The present disclosure relates to a drive circuit, a display device, and a drive method.
A display device represented by a micro-display such as an organic EL includes a pixel array that displays an image by a plurality of pixels, a horizontal drive circuit that writes a video signal to each pixel of the pixel array, a vertical drive circuit that selects a video signal line to which the video signal is written, a horizontal logic circuit configured to control the horizontal drive circuit, and a vertical logic circuit configured to control the vertical drive circuit. The display device further includes an interface that converts an input signal to the display device into a logic level output signal, and a controller that controls operation timing of the vertical drive circuit and the horizontal drive circuit on the basis of the output signal converted by the interface.
Patent Document 1 below discloses a driving example of a pixel that improves image quality by constant current PWM driving. In the technique disclosed in the document, first, a voltage according to an input signal voltage is held at a gate of a switching control transistor in a pixel, and then a bias voltage is held at a gate of a driver transistor of an organic EL. Thereafter, a ramp (RAMP) wave is applied to the node via capacitor. The circuit applies a constant current to the organic EL light emitting element until the voltage of the node increases in response to the application of the ramp wave and the voltage of the node reaches the threshold voltage of the switching control transistor. Since the pixel requires a RAMP wave for PWM control of the organic EL light emitting element, there are problems of increase in power consumption, lateral shading, and deterioration of lateral crosstalk.
Patent Document 1: JP 2013-76812
The present disclosure provides a drive circuit, a display device, and a drive method for reducing power consumption.
A drive circuit of the present disclosure includes a setting circuit configured to precharge, to a first voltage, a video signal line connected to a first transistor configured to sample a voltage of the video signal line, and an adjustment circuit configured to adjust a voltage of the video signal line by charging or discharging the video signal line precharged to the first voltage during a time period corresponding to a second voltage set in the video signal line.
The setting circuit may include a first switch that connects the video signal line to the first voltage, and the adjustment circuit includes a current source that includes a second transistor and a second switch that connects the video signal line and the current source.
The drive circuit may include a detection circuit that includes a first terminal connected to the second voltage and a second terminal connected to the video signal line, and is configured to detect a difference between the second voltage and a voltage of the video signal line, and a holding circuit configured to hold a voltage according to the difference and supply the voltage to a control terminal of the current source.
The detection circuit may include an amplifier configured to generate a current according to a difference between the second voltage and a voltage of the video signal line, and the holding circuit includes a capacitor configured to accumulate a charge according to the current.
The drive circuit includes a third switch that connects the first terminal and the second terminal, and the adjustment circuit turns on the third switch for a certain period before an operation of the amplifier.
The detection circuit may include a comparator configured to detect timing at which a voltage of the video signal line is the second voltage, a phase comparator configured to detect a difference between the timing and timing according to the second voltage, and a charge pump configured to generate a current according to the difference, and the holding circuit may include a capacitor configured to accumulate a charge according to the current.
The detection circuit may include a conversion circuit configured to convert the difference between the second voltage and a voltage of the video signal line into a digital signal, and the holding circuit may include a digital to analog converter configured to supply a voltage according to the digital signal to the control terminal.
The first voltage may be a voltage corresponding to a maximum gradation or a minimum gradation.
The second voltage may be a voltage corresponding to a gradation that a pixel circuit including the first transistor is caused to display.
The second voltage may include an offset voltage for correcting a threshold voltage of a second transistor for driving a light emitting element in a pixel circuit including the first transistor.
The drive circuit may include a scanning circuit configured to turn on the first transistor and supply a voltage of the video signal line set to the offset voltage to a node in the pixel circuit, the setting circuit may precharge the video signal line to the first voltage after the offset voltage is supplied to the pixel circuit, the adjustment circuit may adjust the video signal line to a voltage corresponding to the gradation by charging or discharging the video signal line precharged to the first voltage during a time period according to a voltage corresponding to a gradation, and the scanning circuit may turn on the first transistor to supply a voltage of the video signal line to a node in the pixel circuit.
The drive circuit may include a plurality of sub-drive circuits each including the setting circuit and the adjustment circuit, and a current generation circuit configured to generate a reference current, the plurality of sub-drive circuits may be connected to a plurality of the video signal lines, the adjustment circuit of each of the plurality of sub-drive circuits may include a third transistor configured to sample a reference current, and the adjustment circuit of each of the plurality of sub-drive circuits may charge or discharge the video signal line precharged by the setting circuit with a current sampled by the third transistor.
The current generation circuit may include a first capacitor connected to a third voltage, a current source that includes a fourth transistor, a fourth switch that connects the first capacitor and the current source, a fifth switch connecting both ends of the first capacitor, a detection circuit that includes a first terminal connected to a fourth voltage and a second terminal connected to the fourth switch, the detection circuit being configured to detect a difference between a voltage of the first terminal and a voltage of the second terminal, a holding circuit configured to hold a voltage according to the difference and supply the voltage to a control terminal of the current source, a sixth switch that diode-connects the third transistor of each of the plurality of sub-drive circuits, and a seventh switch that connects the diode-connected third transistor of each of the plurality of sub-drive circuits and the current source.
The fourth switch and the fifth switch may be turned on to precharge the first capacitor, the fifth switch may be turned off to discharge the first capacitor to generate the reference current, the fourth switch may be turned off to operate the detection circuit for a certain period, and the sixth switch and the seventh switch may be turned on to sample the reference current in the sub-drive circuit.
During a period during which the first transistor is turned off, the setting circuit may precharge the video signal line to the first voltage and the adjustment circuit may adjust the video signal line to the second voltage.
A period during which the first transistor is turned off may include a blanking period that includes a period during which a pixel circuit including the first transistor does not emit light.
A display device of the present disclosure includes a video signal line configured to supply a video signal, a pixel circuit including a first transistor connected to the video signal line, the first transistor being configured to sample a voltage of the video signal line, a drive circuit including a setting circuit configured to precharge the video signal line to a first voltage and an adjustment circuit configured to adjust a voltage of the video signal line by charging or discharging the video signal line precharged to the first voltage during a time period corresponding to a second voltage set in the video signal line, and a scanning circuit configured to control on and off of the first transistor.
A drive method of the present disclosure includes precharging, to a first voltage, a video signal line connected to a first transistor configured to sample a voltage of the video signal line, and adjusting a voltage of the video signal line by charging or discharging the video signal line precharged to the first voltage during a time period corresponding to a second voltage set in the video signal line.
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In one or more embodiments shown in the present disclosure, the elements included in each embodiment can be combined with each other, and the combined result also forms part of the embodiments shown in the present disclosure.
First, the technical background of the embodiment of the present disclosure will be described.
In the voltage follower system of
A video signal writing method using a method called a RAMPDAC method is also known instead of the voltage follower method in
The N+1 latches in the first latch circuit 1101 sample and latch the data signal (digital gradation data) corresponding to each pixel at timing when the clocks LATCK [0] to LATCK [N] are input from the shift register 1100 to the CLK terminal.
The N+1 latches included in the second latch circuit 1102 read and latch the signals held in the N+1 latches in the first latch circuit at timing when a common line clock (LINECLK) is input to the CLK terminal. The latched data signals are input to N+1 comparators in the digital comparator 1103.
The synchronization counter 1104 is reset at timing when LINECLK is input to the second latch circuit, and starts counting a gradation clock provided from the outside. The synchronization counter 1104 counts a gradation clock generated during one horizontal scanning period to output the counted value to each comparator.
The PWM generation circuits 1105 are provided corresponding to respective digital comparators 1103. Each PWM generation circuit 1105 outputs a voltage at a predetermined level as a PWM signal during a time period until the data signal (corresponding to the gradation value) input to a comparator matches the counted value input to the comparator.
Therefore, from each PWM generation circuit 1105, a rectangular wave having a length according to the gradation value indicated by the corresponding data signal is output as a PWM signal.
The level shifters 1106 correspond to the respective PWM generation circuits 1105, adjusts the length of the rectangular wave (PWM signal) output from PWM generation circuit 1105 according to the gamma characteristic to output the adjusted PWM signal.
The ramp circuit 1108 includes a RAMPDAC configured to generate a ramp wave that is a wave of a voltage in which voltage changes (rises or falls) at a constant rate from an initial voltage within one horizontal scanning period, and an analog buffer that buffers the ramp wave. The ramp circuit 1108 outputs a ramp wave in accordance with the start timing of the output of each level shifter 1106 (or the output of the PWM generation circuit) via the analog buffer.
Switches in the switch circuit 1107 correspond to the respective level shifters 1106. Each switch is turned on while the PWM signal (rectangular wave) output from each level shifter 1106 is input to output a ramp wave while being turned on. When the PWM signal is not input, each switch is turned off to stop the output of the ramp wave. As a result, a voltage according to the length of the PWM signal is output to the pixel array 1109 as a voltage (gradation voltage) representing the corresponding gradation value. The pixel array 1109 drives a corresponding pixel using a current according to the gradation voltage via each switch.
The RAMPDAC method of
The present disclosure solves a problem of a large DC bias power and a problem of image quality degradation associated with high definition of a display device.
The drive circuit 102 includes a setting circuit 104, an adjustment circuit 105, and an output terminal Vout. The voltage of the output terminal Vout is represented by the reference numeral Vout same as the output terminal. The setting circuit 104 includes a switch PCHG (first switch). The adjustment circuit 105 includes an output current source IA and a switch PWM (second switch). The output current source IA is an NMOS transistor. The output terminal Vout is connected to a video signal line 112. A pixel 103 is connected to the video signal line 112. From the perspective of the drive circuit 102, the pixel 103 appears equivalently as a capacitor. Specifically, the capacitor is a capacitor of a wiring (video signal line) from the drive circuit 102 to the pixel, a parasitic capacitor of a sampling transistor included in the pixel 103, or the like. The sampling transistor is connected to the video signal line 112, and samples the signal voltage of the video signal. This capacitor is represented as Cpix. The capacitor Cpix is referred to as a pixel load capacitor. The pixel load capacitor Cpix will be described more specifically.
The pixel 103 includes a sampling transistor WSTr, a drive transistor DrTr, a capacitor Cs, and a light emitting element 30. Each transistor is assumed to be an NMOS transistor, but may be a PMOS transistor, or transistors of both conductivity types may be mixed. The light emitting element 30 is a two-terminal type organic EL light emitting element including an anode and a cathode. However, the light emitting element 30 is not limited to the organic EL light emitting element, and generally includes any device that emits light by current drive.
The drive transistor DrTr has a gate connected to the node G, a source connected to the node S, and a drain connected to a drive line 50. The light emitting element 30 has an anode connected to the node S, and a cathode connected to a common power supply line 70 (having a voltage Vcath) wired in common for all the pixels. The sampling transistor WSTr is connected between the video signal line 112 and the node G. The gate of the sampling transistor WSTr is connected to a scanning line 40. The capacitor Cs is connected between the node G and the node S. While the drive line 50 is set to a predetermined potential by the drive scanning circuit 20 and the drive line 50 is set to the predetermined potential, the following operation is performed. First, the sampling transistor WSTr is turned on for a certain period of time by the write scanning circuit 60. The signal voltage of the video signal line 112 is written into the capacitor Cs via the node G, and the capacitor Cs is set to the signal potential. The drive transistor DrTr causes a current to flow between the drain and the source according to a gate voltage applied between the gate and the source via the capacitor Cs, and drives the light emitting element 30 by the current.
The pixel load capacitor Cpix described with reference to
The output current source IA of
In
Vout=VPCHG−(Iout×tPWM/Cpix) Expression (A).
As described above, the signal voltage according to the gradation can be generated by turning on the switch PWM for the time length of the PWM signal. Thereafter, by turning on the sampling transistor of the pixel 103 connected to the video signal line 112, the signal voltage is written into the pixel 103. Here, as an example, the precharge voltage VPCHG is a voltage corresponding to the minimum width of the PWM signal (a voltage corresponding to the maximum gradation or the minimum gradation). The current source IA is adjusted such that when the switch PCHG is turned on for a time period corresponding to the maximum width of the PWM signal, the precharged video signal line (capacitor Cpix) flows a current that reaches a voltage corresponding to the maximum width of the PWM signal. Note that the voltage corresponding to the maximum gradation may be expressed as VG255, and the voltage corresponding to the minimum gradation may be expressed as VG0.
By charging or discharging the video signal line precharged to a predetermined precharge voltage for a time length according to the PWM signal in such a manner, a voltage according to a gradation can be accurately set to the video signal line. In addition, the circuit that performs the analog operation in the drive circuit of
Vout=VPCHG+(Iout×tPWM/Cpix) Expression (B).
Since the description of
The OTA 111 has a −input terminal (first terminal), a +input terminal (second terminal), and an enable terminal. The OTA 111 operates while the OTAEN signal input to the enable terminal is turned on. A voltage (desired voltage) desired to be set in the video signal line is supplied as a reference voltage VREF to the −input terminal of the OTA 111. As an example, a voltage corresponding to the gradation represented by the PWM signal is supplied. In a case where the gradation represented by the PWM signal is the maximum gradation, the reference voltage VREF is a voltage (VG255) corresponding to the maximum gradation. The +input terminal is connected to the output terminal Vout, and the output voltage Vout (voltage of Cpix) is supplied thereto. The OTA 111 is an example of a detection circuit configured to detect a difference between a voltage supplied to the −input terminal and a voltage supplied to the +input terminal. The OTA 111 generates a current according to the detected difference. More specifically, the OTA 111 calculates a difference ΔVin between the reference voltage VREF and the output voltage Vout, and changes the output current by a current obtained by multiplying the difference ΔVin by the transconductance Gm.
The switch CAL connects the output of the OTA 111 and one end of the hold capacitor Ch. The other end of the hold capacitor Ch is connected to the ground voltage. One end of the hold capacitor Ch is connected to a control terminal (gate) of an NMOS transistor which is the current source IA. The hold capacitor Ch is an example of a holding circuit that holds a voltage according to the difference and supplies the held voltage to the control terminal of the output current source IA.
The hold capacitor Ch is charged or discharged via the switch CAL by the current generated by the OTA 111. That is, a charge according to the current is accumulated in the hold capacitor Ch. As a result, the voltage of the hold capacitor Ch is adjusted. The voltage of the hold capacitor Ch is supplied to the gate of an NOS transistor. The hold capacitor Ch has a role of holding a gate voltage of the output current source IA. The range of the output current of the OTA 111 is a range of a current that can be generated by a current source (see a current source 123 in
(1) First, the switch PCHG is turned on for a certain period T1, and the video signal line 112 is precharged using the precharge voltage VPCHG, that is, the pixel load capacitor Cpix is precharged. The voltage after the precharge is represented as V1 (=VPCHG). The voltage V1 corresponds to a voltage desired to be achieved for the minimum time width of the PWM signal. Note that the time width of the minimum PWM signal may be 0 or a time longer than 0.
(2) The switch PCHG is turned off, and the switch PWM is turned on for a time tPWM according to the PWM signal (gradation value) input from the level shifter (see
(3) When the time tPWM has elapsed, the switch PWM is turned off. The output voltage Vout at this time is a voltage Vld in the example of the drawing. The OTAEN signal input to the enable terminal of the OTA 111 is turned on to make the OTA 111 in the operation state. Next, the switch CAL is turned on for a certain period of time. The OTA 111 compares the reference voltage VREF (voltage desired to be achieved) with the output voltage Vout (voltage of the pixel load capacitor Cpix) to output a current according to the voltage difference.
(4) The hold capacitor Ch is charged or discharged by the current output from the OTA 111.
(5) A charge pump (CP) output which is a voltage of the hold capacitor Ch changes. The CP output changes within a certain voltage range RA1 according to the state of charge of the hold capacitor Ch.
The operations of (1) to (5) may be repeated. As a result, the voltage of the video signal line can be adjusted to a desired voltage with high accuracy while suppressing variation between pixel columns. However, the operations (1) to (5) may be performed only once. The operations of (1) to (5) are performed, for example, in a period in which the sampling transistor of the pixel is turned off in a blanking period in which all the pixels do not emit light. After the signal voltage of the video signal line is set, the sampling transistor of the pixel is turned on for a certain period at the timing of writing into the pixel, and the signal voltage VSIG of the video signal line is written into the pixel.
The circuit that performs the analog operation of the drive circuit of
Before starting the operation in the OTA 111, the offset cancellation operation may be performed by short-circuiting between the −input terminal and the +input terminal. The offset cancellation operation is performed, for example, for a period before the CAL signal is turned on after the OTAEN signal is turned on. By performing the offset cancellation operation, it is possible to suppress variations in the operation of the OTA for each current correction circuit corresponding to the plurality of pixel columns. Therefore, the variation accuracy of the output current can be improved.
In
A current source 123 is commonly connected to the source of the PMOS transistor 121 and the source of the PMOS transistor 122. The drains of the NMOS transistors 124 and 125 are connected to the drain of the PMOS transistor 121 and the drain of the PMOS transistor 122. Sources of the NMOS transistors 124 and 125 are connected to a ground voltage. The gate of the NMOS transistor 125 is connected to the ground voltage via the capacitor 126. A connection node between the drain of the PMOS transistor 122 and the drain of the NMOS transistor 125 is connected to the output terminal OTAOUT. The gate voltage of the PMOS transistor 121 is denoted by VINP, and the gate voltage of the PMOS transistor 122 is denoted by VINN.
A switch INI is provided between the other end of the switch CAL and the reference voltage VREF terminal (−input terminal). In addition, a switch 132 is provided between the capacitor 126 and the drain of the NMOS transistor 125. In the offset cancellation operation, the switches INI and 132 are turned on for a certain period of time to short-circuit between the −input terminal and the +input terminal. Further, by turning on the switch 132, the gate and the source of the NMOS transistor 125 are connected. This connection is referred to as diode connection. As a result, both the voltage VINP and the voltage VINN become the same reference voltage VREF (that is, the input potential difference is 0 V), and the output current Ical is generated.
In this state, as illustrated in
The comparator 141 includes two input terminals, one terminal is connected to a reference voltage VREF which is a voltage (desired voltage) desired to be set in the video signal, and the other terminal is connected to an output terminal VOUT. The comparator 141 detects timing at which the output voltage VOUT matches a reference voltage VERF. When the switch PWM is turned on according to the PWM signal and the voltage of the output terminal VOUT is input to the comparator 141, the comparator 141 detects the timing at which the input voltage matches the reference voltage VERF. A digital signal CMPOUT indicating the detected timing is output. The enable signal may be input to the comparator 141 according to the timing at which the switch PWM is turned on, and the comparator 141 may start the operation according to the input of the enable signal.
The phase comparator 142 includes two terminals, and a digital signal CMPOUT indicating the timing detected by the comparator 141 is input to one of the terminals. A digital signal REFPWM indicating the timing corresponding to the reference voltage VERF is input to the other terminal. The phase comparator 142 compares both the digital signals to detect a timing difference between the timing detected by the comparator 141 and the timing corresponding to the reference voltage VERF.
The charge pump 143 includes an upside switch 146 and a downside switch 147 connected in series. A connection node between the upside switch 146 and the downside switch 147 is connected to the hold capacitor Ch and the gate of the output current source IA (transistor). When the upside switch 146 is turned on, a current is supplied to the hold capacitor Ch. When the downside switch 147 is turned on, the current is discharged from the hold capacitor Ch.
The phase comparator 142 selectively turns on the upside switch 146 and the downside switch 147 of the charge pump 143 according to the signal of the detected timing difference. Specifically, one of the upside switch 146 and the downside switch 147 is selected according to the sign of the signal of the timing difference, and the selected switch is turned on for a time length according to the timing difference. As a result, the hold capacitor Ch is charged or discharged, and the gate voltage of the output current source IA is adjusted.
The +input terminal of the differential amplifier circuit 151 is connected to a reference voltage VREF which is a voltage (desired voltage) desired to be set in the video signal. The −input terminal of the differential amplifier circuit 151 is connected to the output terminal VOUT. The differential amplifier circuit 151 compares the reference voltage VERF with the voltage of the output terminal VOUT to output a differential voltage between the both to the successive comparison circuit 152.
The successive comparison circuit 152 performs a successive comparison operation on the basis of the differential voltage input from the differential amplifier circuit 151, and calculates the differential voltage with high accuracy. That is, the comparison result in which a setting value of a gate voltage at which a desired output current flows is approached is output. The successive comparison circuit 152 outputs a digital signal according to the calculated difference voltage. The digital signal indicates a setting value of a gate voltage at which a desired output current flows or a value close thereto. The successive comparison circuit 152 outputs the digital signal to the DAC 153.
The DAC 153 converts the digital signal into a DC analog voltage. That is, the DAC 153 holds the digital signal output from the successive comparison circuit 152 to generate a voltage according to the setting value represented by the digital signal. The DAC 153 supplies the generated voltage to the gate of the output current source IA.
In the case of the circuit of
A RAM, a flip-flop circuit, a latch circuit, a FIFO, or the like may be used as a circuit that holds a digital signal that is an output of the successive comparison circuit 152.
The configuration of the drive circuit of the second embodiment is the same as that of the first embodiment, but the operation on the pixel is partially different. In the second embodiment, the variation between the pixels of the threshold voltage of DrTr of the drive transistor is canceled (referred to as threshold value correction). Therefore, first, the setting of the offset voltage is set to the video signal line, and the set offset voltage is written to the pixel 103 via the sampling transistor WSTr. Threshold correction is performed on the basis of the offset voltage. After the writing of the offset voltage is completed, as in the first embodiment, the voltage for the gradation is set in the video signal line, and the signal voltage of the video signal is written in the pixel. The drive circuit of the first embodiment can also be used in a case where the offset voltage used for threshold value correction is set as described above. This makes it possible to perform threshold value correction with high accuracy while suppressing variations between pixels. Hereinafter, the second embodiment will be described in detail.
The pixel 103 includes a light emitting element 30 such as an organic EL element. The cathode of the light emitting element 30 is connected to a common power supply line 34 wired in common for all the pixels. Furthermore, the pixel 103 includes a drive transistor DrTr, a sampling transistor WSTr, a light emission control transistor 24, a holding capacitor 25, and an auxiliary capacitor 26. In this example, a PMOS transistor is used for the drive transistor DrTr, the sampling transistor WSTr, and the light emission control transistor 24, but an NMOS transistor may be used, or both conductivity types may be mixed.
The sampling transistor WSTr samples the signal voltage VSIG supplied from the drive circuit 102 through the video signal line 112, and writes the signal voltage VSIG into the holding capacitor 25. The light emission control transistor 24 is connected between the power node of the power supply voltage Vcc and the source of the drive transistor DrTr, and controls light emission of the light emitting element 30 under driving by the light emission control signal DS from the drive scanning circuit 20.
The holding capacitor 25 is connected between the gate and the source of the drive transistor DrTr. The holding capacitor 25 holds the signal voltage VSIG written by sampling by the sampling transistor WSTr. The drive transistor DrTr drives the light emitting element 30 by causing a drive current according to the holding voltage of the holding capacitor 25 to flow through the light emitting element 30. The auxiliary capacitor 26 is connected between the source of the drive transistor DrTr and a node of a fixed potential, for example, a power node of the power supply voltage Vcc. The auxiliary capacitor 26 suppresses fluctuation of the source potential of the drive transistor DrTr when the signal voltage VSIG is written, and sets the gate-source voltage Vgs of the drive transistor DrTr to the threshold voltage Vth of the drive transistor DrTr. Hereinafter, the operation of the present circuit will be described.
In a state where the offset voltage VOFS is set to the video signal line 112 from the drive circuit 102, the potential WS of the scanning line 40 is caused to transition from a high potential to a low potential, and the sampling transistor WSTr is turned on. The gate potential Vg of the drive transistor DrTr is the offset voltage VOFS. At this time, the potential DS of the drive line 50 is in a low potential state, and the light emission control transistor 24 is turned on. Therefore, the source potential Vs of the drive transistor DrTr is the power supply voltage Vcc. At this time, the gate-source voltage Vgs of the drive transistor DrTr is Vgs=VOFS−Vcc.
Here, in order to perform a threshold value correction operation (threshold value correction process) to be described later, it is necessary to make the gate-source voltage Vgs of the drive transistor DrTr larger than the threshold voltage Vth of the drive transistor DrTr. Therefore, each voltage value is set such that
|Vgs|=|VOFS−Vcc|>|Vth|.
As described above, the initialization operation of setting the gate potential Vg of the drive transistor DrTr to the offset voltage VOFS and setting the source potential Vs of the drive transistor DrTr to the power supply voltage Vcc is an operation of preparation (threshold value correction preparation) before the next threshold value correction operation is performed. Therefore, the offset voltage VOFS and the power supply voltage Vcc are initialization voltages of the gate potential Vg and the source potential Vs of the drive transistor DrTr, respectively.
The potential DS of the drive line 50 is shifted from a low potential to a high potential, and the light emission control transistor 24 is turned off. The source potential Vs of the drive transistor DrTr is in floating, and the threshold value correction operation is started in a state where the gate potential Vg of the drive transistor DrTr is maintained at the offset voltage VOFS. That is, the source potential Vs of the drive transistor DrTr starts to fall (decrease) toward the potential (Vg−Vth) obtained by subtracting the threshold voltage Vth from the gate potential Vg of the drive transistor DrTr.
As described above, the operation of changing the source potential Vs of the drive transistor DrTr toward the potential (Vg−Vth) obtained by subtracting the threshold voltage Vth from the voltage VOFS with the offset voltage VOFS (initialization voltage) of the gate potential Vg of the drive transistor DrTr as a reference is the threshold value correction operation. As the threshold value correction operation proceeds, the gate-source voltage Vgs of the drive transistor DrTr converges to the threshold voltage Vth of the drive transistor DrTr. A voltage corresponding to the threshold voltage Vth is held in the holding capacitor 25.
When the potential WS of the scanning line 40 is shifted from a low potential to a high potential and the sampling transistor WSTr is turned off, the threshold value correction period ends. Thereafter, the signal voltage VSIG of the video signal is set to the video signal line 112 from the drive circuit 102. As a result, the potential of the video signal line 112 is switched from the offset voltage VOFS to the signal voltage VSIG.
The potential WS of the scanning line 40 is shifted from a high potential to a low potential, the sampling transistor WSTr is turned off, and the signal voltage VSIG is sampled and written in the pixel 103. By the operation of writing the signal voltage VSIG by the sampling transistor WSTr, the gate potential Vg of the drive transistor DrTr is the signal voltage VSIG.
When the signal voltage VSIG of the video signal is written, the auxiliary capacitor 26 connected between the source of the drive transistor DrTr and the power node of the power supply voltage Vcc suppresses fluctuation of the source potential Vs of the drive transistor DrTr. Then, when the drive transistor DrTr is driven by the signal voltage VSIG of the video signal, the threshold voltage Vth of the drive transistor DrTr is canceled out by the voltage corresponding to the threshold voltage Vth held in the holding capacitor 25.
The potential WS of the scanning line 40 is shifted from a low potential to a high potential, and the sampling transistor WSTr is turned off, whereby the signal writing is terminated. The potential DS of the drive line 50 is shifted from a high potential to a low potential, and the light emission control transistor 24 is turned on. As a result, a current is supplied from the power node of the power supply voltage Vcc to the drive transistor DrTr through the light emission control transistor 24.
At this time, since the holding capacitor 25 is connected between the gate and the source of the drive transistor DrTr, the gate potential Vg also fluctuates in conjunction with the fluctuation of the source potential Vs of the drive transistor DrTr. That is, the source potential Vs and the gate potential Vg of the drive transistor DrTr increase while holding the gate-source voltage Vgs held in the holding capacitor 25. Then, the source potential Vs of the drive transistor DrTr rises to the light emission voltage of the light emitting element 30 according to the saturation current of the transistor. When the drain-source current of the drive transistor DrTr starts flowing through the light emitting element 30, the anode potential of the light emitting element 30 increases. Eventually, when the anode potential of the light emitting element 30 exceeds the threshold voltage of the light emitting element 30, a drive current starts to flow through the light emitting element 30, so that the light emitting element 30 starts light emission.
Each operation of the threshold value correction preparation, the threshold value correction, and the writing (signal writing) of the signal voltage VSIG described above is executed, for example, in one horizontal period (1H).
Hereinafter, an operation of the drive circuit 102 according to the second embodiment in a circuit that performs a threshold value correction by writing an offset voltage before writing a signal voltage as illustrated in
First, in the section S1, the PCHG switch is turned on, and the video signal line 112 (pixel load capacitor) is precharged to a predetermined voltage PCHG (the output terminal VOUT has a precharge voltage).
In the section S2, the switch PCHG is turned off, and the switch PWM is turned on for a predetermined time according to the VOSF. At this time, the offset voltage VOFS is provided as the reference voltage REF of the OTA 111. When the precharged video signal line 112 (pixel load capacitor) is discharged with a constant inclination and a predetermined time elapses, the switch PWM is turned off. At this time, the voltage of the output terminal VOUT is the VOSF or a voltage close thereto. When the PWM switch is turned off, the enable signal OTAEN of the OTA 111 is turned on.
While the OTA 111 is turned on, the switch INT is turned on in the section S3, and offset cancellation is performed.
Next, in the section S4, the CAL switch is turned on, and a current is output from the OTA 111. In addition, the sampling transistor in the pixel is turned on (the WSEN1 signal is turned on), and the offset voltage VOSF is supplied to the pixel. In the pixel, the above-described threshold value correction is performed on the basis of the offset voltage VOSF.
In the section S5, the operation of the OTA 111 is stopped. The voltage of the hold capacitor Ch is applied to the gate of the output current source IA, and the gate voltage (CP output) fluctuates accordingly. After the OTA 111 is turned off, the switch PCHG is turned on, and the video signal line 112 (pixel load capacitor) is precharged again. The output terminal VOUT is set to the precharge voltage.
In the section S6, the switch PCHG is turned on for a time according to the PWM signal supplied from the level shifter (a time according to a desired gradation). When the precharged video signal line 112 (pixel load capacitor) is discharged with a constant inclination and a time according to the PWM signal elapses, the switch PWM is turned off. The voltage of the output terminal VOUT at this time is the signal voltage VSIG for writing.
In the section S7, the sampling transistor in the pixel is turned on (the WSEN2 signal is turned on), and the signal voltage VSIG is written to the pixel via the sampling transistor.
Thereafter, the operations S1 to S7 may be repeated one or more times. Alternatively, the repetition may not be performed. The operations from S1 to S7 may be performed one or more times during the blanking period.
In the third embodiment, a case where the pixels are red (R), blue (G), and green (B) subpixels will be described. The gate voltage of the output current source IA is adjusted such that a current (reference current) having a constant gradient is obtained by discharging the dummy capacitor for a certain period of time using a capacitor (dummy capacitor) different from the pixel load capacitor using the drive circuit of the first embodiment. Then, the reference current is copied to the sub-drive circuit for each of the red (R), blue (G), and green (B) subpixels by the current sampling operation. In the sub-drive circuit, using a current copied from the drive circuit, charging or discharging is performed on a video signal line pre-charged for each sub-drive circuit during a time period according to the PWM signal. As a result, a signal voltage according to the gradation is set to each of the RGB video signal lines.
The current generation circuit 160 includes an input terminal VCCP, a dummy capacitor Cdum, a switch CS (fourth switch), a switch CALPRCHG (fifth switch), switches WRT_R, WRT_B, and WRT_G (seventh switch), and output terminals OUTR, OUTB, and ORTG. Furthermore, the current generation circuit 160 includes an output current source IA, a hold capacitor Ch, an OTA 111, two switches CAL, and a switch INI. Note that although the switch CAL is connected to the −input terminal of the OTA 111, the switch CAL may be omitted and only the switch CAL on the output side of the OTA 111 may be provided. In the configuration of
The sub-drive circuit 102R includes a switch WRT_R1 (sixth switch), a switch WRT_R2, a PMOS transistor 161R (third transistor), a capacitor 162R, a switch PWM, a switch PRCG|SIG_VOFS, a precharge input terminal 165, and an output terminal VOUT. The switch PRCG|SIG_VOFS corresponds to a setting circuit 167R configured to precharge the video signal line 112R connected to the output terminal VOUT on the basis of the voltage applied to the precharge input terminal 165. The transistor 161R, the capacitor 162R, and the switch PWM correspond to an adjustment circuit 168R configured to adjust the voltage of video signal line 112R by charging or discharging the precharged video signal line 112R during a time period according to the PWM signal.
In the current generation circuit 160, for example, VG0 (voltage corresponding to the minimum gradation) is applied to the input terminal VCCP, and VG255 (voltage corresponding to the maximum gradation) is applied to the VERF terminal as the reference voltage VERF. The OTA 111 and the hold capacitor Ch are used to generate, as a reference current, a current having a slope that reaches from a voltage corresponding to the minimum gradation to a voltage corresponding to the maximum gradation in a certain time (corresponding to a PWM signal having the maximum width). This reference current is copied to the sub-drive circuits 102R, 102B, and 102G by current sampling. The sub-drive circuits 102R, 102B, 102G charge or discharge the precharged video signal lines 112R, 112B, 112G using the copied reference current during a time period according to the PWM signal. Consequently, a voltage according to the gradation is set to each of the RGB video signal lines. As in the second embodiment, before setting the video signal, the offset voltage may be set in the video signal line, and the threshold value correction based on the offset voltage may be performed in each subpixel. In the following description of the operation, a case where threshold value correction is performed will be described.
In the sections S1 to S4, generation of the reference current serving as the copy source (setting of the dummy capacitor Cdum) in the current generation circuit 160, and setting of the offset voltage for each subpixel and threshold value correction are performed in parallel. Specifically, first, in the section S1, the switch CS and the switch CALPRCHG are turned on to precharge the Cdum to VG0. In addition, the switch INI on the input side of the OTA 111 is turned on to cancel the offset.
In the section S2, the switch CALPRCHG is turned off, and the dummy capacitor Cdum is discharged for a certain period of time. The voltage amplitude of the dummy capacitor Cdum is a value obtained by subtracting VG255 from VG0 by discharging. A current (reference current) with a constant slope that reaches from a voltage corresponding to the minimum gradation to a voltage corresponding to the maximum gradation or a voltage close thereto in a certain period of time (corresponding to a PWM signal with the maximum width) flows.
In the section S3, the switch CS is turned off, the two CAL switches are turned on, and the OTA 111 is operated. Note that, although not illustrated, the enable signal OTAEN turned on is also input to the OTA 111. The output voltage of the dummy capacitor Cdum is compared with the VREF voltage (VG255), the hold capacitor Ch is charged or discharged, and the gate voltage (CP output in the drawing) of the output current source IA is adjusted. As a result, variations in the current sources IA between the pixels are adjusted.
In the section S4, the two CAL switches are turned off, and the operation of the OTA 111 is terminated. The switch WRT_R in the current generation circuit 160 and the two switches WRT_R1 and WRT_R2 in the sub-drive circuit 102R are turned on, and the current (reference current) generated by the current generation circuit 160 is copied to the sub-drive circuit 102R. That is, by turning on the switch WRT_R in the current generation circuit 160 and the two switches WRT_R1 and WRT_R2 in the sub-drive circuit 102R, the gate and the drain of the PMOS transistor 161R are electrically connected to the output terminal OUTR of the current generation circuit 160. The source of the PMOS transistor 161R is connected to a voltage of VG0, and the PMOS transistor 161 is diode-connected. The current is generated as a current flowing through the source and the drain of the PMOS transistor 161 and flowing through the output current source IA, as a current having the same gradient as the reference current. In this state, the switch WRT_R in the current generation circuit 160 and the two switches WRT_R1 and WRT_R2 in the sub-drive circuit 102R are turned off. The gate-source capacitor 162R holds a gate-source voltage (output stage VgsR in the drawing) necessary for generating a current having the same slope as the reference current.
Similarly, the switch WRT_B in the current generation circuit 160 and the two switches WRT_B1 and WRT_B2 in the sub-drive circuit 102B are turned on, and the reference current generated by the current generation circuit 160 is copied to the sub-drive circuit 102B. In addition, the switch WRT_G in the current generation circuit 160 and the two switches WRT_G1 and WRT_G2 in the sub-drive circuit 102G are turned on, and the reference current generated by the current generation circuit 160 is copied to the sub-drive circuit 102G.
In parallel with the operations in the sections S1 to S4 described above, in each sub-drive circuit, an offset voltage is set for each video signal line, and threshold value correction based on the set offset voltage is performed in each subpixel. Specifically, in the middle of the section S2 to the section S4, the switch SIG_VOFS in each sub-drive circuit is turned on in a state where the precharge input terminal 165 is connected to the offset voltage VOFS. As a result, the video signal lines 112R, 112B, and 112G are precharged to the offset voltage VOFS. In a state in which the video signal lines 112R, 112B, and 112G are precharged, the sampling transistor included in each subpixel is turned on (the WSEN1 signal is turned on), and the offset voltage VOFS is written to each subpixel. In each subpixel, a threshold value correction operation is performed using the offset voltage VOFS.
When setting and writing of the offset voltage VOFS for each sub-drive circuit are completed and copying of the reference current is completed, the switch PRCG in each sub-drive circuit is turned on for a certain period of time, and the video signal lines 112R, 112B, and 112G are precharged to the VG255. That is, the voltage of the video signal lines 112R, 112B, and 112G change from VOFS to VG255. Note that the switch PRCG is the same switch as the switch SIG VOFS, but since the purpose of switching is different, the same switch is denoted by a different reference sign for convenience.
In the section S5, when the switch PRCG in each sub-drive circuit is turned off, the switch PWM in each sub-drive circuit is turned on for a time length according to the PWM signal. In the figure, only the PWM signal of one of the three subpixels (here, a subpixel 103R) is illustrated. In this example, the PWM signal of the maximum time length corresponding to the minimum gradation is illustrated. While the switch PWM is turned on, a current according to the gate-source voltage held in the capacitor 162R, that is, a current having the same gradient as the reference current, is supplied from the transistor 161R to the video signal line via the switch PWM (current sampling). As a result, the video signal line precharged to the VG255 is charged or discharged (charged in the example of the drawing). By charging the video signal line, the voltage of the video signal line (the voltage of the pixel load capacitor) is set to or brought close to the voltage VG0 corresponding to the minimum gradation.
When the switch PWM is turned off in the section S6, the sampling transistor of each subpixel is turned on (the WSEN2 signal is turned on), and the voltage VSIG of the video signal line is written to each subpixel. In each subpixel, a light emitting element is driven according to the voltage VSIG, and light is emitted at a gradation corresponding to the signal voltage VSIG. The sections S1 to S5 may be repeated one or more times before the signal voltage is written (before the sampling transistor is turned on). As a result, the gate voltage of the output current source IA of the current generation circuit 160 is adjusted with high accuracy, and the voltage VSIG can be set to a target voltage (VG0 in the example of the drawing) with high accuracy. In the drawing, it is schematically illustrated that the voltage can be brought close to the voltage VG0 by increasing the number of operations from n times to (n+1) times.
According to the configurations of
Note that the above-described embodiments illustrate an example for embodying the present disclosure, and the present disclosure can be implemented in various other forms. For example, various modifications, substitutions, omissions, or combinations thereof can be made without departing from the gist of the present disclosure. Embodiments in which such modifications, substitutions, omissions, and the like are made are also included in the scope of the present disclosure, and are included in the invention described in the claims and equivalents thereof.
Furthermore, the effects of the present disclosure described in the present specification are merely examples, and other effects may be provided.
Note that the present disclosure can also have the following configurations.
[Item 1]
A drive circuit including
[Item 2]
The drive circuit according to item 1, in which
[Item 3]
The drive circuit according to item 2, further including
[Item 4]
The drive circuit according to item 3, in which
[Item 5]
The drive circuit according to item 4, further including
[Item 6]
The drive circuit according to item 3, in which
[Item 7]
The drive circuit according to item 3, in which
[Item 8]
The drive circuit according to any one of items 1 to 7, in which
[Item 9]
The drive circuit according to any one of items 1 to 8, in which
[Item 10]
The drive circuit according to any one of items 1 to 9, in which
[Item 11]
The drive circuit according to item 10, further including
[Item 12]
The drive circuit according to any one of item 1 to 11, further including
[Item 13]
The drive circuit according to item 12, in which
[Item 14]
The drive circuit according to item 13, in which
[Item 15]
The drive circuit according to any one of items 1 to 14, in which
[Item 16]
The drive circuit according to item 15, in which
[Item 17]
A display device including
[Item 18]
A drive method including
Number | Date | Country | Kind |
---|---|---|---|
2020-058960 | Mar 2020 | JP | national |
This is a Continuation Application of U.S. patent application Ser. No. 17/907,811, filed Aug. 29, 2022, which is a 371 National Stage Entry of International Application No.: PCT/JP2021/011198, filed on Mar. 18, 2021, which in turn claims priority from Japanese Priority Patent Application JP 2020-058960 filed on Mar. 27, 2020, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 17907811 | Aug 2022 | US |
Child | 18364643 | US |