | Dec 2004 | B2 |
6963497 | Herbert | Nov 2005 | B1 |
7128343 | Ingemarsson | Oct 2006 | B2 |
7482766 | Kuwada | Jan 2009 | B2 |
7503580 | Munch | Mar 2009 | B2 |
7726693 | Koide | Jun 2010 | B2 |
7755213 | Ang | Jul 2010 | B2 |
7766117 | Saito | Aug 2010 | B2 |
7772714 | Hattori | Aug 2010 | B2 |
7775473 | Mori | Aug 2010 | B2 |
7828105 | Odate | Nov 2010 | B2 |
8262129 | Fukawatase | Sep 2012 | B2 |
8620504 | Komata | Dec 2013 | B2 |
8853888 | Khaligh | Oct 2014 | B2 |
8872485 | Kung | Oct 2014 | B1 |
9013125 | Kitanaka | Apr 2015 | B2 |
9061638 | Sievers | Jun 2015 | B2 |
20050179424 | Mayumi | Aug 2005 | A1 |
20050254273 | Soudier | Nov 2005 | A1 |
20060152085 | Flett | Jul 2006 | A1 |
20080246452 | Sievers | Oct 2008 | A1 |
20090066277 | Ang | Mar 2009 | A1 |
20090267580 | Derksen | Oct 2009 | A1 |
20090284080 | Kojima | Nov 2009 | A1 |
20090315401 | Yoshida | Dec 2009 | A1 |
20130124051 | Sievers | May 2013 | A1 |
Number | Date | Country |
---|---|---|
1 314 623 | Feb 2005 | EP |
2 432 097 | Mar 2012 | EP |
WO 2008157389 | Dec 2008 | WO |
Entry |
---|
International Search Report—Jan. 27, 2014. |
European Examination Report—Jan. 21, 2013. |
Number | Date | Country | |
---|---|---|---|
20150088384 A1 | Mar 2015 | US |