The invention relates to a drive assembly for a motor vehicle driven by a plurality of axles. The drive assembly comprises a first driveline for permanently driving a first driving axle as well as a second driveline which, if required, can be connected in order to transmit torque to the second driveline. Such drive assemblies with an optionally connectable driving axle are also referred to as “hang-on” or “on-demand” systems.
Generally, one differentiates between different drive concepts for motor vehicles. There are vehicles with a front engine in which the front axle is driven permanently, with the rear axle being connectable on demand. Furthermore, there are vehicles with a front engine in the case of which, on the other hand, the rear axle is permanently driven, with the front axle being connectable on demand. Finally, there are also known vehicles with a rear engine in which the rear axle is permanently driven, with the front axle, if required, being connected by a hang-on coupling.
From EP 0 466 863 B1 there is known a device for connecting a driveline in a motor vehicle with a transfer case for a plurality of drivelines. One of the drivelines is permanently connected to a drive unit and a further driveline is connectable on demand to the drive unit. For connecting the driveline, there is provided an electronically controllable friction coupling which can be arranged in a transfer case or in a differential drive.
With such drive assemblies with an on-demand driveable driveline, the associated driving axle is not permanently driven in order to keep losses as low as possible. But in the disconnected condition, too, the torque transmitting components of the on-demand connectable driving axis also rotate, which leads to unwanted power losses. It is due to these power losses that motor vehicles driven by a plurality of axles with a hang-on driveline feature a higher fuel consumption than vehicles driven by one axle.
It is therefore the object of the present invention to propose a drive assembly for a motor vehicle driven by a plurality of axles, which generates low drag moments and low power losses, thus achieving a reduction in fuel consumption.
The objective is achieved by providing a drive assembly for a motor vehicle with a drive unit and multiple driven axles, the drive assembly comprising a transfer case which distributes torque introduced by the drive unit to a first driveline and to a second driveline, wherein the first driveline is permanently drivingly connected to the transfer case in order to transmit torque to a first driving axle, and wherein optionally, in addition to the first driveline, the second driveline can be drivingly connected to the transfer case in order to transmit torque to the second driving axle, and a propeller shaft which is arranged in the torque flow between the transfer case and the second driving axle, wherein there are provided first coupling means for coupling and uncoupling the propeller shaft relative to the drive unit, as well as second coupling means for coupling and uncoupling the propeller shaft relative to the second driving axle.
The advantage of the inventive drive assembly consists in that the propeller shaft with all its rotating parts, more particularly also the bearing means for rotatably supporting the propeller shaft, can be disconnected from the drive unit, the special characteristic being that, in the disconnected condition, the propeller shaft is stopped from rotating so that undesirable drag moments cannot occur. By having the drivingly rotatable components stand still it is achieved that the associated bearings in which the components are rotatably supported also stand still. As a result, the friction forces occurring in the disconnected condition of the connectable second driving axle are minimised. The bearings are preferably provided in the form of tapered roller bearings. A further aspect of the inventive drive assembly is that the assemblies which are drivingly connected to the propeller shaft at the input end and at the output end, for example angle drives, can also be uncoupled, which again leads to a reduction in power losses due to a reduction in drag moments and friction forces.
The inventive drive assembly is particularly suitable for motor vehicles with a permanently driven front axle, which would then be the first driving axle, and with an optionally driveable rear axle which would then constitute the second driving axle. However, it is also conceivable that the rear axle of the motor vehicle is permanently driven (first driving axle) and that the front axle is optionally driveable (second driving axle).
According to a preferred embodiment, the connectable second driveline comprises a first angle drive which is arranged in the torque flow between the drive unit and the propeller shaft. The angle drive serves to transmit the torque from a shaft connected to the drive unit to the propeller shaft. In principle, the first coupling means can be arranged in any place within the torque flow between the drive unit and the propeller shaft. To achieve particularly low power losses it is advantageous if the first coupling means are arranged in the torque flow upstream the angle drive. When opening the coupling means, said measure ensures that also the angle drive disposed upstream in the torque flow of the propeller shaft can be uncoupled from the drive, so that both assemblies are standing still. Depending on the installation space conditions in the region of the front axle, the input shaft of the angle drive can be arranged coaxially relative to the first driving axle, but also parallel relative thereto. The same applies to the first coupling means which can be arranged coaxially relative to or parallel to the first driving axle.
The transfer case is preferably provided in the form of a differential drive which comprises an input part and three output parts. The input part is at least indirectly connected to the drive unit and is permanently driven by same. The first and the second output parts, which are drivingly connected to the input part, serve to distribute the torque to the first and the second sideshaft of the associated first driving axle. The third output part which is also drivingly connected to the input part is optionally connectable to the second driveline, wherein, in a connected condition, part of the torque introduced into the differential drive is transmitted to the second driving axle.
The first differential drive preferably comprises a differential carrier in the form of the input part which can be driven by the drive unit. In the differential carrier there are received differential gears which rotate around the axis of rotation together with the differential carrier, as well as sideshaft gears which are rotatably supported on the axis of rotation A and engage the teeth of the differential gears. According to a preferred embodiment, the differential carrier also serves as the third output part of the axle differential. For this purpose, a free end of the differential carrier is drivingly connected to the input part of the first coupling means. Both components, i.e. the differential carrier and the input part of the coupling means are jointly driven by the drive unit. The output part of the first coupling means is connected to an input shaft of the angle drive in a rotationally fixed way, so that, when the coupling means are closed, torque is transmitted to the angle drive and from there to the propeller shaft.
According to a preferred embodiment, the optionally driveable second driveline comprises a second angle drive for transmitting torque from the propeller shaft to the second driving axle. The second angle drive comprises a bevel gear connected to the propeller shaft in a rotationally fixed way and a ring gear which engages same, which is coaxially arranged relative to the second driving axle and introduces torque into the second driving axle. The second driving axle comprises a second differential drive which serves to distribute torque to the two sideshafts. The second coupling means are preferably arranged in the torque flow between the second angle drive and the second differential drive. This is advantageous in that, when the second coupling means are disconnected, the second angle drive is also standing still, as a result of which power losses are kept particularly low. More particularly, it is proposed that the second coupling means comprise an input part and an output part, with the input part being connected in a rotationally fixed way to the ring gear of the second angle drive and with the output part being connected in a rotationally fixed way to the differential carrier of the second differential drive.
The design of the coupling means is generally optional and depends on the installation space conditions and requirements of the coupling means. Both coupling means are externally controlled, with the control signal for opening and closing being generated as a function of the driving conditions of the motor vehicle by an electronic control unit. Coupling means are particularly suitable in the form of form-fitting couplings which, below, will be referred to as clutches, or force-locking couplings, for example friction couplings. More particularly, the following embodiments are conceivable:
The first coupling means are provided in the form of a clutch and the second coupling means in the form of a friction coupling. This embodiment is particularly suitable for applications wherein the installation space available in the region of the first driving axle is small. A reversed arrangement is also conceivable wherein the first coupling means are provided in the form of a friction coupling and the second coupling means in the form of a clutch. According to a further embodiment it is proposed that both coupling means are provided in the form of friction couplings, in which case the speeds between the input parts and output parts can be set accurately, which permits a “soft” switching on and switching off process, with undesirable switching noises being avoided. As an alternative it is conceivable for the first and the second coupling means to be provided in the form of clutches. In this embodiment it is advantageous for an accurate control of the torque transferable to the second driving axle if, inside said second driveline, there is provided a further coupling in he form of an externally actuatable friction coupling.
According to a further embodiment, the second coupling means can comprise a friction coupling and a form-fitting coupling. This is advantageous in that the output part of the friction coupling can be disconnected, so that the drag moments in the friction coupling are again reduced when the form-fitting coupling is in the open condition.
According to yet another embodiment, the first coupling means can comprise a form-fitting coupling and a synchronising unit. The synchronising unit is advantageous in that, prior to being connected, the speeds of the coupling input part and of the coupling output part of the form-fitting coupling are adjusted to one another. This, in turn, leads to a reduction in switching noise.
According to a further embodiment wherein the permanently driven first driving axle constitutes the rear axle and the optionally driveable second driving axle the front axle of the motor vehicle, the transfer case comprises a direct drive which permanently drives the rear first driving axle via a first propeller shaft. Furthermore, the transfer case comprises first coupling means for on-demand connecting the second driveline, wherein the second driveline comprises a second propeller shaft for driving the front second driving axle. The second coupling means preferably comprise a friction coupling. However, it is also possible—more particularly under restricted installation conditions—to use a form-fitting coupling.
According to a preferred embodiment, the propeller shaft is provided in several parts, i.e. it comprises a first shaft portion and a second shaft portion. The two shaft portions can be connected to one another by a constant velocity universal joint which permits angular movements between the two shaft portions. Furthermore, in the connecting regions, there can be provided an intermediate bearing by means of which the propeller shaft can be fixed relative to the vehicle body. If there are provided third coupling means, these are preferably arranged between the first and the second shaft portion.
Preferred embodiments will be described below with reference to the drawings wherein
Initially,
For distributing the torque generated by the drive unit 4 to the first driveline 5 and to the second driveline 7, there is provided a transfer case 12. The transfer case 12 preferably comprises a differential drive 58 which comprises an input part 17 and three output parts 20, 21, 23 which have an equalising effect relative to one another. The input part 17 of the differential drive 58 is provided in the form of a differential carrier which is driven by the drive unit 4. For this purpose, there is provided a ring gear which is connected to the differential carrier in a rotationally fixed way and whose teeth engage a gear of the gearbox 10.
In principle, the first driveline 5 is formed by the differential carrier which, via differential gears rotatably supported in the differential carrier and jointly rotating therewith around the axis of rotation A, transmits torque to the first and the second output part 20, 21. The first and the second output part 20, 21 of the differential drive 58 are provided in the form of sideshaft gears which engage the differential gears. The sideshaft gears are each connected in a rotationally fixed way to an associated sideshaft 13, 14 via which the introduced torque is transmitted to the associated wheels 15, 16.
The third output part 31 is drivingly connected to the second driveline 7, wherein the second driveline 7, if required, can be optionally connected to the first driveline 5 for transmitting torque to the second driving axle 8. The third output part 31 is formed by a free end of the differential carrier, which free end is connected in a rotationally fixed way to an input part of the second driveline 7.
The second driveline 7 comprises, in series, the following assemblies which are drivingly connected with each other for torque transmitting purposes: first coupling means 22, a first angle drive 23, a propeller shaft 24, a second angle drive 25, second coupling means 26 as well as a second axle differential 27 which serves to drive the second axle 8. It goes without saying that the above series of assemblies is not necessarily obligatory. For example, the first coupling means, in principle, can also be arranged behind the first angle drive.
The first coupling means 22 comprise an input part 18 which is indirectly connected to the drive unit 4, more particularly via the differential carrier 17. Furthermore, the coupling means 22 comprise an output part 19 which can be connected to or separated from the input part 18. The output part 19 is connected to the input shaft 28 of the angle drive 23 in order to introduce torque into the angle drive 23 for driving the second driving axle 8. It can be seen that the input shaft 28 of the angle drive 23 is arranged coaxially relative to the axis of rotation A around which the differential carrier 17 rotates. The input shaft 28 is provided in the form of a hollow shaft and is rotatably arranged on the sideshaft 14. The input shaft 28, in turn, is connected, in a rotationally fixed way to the ring gear 29 which engages a bevel gear in order to rotatingly drive the propeller shaft 24. By means of first and second bearing means 33, 33′, the input shaft 28 of the first angle drive 23 is supported so as to be rotatable around the axis of rotation A. The bearing means 33, 33′ are preferably provided in the form of rolling-contact bearings, with other types of bearing not being excluded. It goes without saying that the angle drive 23, which is also referred to as “power take-off unit” or as “power transfer unit” (PTU), could also be arranged on an axis of rotation arranged parallel to the first driving axis 6.
The propeller shaft 24, which is shown diagrammatically, is preferably provided in the form of a multi-component shaft which comprises a first shaft portion 34 and a second shaft portion 35 connected thereto in a rotationally fixed way. Depending on the length of the propeller shaft 24, it is possible to provide an intermediate joint and an intermediate bearing (not shown). It can be seen that the front shaft portion 34 is rotatably supported by two bearing means 36, 36′ and that the rear shaft portion 35 is rotatably supported by further bearing means 37, 37′ around an axis of rotation B.
The second angle drive 25 comprises a driving pinion 38 as well as a ring gear 39 which engages the pinion 38 and constitutes the output. The ring gear 39 is connected to an input part 42 of the coupling means 26 in a rotationally fixed way. The output part 43 of the second coupling means 25 is connected to the differential carrier 44 of the rear axle differential 27 in a rotationally fixed way to allow the transmission of torque to same. In addition to the differential carrier 44, the rear axle differential comprises differential gears which are not described in greater detail and which rotate jointly with the differential carrier 44 around the axis of rotation C, as well as two sideshaft gears which engage the differential gears and which are connected in a rotationally fixed way to the sideshafts 45,46 of the motor vehicle 3. At the ends of the sideshafts 45, 46 there are provided the rear wheels 47, 48. It can be seen that the coupling part 42 is supported by bearing means 49, 49′ so as to be rotatable around the axis of rotation C. In this case, too, the bearing means 49, 49′ are preferably provided in the form of rolling contact bearings, but other bearing means such as friction bearings can also be used.
The special feature of the present invention is that, by means of the first coupling means 22 and the second coupling means 26, the front angle drive 23, the propeller shaft 24 and the rear angle drive 25 can be disconnected when the first and the second coupling means 22, 26 are open. In such a deactivated condition, said assemblies as well as the associated components are standing still, so that power losses due to drag moments and friction are reduced. This, in turn, results in a reduced fuel consumption for those vehicle conditions in which only the first driving axle 6 is driven, with the second driving axle 8 running in a torque-free condition.
Below, there will follow a description of the special features of the individual embodiments.
In the embodiment according to
In the present embodiment, the second coupling means 26 are provided in the form a a force-locking friction coupling. The friction coupling comprises an outer plate carrier constituting the input part 42 to which the outer plates are connected in a rotationally fixed and axially displaceable way, as well as an inner plate carrier constituting the output part 43 to which inner plates are connected in a rotationally fixed and axially displaceable way. By axially loading the plate package consisting of the outer plates and inner plates by an axial setting device (not illustrated), the friction coupling is closed and the speed between the input part 42 and the output part 43 is equalised.
For driving conditions in which only the first driving axle 6 is driven, the first coupling means 22 and the second coupling means 26 are opened so that all drive parts positioned in the torque flow between the two couplings 22, 26 are stationary. In such a driving condition, power losses due to drag moments and friction are minimised. In the case of driving conditions in which both driving axles 6, 8 are to be driven, first the friction coupling 26 is actuated in such a way that the speed of the output part 19 of the clutch 22 is equalised relative to the input part 18 of the clutch. Then the clutch 22 can be closed without generating any switching noise, so that the second driveline 7 is connected. Thus, part of the torque introduced into the transfer case 12 is transmitted via the propeller shaft 24 to the coupling input part 42 of the second coupling means 26. In this condition, it is now possible, by actuating the axial setting device in accordance with requirements, to transmit torque to the rear axle 6. The present embodiment with a dog clutch arranged in the front and with a friction coupling arranged in the rear is advantageous in that in the region of the front axle only a small installation space is required, which has positive effects on packaging.
The embodiment shown in
The embodiment shown in
The embodiment shown in
The embodiment shown in
The embodiment according to
For connecting the second driving axle 8, first the rear clutch 52 is closed, so that the output part 43 of the friction coupling 51 is coupled to the differential carrier 44 and rotates jointly therewith. Then the friction coupling 51 is started by actuating the axial setting device (not shown) in such a way that the input part 18 and the output part 19 of the front clutch 22 are at least partially synchronised. In this condition, it is possible to close the front clutch 22 in a low-noise way so that the second driveline 7 is coupled to the first driveline 5. By actuating, if required, the friction coupling 51, the torque to be transmitted to the second driving axle 8 can now be set.
In the embodiment which is modified as compared to
When the first coupling means 227 are actuated by the actuator (not shown), first the two friction faces are axially resiliently loaded relative to one another, so that the two coupling parts 18, 19 of the clutch 55 are at least partially synchronised in respect of their speeds. In this way switching noises are avoided when subsequently closing the form-fitting clutch 55. In the closed condition of the clutch 55, the second driveline 7 is coupled to the first driveline 5. By actuating the second coupling means 267 as required which, in the present embodiment, are provided in the form of a friction plate coupling, it is now possible to set the torque to be transmitted to the second driving axle 8.
The special feature of the present drive assembly refers to a combination of the first coupling means 228 comprising a form-fitting clutch 55 and a synchronising unit 56, with the second coupling means 268 which are provided in the form of a form-fitting clutch. By ensuring at least partially a constant velocity between the coupling parts 18, 19 of the form-fitting clutch 55 prior to the switching process being carried out by the synchronising unit 56, it is possible to switch at low driving speeds.
The present drive assembly 2 is characterised in that the rear axle is the permanently driven first driving axle 69 and that the front axle is the second driving axle 89 which can be connected when required. It can be seen that the driving unit 49 is built in longitudinally, in contrast to the above embodiments according to
The second longitudinal driveshaft 249 serves to transmit torque from the transfer case 129 to the second driving axle 89 via the second angle drive 259 . The assembly consisting of the second coupling means 269 and the second differential drive 279 is functionally designed like the corresponding rear axle unit according to
In the case of the present drive assembly 2, the first driveline 5 comprises the first propeller shaft 66, and the first angle drive 23 and the first differential drive 58 which serves to drive the rear first driving axle 6. The connectable second driveline 7 comprises the first coupling means 229, the gearing 65, the second propeller shaft 249 and the second differential drive 279 which serves to drive the front second driving axle 89.
The special feature of the present embodiment consists in that, by means of the first coupling means 229 and the second coupling means 26, the gearing 65, the second propeller shaft 249 and the front second angle drive 25 including the coupling input part 42 can be disconnected when the first and the second coupling means 229, 269 are open. In this deactivated condition, said assemblies and components are stationary, more particularly also the bearing in which the rotating parts are rotatably supported, so that power losses due to drag moments and friction are reduced. This in turn results in a reduction in fuel consumption for those vehicle conditions in which only the rear first driving axle 69 is driven and in which the front second driving axle 89 runs in a torque-free condition.
All the above-described drive assemblies are advantageous in that, when the coupling means 22 and 26 are open, the second driveline 7 is substantially stationary, i.e. the first angle drive 23, the associated propeller shaft 24 and the second angle drive 25 no longer rotate. More particularly, in the disconnected condition, also the bearing means 33, 33′, 36, 36′, 37, 37′, 49, 49′ in which said components are rotatingly supported, stand still. In this way, unwanted drag moment and friction losses are minimised, which has an advantageous effect on the fuel consumption of the motor vehicle.
2 drive assembly
3 motor vehicle
4 drive unit
5 first driveline
6 first driving axle
7 second drive line
8 second driving axle
9 coupling
10 switching gear
11 internal combustion engine
12 first differential drive
13 sideshaft
14 sideshaft
15 wheel
16 wheel
17 differential carrier
18 input part
19 output part
22 first coupling means
23 first angle drive
24 propeller shaft
25 second angle drive
26 second coupling means
27 second differential drive
28 input shaft
29 ring gear
30 bevel gear
33 bearing means
34 first shaft portion
35 second shaft portion
36 bearing means
37 bearing means
38 bevel gear
39 ring gear
40 third coupling means
41
42 input part
43 output part
44 differential carrier
45 sideshaft
46 sideshaft
47 wheel
48 wheel
49 bearing means
50
51 friction coupling
52 switching coupling
53 input part
54 output part
55 switching coupling
56 synchronising unit
57 spring means
58 differential drive
59 bearing means
60 gearwheel
61 direct drive
62 coupling housing
63 inner plates
64 outer plates
65 wheel drive
66 propeller shaft
67 bearing means
68 bearing means
A axis of rotation
B axis of rotation
C axis of rotation
Number | Date | Country | Kind |
---|---|---|---|
10 2008 037 886.0 | Aug 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP09/05313 | 7/22/2009 | WO | 00 | 3/24/2011 |