A continuously variable transmission (CVT) includes a drive clutch (primary clutch) and a driven clutch (secondary clutch). The drive clutch is typically in operational communication with an engine to receive engine torque and the driven clutch is in operational communication with a driveline of an associated vehicle. The driven clutch is in rotational communication with the drive clutch via endless loop member such as a belt. The drive clutch includes a movable sheave assembly that is configured move axially on a post as rotational speed and centrifugal forces increase and decrease. The movable sheave assembly axially moves on the post either away from or towards a fixed sheave. The belt, riding on faces of the fixed and movable sheave assemblies move radially either towards a central axis of the drive clutch or away from the central axis therein changing the gear ratio of the CVT.
One common type of movable sheave assembly uses a dual ramp (sheave and spider)/centrifugal sliding element configuration to generate belt clamp forces (i.e., move the moveable sheave portion on the post towards the fixed sheave). The sliding interface of the centrifugal sliding element on the ramp surfaces creates friction. This friction results in undesired wear at the centrifugal sliding element therein limiting CVT shifting performance.
For the reasons stated above and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for an improved and effective drive clutch with reduced wear.
The following summary is made by way of example and not by way of limitation. It is merely provided to aid the reader in understanding some of the aspects of the subject matter described. Embodiments provide an improved drive clutch with a novel rolling centrifugal element assembly.
In one embodiment, a drive clutch for a continuously variable transmission is provided. The drive clutch includes a post, a fixed sheave, a movable sheave assembly, a plurality of spaced sheave ramps, a spider, and a plurality of roller centrifugal elements. The fixed sheave is statically mounted on an end of the post. The movable sheave assembly is slidably mounted on the post. The movable sheave assembly includes a housing that forms at least in part an interior chamber. The plurality of spaced sheave ramps are positioned within the interior chamber of the housing of the movable sheave assembly. The spider is received within the housing of the movable sheave assembly. The spider is statically mounted on the post. The spider includes a plurality of spaced radially extending spider ramp arms. Each spider ramp arm includes at least one spider ramp. The plurality of roller centrifugal elements are received within the interior chamber of the housing of the movable sheave. Each roller centrifugal element includes at least one sheave ramp roller and at least one spider ramp roller. The at least one sheave ramp roller is configured to engage one of an associated sheave ramp and associated spider ramp and the at least one spider ramp roller configured to engage another one of the associated sheave ramp and associated spider ramp.
In another embodiment, a rolling centrifugal element for a clutch of a continuously variable transmission is provided. The rolling centrifugal element includes an axle and at least one sheave ramp roller and at least one spider ramp roller mounted on the axle. The at least one sheave ramp roller is configured to engage one of an associated sheave ramp of a movable sheave assembly of the clutch and an associated spider ramp of a spider and the at least one spider ramp roller configured to engage another one of the associated sheave ramp and the associated spider ramp. The at least one sheave ramp roller is configured to rotate independent of the at least one sheave ramp roller.
In yet another example, a vehicle is provided. The vehicle includes an engine to produce engine torque, a driveline and a CVT. The CVT includes a driven clutch and a drive clutch. The driven clutch is in operational communication with the driveline. The drive clutch is in operational communication with the engine. The drive clutch includes a post, a fixed sheave, a movable sheave assembly, a plurality of spaced sheave ramps, a spider, and a plurality of roller centrifugal elements. The fixed sheave is statically mounted on an end of the post. The movable sheave assembly is slidably mounted on the post. The movable sheave assembly includes a housing that forms at least in part an interior chamber. The plurality of spaced sheave ramps are positioned within the interior chamber of the housing of the movable sheave assembly. The spider is received within the housing of the movable sheave assembly. The spider is statically mounted on the post. The spider includes a plurality of spaced radially extending spider ramp arms. Each spider ramp arm includes at least one spider ramp. The plurality of roller centrifugal elements are received within the interior chamber of the housing of the movable sheave. Each roller centrifugal element includes at least one sheave ramp roller and at least one spider ramp roller. The at least one sheave ramp roller is configured to engage one of an associated sheave ramp and associated spider ramp and the at least one spider ramp roller configured to engage another one of the associated sheave ramp and associated spider ramp. An endless looped member couples torque between the drive clutch and the driven clutch.
The present invention can be more easily understood and further advantages and uses thereof will be more readily apparent, when considered in view of the detailed description and the following figures in which:
In accordance with common practice, the various described features are not drawn to scale but are drawn to emphasize specific features relevant to the present invention. Reference characters denote like elements throughout Figures and text.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown by way of illustration specific embodiments in which the inventions may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that changes may be made without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the claims and equivalents thereof.
Embodiments of the present invention provide an improved clutch for a CVT. Embodiments employ rolling centrifugal elements that eliminate a sliding interface between a spider and sheave. In one example, rolling centrifugal elements split a centrifugal element contact between a pair of rollers that contact a spider ramp and a single roller that contacts a sheave ramp. Further in an example embodiment, all three rollers of a rolling centrifugal element are assembled and contained on a central axle with a pair of thrust washers and clips as discussed below in detail.
Referring to
Centrifugal forces, caused by the drive clutch 100 rotating, cause rolling centrifugal elements 150 position between an associated sheave ramp 109 within the housing 106 of the movable sheave assembly 104 and a spider ramp 131 of the spider 130 to push the movable sheave assembly 104 towards the fixed sheave 102.
The sheave ramp roller 170 and spider ramp rollers 160a and 160b are mounted on an axle 154. The axle 154 in this example includes a mid-portion 154a upon which the sheave ramp roller 170 is mounted. The mid-portion 154a has a larger dimeter than side portions 154b and 154c upon which the spider ramp rollers 160a and 160b are mounted in this example. Thrust washers 158a and 158b and retaining clips 161a and 161b retain the sheave ramp roller 170 and the spider ramp rollers 160a and 160b on the axle 154. An optional weighted insert 152 may be positioned within a central bore of axle 154.
Referring to
By splitting the roller contact surfaces between the spider 130 and movable sheave assembly 104, the centrifugal elements 150 can perform under rolling contact vs sliding contact. The rolling contact of the centrifugal elements 150 reduces friction in the system and allows the drive clutch 100 to respond easier to changes in vehicle dynamics. The result is a better performing CVT having consistent shift characteristics and improved durability. Further, the design provides for better drivability characteristics, disengagement characteristics, back shifting characteristics as well as less wear than known designs.
In one example, the sheave ramp roller 170 is pressed fitted on the mid-portion 154a of the axle 154 and the outside spider ramp rollers 160a and 160b are mounted on the respective side portions 154b and 154c of axle via thrust washers 158a and 158b and retaining clips 161a and 161b. In one example, the sheave ramp roller 170 and outside spider ramp rollers 160a and 160b are made with an over-mold plastic. In another example, they are solid polymer rollers. The axle material may be varied to achieve a mass adjustment in an example embodiment. Further in one example, all rollers 160a, 160b and 170 are free to rotate in relation to the axle. In addition, in one example, the sheave ramp roller 170 is integral to axle 154. Moreover, the design allows the sheave ramp roller 170 to rotate in the opposite direction than the outside spider ramp rollers 160a and 160b.
In another embodiment, there are two sheave ramp rollers and one spider ramp roller. Further in this example, there are two ramp surfaces within the housing of the movable sheave assembly for each rolling centrifugal element and one ramp surface on each arm of the spider. Hence, other rolling centrifugal element configurations are contemplated to achieve separate engagement of the spider ramps and sheave ramps.
Referring to block diagram of
The driven clutch 206 is in communication with a driveline that, in this example, includes a gear box 208. The vehicle 200 in this example includes a rear differential 216 that is in operational communication with the gear box 208 via rear prop shaft 212. The rear differential is in operational communication with rear wheels 224a and 224b via respective prop shafts 222a and 222b.
Further in this example, the vehicle includes a front differential 214 that is in operational communication with the gear box 208 via front prop shaft 210. The front differential is in communication with the front wheels 220a and 220b via front half shafts 218a and 218b. Other vehicle configurations may use the drive clutch 100 described above including, tracked vehicles, as well as any other types of vehicles that employ a CVT system.
An example of an arrangement where the spider ramp 331 is designed to engage the sheave ramp roller 170 while the spider ramp rollers 160a and 160b of the rolling centrifugal elements 150 engage sheave ramp portions 331a and 331b of a sheave ramp 309 is illustrated in
Example 1 includes a drive clutch for a continuously variable transmission. The drive clutch includes a post, a fixed sheave, a movable sheave assembly, a plurality of spaced sheave ramps, a spider, and a plurality of roller centrifugal elements. The fixed sheave is statically mounted on an end of the post. The movable sheave assembly is slidably mounted on the post. The movable sheave assembly includes a housing that forms at least in part an interior chamber. The plurality of spaced sheave ramps are positioned within the interior chamber of the housing of the movable sheave assembly. The spider is received within the housing of the movable sheave assembly. The spider is statically mounted on the post. The spider includes a plurality of spaced radially extending spider ramp arms. Each spider ramp arm includes at least one spider ramp. The plurality of roller centrifugal elements are received within the interior chamber of the housing of the movable sheave. Each roller centrifugal element includes at least one sheave ramp roller and at least one spider ramp roller. The at least one sheave ramp roller is configured to engage one of an associated sheave ramp and associated spider ramp and the at least one spider ramp roller configured to engage another one of the associated sheave ramp and associated spider ramp.
Example 2 includes the drive clutch of Example 1, wherein each spider ramp further includes at least one spider ramp portion and a non-contact portion. The at least one sheave ramp roller of an associated roller centrifugal element is configured to be positioned within the non-contact portion of an associated spider ramp.
Example 3 includes the drive clutch of any of the Example 1, wherein each spider ramp further includes a pair of spider ramp portions and a non-contact portion. The non-contact portion is positioned between the pair of spider portions. The at least one spider ramp roller of an associated roller centrifugal element includes a pair of spider ramp rollers. Each spider roller of the pair of spider rollers engages one spider ramp portion of the pair of spider ramp portions of an associated spider ramp. The at least one sheave ramp roller of an associated roller centrifugal element is configured to be positioned within the non-contact portion of an associated spider ramp.
Example 4 includes the drive clutch of Example 3, wherein the pair of spider ramp portions have a first height that is offset from a second height of the non-contact portion.
Example 5 includes the drive clutch of any of the Examples 3-4, further including an axle for each roller centrifugal element. An associated pair of spider ramp rollers and sheave ramp roller are mounted on each axle.
Example 6 includes the drive clutch of Example 5, further wherein each axle includes a central bore. A weight is positioned within the central bore.
Example 7 includes the drive clutch of any of the Examples 1-6, wherein the at least one sheave ramp roller of each roller centrifugal element extends radially outward farther than the at least one spider ramp roller.
Example 8 includes the drive clutch of any of the Examples 1-7, wherein the at least one sheave ramp roller and at least one spider ramp roller are free to rotate independent of each other on an axle.
Example 9 includes the drive clutch of any of the Examples 1-8, further including a cover coupled to the housing to form the interior chamber.
Example 10 includes a rolling centrifugal element for a clutch of a continuously variable transmission. The rolling centrifugal element includes an axle and at least one sheave ramp roller and at least one spider ramp roller mounted on the axle. The at least one sheave ramp roller is configured to engage one of an associated sheave ramp of a movable sheave assembly of the clutch and an associated spider ramp of a spider and the at least one spider ramp roller configured to engage another one of the associated sheave ramp and the associated spider ramp. The at least one sheave ramp roller is configured to rotate independent of the at least one sheave ramp roller.
Example 11 includes the rolling centrifugal element of Example 10, wherein one of the at least one sheave ramp roller and the at least one spider ramp roller extends radially outward farther than the other one of the at least one sheave ramp roller and the at least one spider ramp roller.
Example 12 includes the rolling centrifugal element of any of the Examples 10-11, wherein the at least one spider ramp roller includes a pair of spider ramp rollers. The at least one sheave ramp roller is configured to be positioned within the non-contact portion of an associated spider ramp.
Example 13 includes the rolling centrifugal element of any of the Examples 10-12, further including a weight insert received within a central bore of the axle.
Example 14 includes the rolling centrifugal element of any of the Examples 10-13, wherein the axle further includes a mid-portion, a first side portion and second side portion. The at least one sheave ramp roller is mounted on the mid-portion of the axle. One spider ramp of the pair of the spider ramps is mounted on the first side portion. Another spider ramp of the pair of the spider ramps is mounted on the second side portion. The mid-portion is positioned between the first side portion and the second side portion.
Example 15 includes the rolling centrifugal element of Example 14, wherein the mid-portion of the axle has a larger diameter than a diameter of the first and second side portions of the axle.
Example 16 includes the rolling centrifugal element of and of the Examples 10-15, wherein at least one of the at least one sheave ramp roller and the at least one spider ramp roller is rotationally mounted on the axle.
Example 17 includes a vehicle. The vehicle includes an engine to produce engine torque, a driveline and a CVT. The CVT includes a driven clutch and a drive clutch. The driven clutch is in operational communication with the driveline. The drive clutch is in operational communication with the engine. The drive clutch includes a post, a fixed sheave, a movable sheave assembly, a plurality of spaced sheave ramps, a spider, and a plurality of roller centrifugal elements. The fixed sheave is statically mounted on an end of the post. The movable sheave assembly is slidably mounted on the post. The movable sheave assembly includes a housing that forms at least in part an interior chamber. The plurality of spaced sheave ramps are positioned within the interior chamber of the housing of the movable sheave assembly. The spider is received within the housing of the movable sheave assembly. The spider is statically mounted on the post. The spider includes a plurality of spaced radially extending spider ramp arms. Each spider ramp arm includes at least one spider ramp. The plurality of roller centrifugal elements are received within the interior chamber of the housing of the movable sheave. Each roller centrifugal element includes at least one sheave ramp roller and at least one spider ramp roller. The at least one sheave ramp roller is configured to engage one of an associated sheave ramp and associated spider ramp and the at least one spider ramp roller configured to engage another one of the associated sheave ramp and associated spider ramp. An endless looped member couples torque between the drive clutch and the driven clutch.
Example 18 includes the vehicle of Example 17, wherein each spider ramp further includes a pair of spider ramp portions and a non-contact portion. The non-contact portion is positioned between the pair of spider portions. The at least one spider ramp roller of an associated roller centrifugal element includes a pair of spider ramp rollers. Each spider roller of the pair of spider rollers engages one spider ramp portion of the pair of spider ramp portions of an associated spider ramp. The at least one sheave ramp roller of an associated roller centrifugal element is configured to be positioned within the non-contact portion of an associated spider ramp.
Example 19 includes the vehicle of any of the Examples 17-18, wherein the at least one sheave ramp roller and at least one spider ramp roller are free to rotate independent of each other on an axle.
Example 20 includes the vehicle of any of the Examples 17-19, wherein one of the at least one sheave ramp roller and the at least one spider ramp roller extends radially outward farther than the other one of the at least one sheave ramp roller and the at least one spider ramp roller.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement, which is calculated to achieve the same purpose, may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.
This application claims priority to U.S. Provisional Application Ser. No. 63/307,360, same title herewith, filed on Feb. 7, 2022, which is incorporated in its entirety herein by reference.
Number | Date | Country | |
---|---|---|---|
63307360 | Feb 2022 | US |