People conveyors such as escalators and moving walkways comprise a chain of conveyance elements (steps or pallets) extending in a conveyance direction between two landing portions. At least one drive element, such as a drive belt, extending along a closed loop is connected to the chain of conveyance elements. The at least one drive element is driven by a people conveyor drive for driving the chain of conveyance elements.
The length of the drive element needs to be adjusted to the length of the people conveyor. Thus, depending on the length of the respective people conveyor, a customized drive element needs to be provided for every people conveyor. Depending on the length of the people conveyor, the drive element may have a considerable length complicating the handling of the drive element.
It would be beneficial to facilitate the manufacture, installation, repair and maintenance of the drive element(s) employed in people conveyors.
Exemplary embodiments of the invention include a drive belt segment for forming a drive belt, in particular an endless drive belt configured to be employed as a drive element in a people conveyor. The drive belt segment has two opposing ends and extends in a longitudinal direction between the two opposing ends. Each end is provided with a connector. Each connector is configured for being connected with a corresponding connector of the same or another drive belt segment for forming the drive belt.
Exemplary embodiments of the invention also include a people conveyor such as an escalator or a moving walkway comprising at least one drive belt according to an exemplary embodiment of the invention. In case of a moving walkway, the moving walkway may be inclined with respect to the horizontal, or it may extend horizontally.
Forming a drive belt by connecting a selected number of drive belt segments according to an embodiment of the invention allows adjusting the length of the drive belt according to the respective needs. Forming a long drive belt from a plurality of shorter drive belt segments facilitates the handling, in particular the transportation to the site of installation. In case a portion of a drive belt is damaged, it is sufficient to only replace the damaged segment(s) instead of the complete drive belt.
A number of optional features are set out in the following. These features may be realized in particular embodiments, alone or in combination with any of the other features.
Each drive belt segment may comprise at least one cord extending in the longitudinal direction and being mechanically connected with at least one of the connectors, in particular with both connectors. The at least one cord, which e.g. may be made of steel or synthetic fibers including aramid fibers, helps to provide the necessary strength of the drive belt segment, in particular with respect to forces acting in the longitudinal conveyance direction. The at least one cord may be embedded in a flexible cover material, in particular including an appropriate plastic material, such as polyurethane.
A plurality of cords may extend parallel to each other for increasing the strength of the drive belt segment.
A sleeve may be mounted to at least one end of the at least one cord. A sleeve in particular may be mounted to each end of the at least one cord, respectively. The sleeve(s) may be fixed to the cord(s) by press-fitting, brazing and/or welding. Each sleeve may have a cylindrical shape, the axis of the cylinder being oriented parallel to the cord, i.e. parallel to the longitudinal conveyance direction.
The connectors may be provided with at least one reception configured for receiving one of the sleeves, respectively. Arranging the at least one sleeve within at least one corresponding reception allows for a strong and reliable connection of the connectors with the cords. Each sleeve in particular may be held within a corresponding reception by a positively-fit coupling.
The at least one cord may extend linearly between the two opposing ends of the drive belt segment.
Alternatively, the at least one cord may extend through the drive belt segment forming a loop. The loop may at least partially extend through the at least one connector for providing a strong mechanical connection between the at least one cord and the at least one connector. The at least one cord in particular may extend multiply through the at least one connector for increasing the strength of the connection between the at least one cord and the at least one connector.
The at least one connector may comprise at least one groove for accommodating the at least one cord. The at least one connector in particular may comprise a plurality of grooves for accommodating a plurality of turns of the loop formed by the cord.
The at least one connector may comprise an opening for accommodating a connection element, such as a connection pin or a connection bolt, for connecting two adjacent connectors. The opening may extend transversely, in particular orthogonally, to the longitudinal conveyance direction. The connection element may be fastened within the opening by an appropriate fastening element, such as a screw, a fastening pin, a fastening ring, or a fastening disc applied to the connection element.
The drive belt segment may be a toothed drive belt segment comprising a plurality of teeth. A drive belt formed from toothed drive belt segments may engage with a correspondingly shaped driving sheave for efficiently driving the drive belt.
The at least one connector may be integrated into one of the teeth or a portion of a tooth, efficiently integrating the at least one connector with the structure of the drive belt segment.
The at least one connector in particular may comprise two portions, which, when, connected with each other, in combination form one of the teeth of the drive belt segment. In an alternative configuration, each portion of the connector may form a separate tooth of the drive belt segment.
In the following, exemplary embodiments of the invention are described with reference to the enclosed figures.
The drive belt 20 is driven by at least one sheave 15 mounted to a rotating shaft 5. A people conveyor drive 9 is configured for driving the rotating shaft 5 and in consequence the sheave 15 and the drive belt 20 via a transmission element 7, which may include a chain or belt.
Balustrades 4 supporting moving handrails 6 extend parallel to the conveyance portion 16.
The moving walkway 1b comprises an endless chain 12 of conveying elements 13 (pallets 13b) moving in a longitudinal conveyance direction in an upper conveyance portion 16 and opposite to the conveyance direction in a lower return portion 17. Landing portions 2, 3 are provided at both ends of the moving walkway 1. In turnaround portions next to the landing portions 2, 3 the chain 12 of conveying elements 13 passes from the conveyance portion 16 into the return portion 17, and vice versa. Balustrades 4 supporting moving handrails 6 extend parallel to the conveyance portion 16.
Similar to the embodiment shown in
The drive belt 20 comprises two strands 21, 23 extending parallel to each other in the longitudinal conveyance direction.
A plurality of teeth 24 are formed on one side of each strand 21, 23 and configured for engaging with a drive element 15 (drive sheave), which is not depicted in
An axle 26 connecting the two strands 21, 23 with each other extends in a lateral direction, i.e. in a direction which is orthogonal to the longitudinal conveyance direction, through every second tooth 24. A roller 28, which is arranged between the two strands 21, 23, is rotatably supported by each of the axles 26, respectively. The rollers 28 are guided and supported by a guide rail 18.
Each strand 21, 23 comprises one or more drive belt segments 22 connected with each other in the longitudinal conveyance direction forming an endless loop. Two drive belt segments 22 of each strand 21, 23 are depicted in
Two adjacent drive belt segments 22 are connected with each other by a connector 30. In the embodiment shown in
When arranged abutting each other, two adjacent connector portions 32, 34 attached to the drive belt segments 22 form a common opening 36 extending in the lateral direction, i.e. parallel to the axles 26. The opening 36 is configured for receiving a connection element 38, in particular a connection pin, which is not shown in
Each drive belt segment 22 comprises one or more cord segments 40 extending parallel to each other in the longitudinal conveyance direction. The cord segments 40 are not visible in
In
As a result, a plurality of cord segments 40 extending parallel to each other in the longitudinal conveyance direction are visible in
The connection element 38 extending through the openings 36 formed within the connector portions 32, 34 is visible as well.
At the ends of the drive belt segments 22, the cord segments 40 are covered by cover portions 42, 44, in particular metallic cover portions 42, 44, which are part of the connector portions 32, 34.
In
Another exemplary embodiment of the invention is illustrated in
Features corresponding to the embodiment shown in
Contrary to the embodiment shown in
The skilled person will understand that the ratio of two teeth 24 per roller 28 (
In the embodiment shown in
In the embodiment depicted in
Similar to the connector portions 32, 34 shown in
Similar to
Instead of a single cord 41 extending in a plurality of loops, each drive belt segment 22 comprises a plurality of cords 41 extending parallel to each other in the longitudinal conveyance direction. A sleeve 52, which may be made of a metal such as steel, is mounted, e.g. pressed, brazed and/or welded, to the ends of each cord 41. The sleeves 52 are accommodated in a corresponding reception 54 formed within the connector portions 32, 34 providing a strong and reliable connection between the cords 41 and the connector portions 32, 34. The sleeves 52 may have a cylindrical shape with the axis of the cylinder being oriented in the longitudinal conveyance direction. The sleeves 52 in particular may be held within the receptions 54 by a positively-fit coupling.
The reception 54 comprises a wall 55 extending orthogonally to the longitudinal conveyance direction and an opposing leg 58 extending parallel to the wall 55 forming a reception space between the wall 55 and the leg 58. The leg 58 is attached to the wall 55 by a connection portion 56 extending parallel to the longitudinal conveyance direction between the wall 55 and the leg 58.
A plurality of apertures 60 is formed within the leg 58. The number of apertures 60 corresponds to the number of cords 41. As a result, a single cord 41 extends through each of the apertures 60, respectively. The diameter of the apertures 60 is large enough for passing the cords 41 through the apertures 60, but the diameter of the openings 60 is smaller than the outer diameter of the sleeves 52 so that the sleeves 52 cannot pass through the aperture 60 in the longitudinal conveyance direction.
In consequence, in a configuration in which the sleeves 52 are arranged within the reception space between the wall 55 and the leg 58, as it is shown in
The apertures 60 may be open on one side (the bottom side in the orientation shown in
After the sleeves 52 have been arranged within the reception 54 with the cords 41 passing through the apertures 60, the cords 41, the sleeves 52 and the connector portions 32, 34 are embedded within the cover material 25 preventing the sleeves 52 from coming out of the reception 54.
Although it is not explicitly shown in the figures, the skilled person will understand that the cords 41 may be connected with mounting portions 32, 34 forming a single tooth 24 as shown in
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adopt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention is not limited to the particular embodiments disclosed, but that the invention includes all embodiments falling within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
18163579 | Mar 2018 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4733442 | Asai | Mar 1988 | A |
7410033 | Veronesi et al. | Aug 2008 | B2 |
8112861 | Korkeakangas et al. | Feb 2012 | B2 |
20050279610 | Ossendorf | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
202988472 | Jun 2013 | CN |
102992147 | Aug 2014 | CN |
104044905 | May 2016 | CN |
4130273 | Mar 1993 | DE |
102008002455 | Dec 2009 | DE |
102010054186 | Jun 2012 | DE |
102010054186 | Jun 2012 | DE |
2020399 | Feb 2009 | EP |
2949965 | Dec 2015 | EP |
2949965 | Dec 2015 | EP |
3257804 | Dec 2017 | EP |
3257804 | Dec 2017 | EP |
3267070 | Jan 2018 | EP |
2002167127 | Jun 2002 | JP |
2008105047 | Sep 2008 | WO |
2008149409 | Dec 2008 | WO |
2010057797 | May 2010 | WO |
2011114514 | Sep 2011 | WO |
2012038155 | Mar 2012 | WO |
2013068170 | May 2013 | WO |
Entry |
---|
European Search Report for EP 18163579.8, dated Oct. 10, 2018 (Year: 2018). |
European Search Report for application EP 18163579.8, dated Oct. 10, 2018, 8 pages. |
WikiVisually, “Rope splicing”, available at: https://wikivisually.com/wiki/Rope_splicing, accessed: Mar. 21, 2019, 16 pages. |
Number | Date | Country | |
---|---|---|---|
20190292018 A1 | Sep 2019 | US |