The present invention relates to a drive circuit for operating at least one lamp in an associated load circuit, in which the terminals for the at least one lamp are arranged, having two switches in a half-bridge arrangement.
A drive circuit such as this known from the prior art is shown schematically in
The present invention therefore has the object of developing a generic drive circuit such that it has low forward power losses at medium currents of approximately 1 to 10 amperes and has at the same time low costs and a defined level of drivability using microcontrollers or integrated control modules.
This object is achieved by a drive circuit comprising a cascode circuit.
The present invention is based, on the one hand, on the knowledge that rapid switching can be achieved if a low-voltage MOSFET is used in combination with a bipolar transistor. The MOSFET need therefore only produce the small control voltage for the bipolar transistor and may therefore be small and inexpensive. The bipolar transistor, whose power loss is linked only linearly to the current flowing through it, can be dimensioned for high currents at low cost. The advantages of the MOSFET (high dynamic response and drivability using an integrated circuit) and those of the bipolar transistor (high performance which can be achieved at low cost) can thus be linked to one another in an optimum manner.
Secondly, the invention is also based on the knowledge that such a drive circuit can be started in a simple manner if some of the energy flowing in the load circuit is transferred to the input circuit of the respective switch. Since a bipolar transistor is essentially a current-controlled component, a corresponding control current needs to be provided for it at the base. For this purpose, a primary winding of a transformer is formed in the load circuit, and the secondary windings of said transformer are arranged in the input circuit of each bipolar transistor, thus supplying the base of the bipolar transistor with current. In order to reduce the forward power losses of the bipolar transistors, it is preferred to dimension the transformer such that the base current makes up approximately one fifth of the collector current. At a practical current amplification of 20, the bipolar transistor is overdriven at a ratio of 4. This results in low forward power losses. Whilst it would not be possible to use an integrated circuit to drive the bipolar transistor as a result of the high control currents required, it is very easily possible to do so using a MOSFET as an essentially voltage-controlled component.
Known from the prior art are cascode circuits having a bipolar transistor and a MOSFET transistor, but these are used for entirely different purposes: EP 0 753 987 D1 discloses the use of such a cascode circuit, in which the bipolar transistors are controlled by MOSFETs arranged in the emitter, for disconnecting a half-bridge arrangement if the lamp to be operated has aged. U.S. Pat. No. 5,998,942 (see
A preferred embodiment of the present invention is characterized in that a diode is arranged such that, in the case of an npn-bipolar transistor, it prevents a positive base current from flowing away via the secondary winding, and, in the case of a pnp-bipolar transistor, it prevents a negative base current from flowing away via the secondary winding. This is of importance since the base current flowing away via the secondary winding would prevent the formation of a voltage between the control electrode of the bipolar transistor and the reference electrode of the field-effect transistor, and thus the formation of a sufficiently high base-emitter voltage. At least one diode or one Zener diode can be arranged between the potential of the control electrode of the bipolar transistor and the potential of the reference electrode of the field-effect transistor, in parallel with the control electrode of the bipolar transistor and the reference electrode of the field-effect transistor. As a result, at least the voltage across the pn-junction of the diode is present as the base-emitter voltage across the pn-junction of the bipolar transistor. The bipolar transistor is thus caused to open. The same applies when using a Zener diode.
Furthermore, a non-reactive resistor and a capacitor, connected in series, are preferably arranged in parallel with the control electrode of the bipolar transistor and the reference electrode of the field-effect transistor. It is thus possible in a simple and cost-effective manner to implement the start of the drive circuit according to the invention. Detailed embodiments in this respect are explained below. The control electrode of the field-effect transistor is preferably connected to an integrated driver circuit. As already mentioned, a field-effect transistor is a voltage-controlled element which can be controlled using an integrated circuit as a result of the low requirement for control current.
The diode or the Zener diode, which is arranged between the potential of the control electrode of the bipolar transistor and the potential of the reference electrode of the field-effect transistor, in parallel with the control electrode of the bipolar transistor and the reference electrode of the field-effect transistor, is preferably dimensioned such that a voltage of at least 1 volt, preferably approximately 2 volts, is present across it.
The reference electrode of the field-effect transistor of each switch is preferably connected to a first reference potential, whereas the control electrode of the bipolar transistor of each switch is connected via a high-value resistor to a second reference potential. This resistor serves the purpose of supplying charge carriers to the base of the bipolar transistor as long as the secondary winding of the transformer does not introduce any charge carriers in the input circuit, in particular during starting.
Furthermore, a non-reactive resistor is preferably arranged between the control and the reference electrode of the bipolar transistor of each switch. This ensures that the transistor, when it is disconnected, is not connected by interference pulses at an inopportune moment. In a cascode circuit as in the present case, the resistor may also serve the purpose of charging or discharging parasitic capacitances of the field-effect transistor. Finally, said resistor also increases the dielectric strength of the bipolar transistors.
The switches are preferably designed such that when operating they can be operated at a frequency of between 100 Hz and 300 kHz and at a voltage of 100 to 1000 volts. Further advantageous embodiments are described in the subclaims.
Exemplary embodiments of the invention will be described in more detail below with reference to the attached drawings, in which:
A typical value for R21 is 1 MΩ; a typical value for R22 is 100 Ω. In place of the diode D22, a Zener diode, naturally with the reverse arrangement, may also be provided.
In
If, for example, the Zener diode Z2 is dimensioned for two volts, when the intermediate circuit voltage Uzw is applied the capacitor C2 is charged via the resistors R22 and R21 to approximately 2 volts. When the field-effect transistor F2 is connected by means of a suitable signal at the terminal 10, as a result of which the bipolar transistor B2 opens, the capacitor C2 is discharged, and leads to a base current IB of 100 mA when the resistor R22 is dimensioned to 10 Ω. As a result, the switch S2 is connected for one to two μs, a load current IL begins to flow, and, by means of the link between the primary winding L0 and the secondary winding L2, a signal is injected into the input circuit E2, as a result of which the circuit arrangement is started.
In a particularly advantageous manner, this solution also improves the disconnection behavior of the circuit. Specifically, there is the problem that, when the field-effect transistor F2 is disconnected, the emitter current IE of the bipolar transistor suddenly becomes zero. Since the collector current IC nevertheless wants to continue to flow, the base is overrun with charge carriers, which results in long disconnection times. Long disconnection times, however, are associated with the problem that the collector current IC and the collector-emitter voltage UCE simultaneously have positive values over a determined time period. Since the product of these two variables dominates the forward power loss, power losses which are undesirably high result. The diode D22 and the non-reactive resistor R22, connected in parallel, in
In
Number | Date | Country | Kind |
---|---|---|---|
103 25 872 | Jun 2003 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4894587 | Jungreis et al. | Jan 1990 | A |
5475285 | Konopka | Dec 1995 | A |
5777861 | Shimizu et al. | Jul 1998 | A |
6078144 | Twardzik | Jun 2000 | A |
20040012345 | Busse et al. | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
0261018 | Mar 1988 | EP |
0753987 | Jan 1997 | EP |
0936845 | Aug 1999 | EP |
Number | Date | Country | |
---|---|---|---|
20040245938 A1 | Dec 2004 | US |