The present invention relates to the field of information handling system hardware and particularly to a chassis and drive carrier configured to prevent inadvertent damage associated with coupling and/or uncoupling of components.
Electronic devices including information handling systems and data storage system utilize components which permit interchanging and replacement of components. Components may be replaced with another component having similar functionality, while offering increased performance characteristics, or to replace a component having a failure. As a result, during the course of the life of an electronic device, numerous component changes may be made to correct component failure or to enhance the functionality of the electronic device. Due to high user reliance on these systems, users often wish to have the system updated or a failure corrected in-situ or on premises. Field repair or replacement conditions may be less than ideal for performing such removal/insertion of components.
Proper removal and replacement of components is important as proper seating (both physical and communicative) of components ensures compliance with design requirements for communicative/electrical coupling of the components. Improper connection may lead to component connectivity issues. Improper coupling of components may damage the connections or the devices themselves. One example of this problem is coupling a data storage device to a midplane or backplane included in a data storage system. Pin/blade couplings may be inadvertently damaged should improper alignment occur. If, a user removing or inserting a component applies too much force, the component or a connector for communicatively/electrically coupling the component within the system may become damaged and require replacement. A user rapidly seating a hard drive in a data storage device may inadvertently damage the midplane, backplane or drive connector by bending communication pins or blades on the devices. Even if repair is possible, the damage may affect communication performance for the repaired system or the damage may cause intermittent problems which may not be readily identified.
Previous solutions to alignment and connection difficulties fail to properly address these difficulties. Current devices only lock the component within the overall system. For instance, a current locking system for a component fails to minimize the likelihood of damage to the component or to other components within the overall system. For instance, a user of this type of device may unintentionally insert the component too rapidly thereby damaging the component, communication connectors, or other components within the system prior to utilizing a lock to secure the component in place. Some devices fail to adequately prevent damage and ensure proper component seating. Locks may only engage when the component is positioned in the system.
Therefore, it would be desirable to provide a component housing and electronic device chassis assembly for providing efficient controlled coupling/uncoupling of components within the overall system.
Accordingly, the present invention is directed to a component carrier and chassis assembly for providing efficient controlled coupling/uncoupling of components to a chassis included in the assembly.
In an aspect of the present invention, a chassis assembly for an electronic device such as a data storage system or the like is described. The assembly includes a carrier for housing a component for integration into the system. The carrier includes a frame constructed to at least partially contain the component electronics. A handle is pivotally coupled to the frame. In embodiments, the handle is rotateable between an engaging orientation and a securing orientation. A pinion portion is included on the handle. The pinion portion may engage with a corresponding rack formed in the chassis to control movement of the carrier with respect to the chassis. A securing mechanism is disposed on an end of the handle opposite the pinion portion. The securing mechanism may be implemented to secure the handle in a securing orientation in which the end of the handle, generally opposite the pinion portion, is disposed adjacent the frame. A securing mechanism, such as a latch, may be included to prevent rotation of the handle with respect to the frame.
In a further aspect of the invention, a method of inserting a component into a computing device is discussed. The method includes the steps of disposing a carrier partially within a chassis for containing a computing device and rotating a handle, pivotally mounted to a frame included in the carrier, to draw the carrier into a seated position within the chassis. A plurality of teeth included in a pinion portion may be utilized to engage a rack included on the chassis so as to slide the carrier into the desired position. In the present method, a latch is utilized to secure the handle to the frame to fix the component carrier within the chassis.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention as claimed. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate an embodiment of the invention and together with the general description, serve to explain the principles of the invention.
The numerous advantages of the present invention may be better understood by those skilled in the art by reference to the accompanying figures in which:
Reference will now be made in detail to the presently preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. The principles of the present invention may be utilized in a variety of electronic devices including data storage devices, information handling systems, and the like devices which implement modular sub-components. It is the intention of the present disclosure to encompass and include such variation.
Referring to
Suitable components include data storage drives, removable media drives, power supplies, batteries, processor modules, and the like for providing a capability to the overall system. The chassis bay may include a rail or groove structure, for receiving a corresponding rail type structure on a component carrier 220 designed to permit sliding reception/component removal. The chassis rail may extend inwardly from adjacent an outer surface, or periphery of the chassis, to permit slide mounting of components.
Electrical/communication couplings may be disposed on the inner portion of the bay opposite the opening in the chassis for coupling a received component to the overall electronic device. A backplane including a series of pins, blades, or the like connectors configured as a plug may be aligned with a drive bay opening, so that a corresponding plug structure on a data storage drive, contained in the drive carrier 220, is communicatively coupled to the overall system. The chassis assembly 100 including carrier 220 may be implemented to ensure effective communicative coupling while minimizing or eliminating the potential for inadvertent damage to the communicative couplings on the component and/or on the electronic system, as well as, damage to the component or the system. The chassis assembly 100 of the present invention may permit a user to perform one-handed final seating of the component in the chassis 102. Unitary rails or separate rails, fixedly secured to the chassis, may be included to receive the component chassis. For instance, separate mounting rails screwed to the chassis permit sliding reception of a component into the chassis. Bays may be covered from the ingress of dust and debris by a “knock out plate” or other structure in the bezel cover until utilization of the bay is necessary.
Referring to
Referring to
Referring to
Referring now to
A pinion portion 214 is included on the first end 212 of the handle. For instance, a plurality of teeth (one tooth 215 is referenced), included in the pinion portion, extend generally radially away from the pivot point of the handle 206. Those of skill in the art will appreciate that only a segment of a pinion may be required to provide sufficient movement of the carrier to seat a component communication plug to a corresponding data handling system plug. For instance, the pinion portion 214 only includes a segment, such as a quadrant, including teeth rather than gearing around the perimeter of the first end to provide measured and controlled seating/removal whereby the carrier is inserted a fixed distance. In the foregoing instance, the number, spacing and configuration of the teeth is dependent on the distance the carrier is designed to travel between a first contact between the pinion and the rack and the final seating position or the secured position of the carrier in the chassis. For example, the distance the carrier is designed to travel may be adjusted by adjusting the configuration of the teeth. With particular reference to
With specific reference to
Referring to
It is understood that the specific order or hierarchy of steps in the processes disclosed is an example of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged while remaining within the scope of the present invention. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
It is believed that the present invention and many of its attendant advantages will be understood by the foregoing description. It is also believed that it will be apparent that various changes may be made in the form, construction and arrangement of the components thereof without departing from the scope and spirit of the invention or without sacrificing all of its material advantages. The form herein before described being merely an explanatory embodiment thereof. It is the intention of the following claims to encompass and include such changes.
The present application claims the benefit of U.S. Provisional Application Ser. No. 60/778,115 filed Mar. 1, 2006. Said U.S. Provisional Application Ser. No. 60/778,115 filed Mar. 1, 2006 is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2858389 | Cuorato et al. | Oct 1958 | A |
5622511 | Jarrett | Apr 1997 | A |
5993241 | Olson et al. | Nov 1999 | A |
6005208 | Castonguay | Dec 1999 | A |
6067225 | Reznikov et al. | May 2000 | A |
6293828 | Colver et al. | Sep 2001 | B1 |
6381139 | Sun | Apr 2002 | B1 |
6480391 | Monson et al. | Nov 2002 | B1 |
6483107 | Rabinovitz et al. | Nov 2002 | B1 |
6490153 | Casebolt et al. | Dec 2002 | B1 |
6699128 | Beadell et al. | Mar 2004 | B1 |
6754074 | McClelland, II et al. | Jun 2004 | B2 |
6762934 | Kitchen et al. | Jul 2004 | B2 |
6876547 | McAlister | Apr 2005 | B2 |
7035096 | Franz et al. | Apr 2006 | B2 |
7251132 | Paul et al. | Jul 2007 | B1 |
7382624 | Barsun et al. | Jun 2008 | B2 |
20020104396 | Megason et al. | Aug 2002 | A1 |
20050174743 | Downing et al. | Aug 2005 | A1 |
20060002093 | Carlson et al. | Jan 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070206351 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
60778115 | Mar 2006 | US |