This application is based upon and claims benefit of priority of Japanese Patent Application No. 2005-8172 filed on Jan. 14, 2005, the content of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to a system for controlling drive of an automotive vehicle.
2. Description of Related Art
An automatic drive control system, which sets a distance between an own vehicle and a preceding vehicle to a longer distance when the preceding vehicle is a large vehicle, is proposed by JP-A-2-40798. This system includes two sonar detectors, i.e., one sonar detector that transmits ultrasonic waves toward a preceding vehicle with an upward angle and the other sonar detector that transmits ultrasonic waves in a horizontal direction. Distances to the preceding vehicle from an own vehicle detected by two sonar detectors are compared, and it is determined that the preceding vehicle is a large vehicle if the difference is smaller than a predetermined value. When the preceding vehicle is a large vehicle, the distance to the preceding vehicle is set to a longer distance, and the own vehicle follows the preceding vehicle not to change the set distance. Since a longer distance is kept between the own vehicle and the preceding large vehicle, it is avoided that a traffic signal is blinded by the preceding vehicle.
There are various objects other than the preceding vehicle that constitute obstacles located in front of the own vehicle. For example, a wall along a curved road that makes a blind curve or an uphill road will constitute a front obstacle. The drive control system disclosed in JP-A-2-40798 detects only a size of the preceding vehicle, and other front obstacles are not taken into consideration.
The present invention has been made in view of the above-mentioned problem, and an object of the present invention is to provide an improved drive control system for an automobile, which detects front objects such as a wall along a curved road in addition to preceding vehicles and properly controls a vehicle to give improved security to a driver.
The drive control system for an automotive vehicle includes an image processor for processing a front image of an own vehicle, an electronic control unit for generating control target values, and actuators such as an acceleration (deceleration) actuator and a steering actuator. Obstacles, such as a preceding vehicle, a blind curve and an upward inclination of a road, located in a front vision field of a driver are taken in and processed by the image processor. The electronic control unit generates control target values based on the outputs from the image processor. The actuators control a driving speed of the vehicle and/or a lateral position in a driving lane based on the control target values fed from the electronic control unit.
The image processor outputs a vision field ratio sheltered by a front obstacle such as a preceding vehicle, a blind curve and an upward inclination of a road. A vision field ratio sheltered by a preceding vehicle (Rpv) is calculated by dividing a back side area of the preceding vehicle with a total area of the front vision field. A vision field ratio sheltered by a blind curve (Rbc) is calculated by dividing a difference between a normally visible distance and a calculated distance to a blind wall with the normally visible distance. A vision field ratio sheltered or hindered by an upward inclination of a road (Ri) is calculated by dividing a difference between a normally visible distance and a distance to a horizon of an uphill road with the normally visible distance. The front image may be taken in by an on-board camera. The vision field ratio sheltered by a preceding vehicle (Rpv) may be replaced by a back side area of the preceding vehicle, which is calculated from a front image taken by the camera.
According to the present invention, front obstacles other than a preceding vehicle can be detected. Since the driving speed and/or the lateral position in the driving lane is controlled based on the front vision field ratio sheltered by a front object (Rpv, Rbc, Ri), an improved security in driving can be given to the driver. The driver can have a proper front vision since a distance to the front obstacle and the lateral position of the own vehicle in a driving lane is controlled based on a size of the obstacle occupying the front vision of the driver.
Other objects and features of the present invention will become more readily apparent from a better understanding of the preferred embodiments described below with reference to the following drawings.
A first embodiment of the present invention will be described with reference to accompanying drawings. As shown in
The camera 10 is mounted on a front portion of a vehicle for taking images in front of the vehicle. The image processor 20 processes the images taken by the camera 10 to formulate information regarding front objects and own vehicle in a driving lane. The information is fed to the ECU 30 for generating the target control values. The ECU 30 is composed of a microcomputer that generates target control values to be fed the actuators 50, 60. That is, the ECU 30 sets a target driving time up to a preceding vehicle Tt (Tt=Dbet/Vown, where Dbet is a distance between the preceding vehicle and the own vehicle, and Vown is a driving speed of the own vehicle) when a preceding vehicle is detected. The vehicle speed Vown is controlled to attain the target driving time Tt. When no preceding vehicle is detected, the driving speed of the own vehicle Vown is controlled to attain a target driving speed Vt. The ECU 30 also generates target control values for the steering actuator 60.
The actuator 50 for acceleration and deceleration is composed of various actuators such as a throttle valve actuator, a brake actuator and a transmission actuator. Each actuator is controlled based on the target control values fed from the ECU 30. The steering actuator 60 includes a motor for driving a steering shaft. The motor is controlled based on the target control values fed from the ECU 30.
With reference to
The detection process performed in step S30 shown in
At step S120, future positions of the own vehicle is estimated from the information regarding the driving lane calculated at step S110, assuming that the own vehicle drives along the present driving lane, as shown in
At step S150, whether or not the preceding vehicle is detected at the process of step S140 is determined. If the preceding vehicle is detected, the process proceeds to step S160, and if not, the process proceeds to step S170. At step S160, a vision field ratio Rpv sheltered by the preceding vehicle relative to a total vision field is calculated from the front image. Also a lateral position of the preceding vehicle Pl(pv) in the driving lane is calculated. All the information including Rpv, Pl(pv) and the distance to the preceding vehicle is fed to the ECU 30 as shown in step S40 in
At step S170, a point up to which the present driving lane continues is determined, based on the information regarding the driving lane calculated at step S110 and the future positions of the own vehicle calculated at step S120. As shown in
At step S190, a distance D along an estimated driving path of the own vehicle from the present position to the point Rp (shown in
At step S200, whether the points Rp and Lp detected at step S170 are located close to a top of an uphill road (a top of a driving lane having an upward inclination) is determined. As shown in
At step S220, a vision field ratio Ri sheltered (or hindered) by an upward inclination is calculated according to the following formula: Ri=(Dv−D1)/Dv, where Dv is the normal visible range as explained above, and D1 is a distance to the horizon of the uphill road. All the information regarding the preceding vehicle including Rpv and all the information regarding the driving lane including Rbc and Ri are fed to the ECU 30 in the step S40 shown in
Now, a process performed in the control target value generating ECU 30 will be described with reference to
With reference to
At step S310, a target driving time Tt up to the preceding vehicle (Tt=Dbet/Vown, where Dbet is a distance between the own vehicle and the preceding vehicle, and Vown is a driving speed of the own vehicle) is set according to the vision field ratio Rpv sheltered by the preceding vehicle. The target driving time Tt is set so that Tt becomes longer as the ratio Rpv is larger, as shown in
At step S330, a target lateral position Plt(own) of the own vehicle in the driving lane is calculated, based on the ratio Rpv, the lateral position Pl(pv) of the preceding vehicle in the driving lane and the lateral position Pl(own) of the own vehicle in the driving lane. The Plt(own) is calculated so that a good vision field of the driver is secured. More particularly, as shown in
At step S340 (where no preceding vehicle is detected), a target driving speed Vt is set. At step S350, whether or not the vision field ratio Rbc sheltered by a blind curve is included in the information regarding the driving lane, which is received at step S510 (
At step S360, a target acceleration (or deceleration) dVt is calculated based on the target driving speed Vt set at step S340, a present driving speed V and the vision field ratio Rbc, so that the driving speed does not exceeds the target driving speed Vt. The actuator 50 controls the driving speed based on the target acceleration (deceleration) dVt fed from the ECU 30. As shown in
At step S370, a target lateral position Plt in the driving lane is calculated, based on the vision filed ratio Rbc (blind curve) and a present lateral position Pl so that a good vision field is secured for the driver. As shown in
At step S380, whether or not the vision field ratio Ri sheltered (or hindered) by an upward inclination is included in the information fed at step S510 (
On the other hand, at step S400 (where no upward inclination is found), a target acceleration (deceleration) dVt is calculated according to the target driving speed Vt set at step S340 and a present driving speed, so that the vehicle is driven at the target driving speed Vt. The actuator 50 controls the driving speed based on the target acceleration (deceleration) dVt fed from the ECU 30.
As described above, the drive control system 100 according to the present invention calculates the vision field ratio Rpv (preceding vehicle), the vision field ratio Rbc (blind curve) and the vision field ratio Ri (inclination). The driving speed and the lateral position of the own vehicle in the driving lane are controlled according to these vision field ratios Rpv, Rbc and Ri. In this manner, situations where the front vision field of the driver is sheltered or hindered are widely detected, and the driving speed and the lateral position in the driving lane are properly controlled according to the detected situations. Thus, the drive control system 100 of the present invention provides a driver with safety in driving, and the driver feels safety in driving.
A second embodiment of the present invention will be described, referring mainly to
Therefore,
At step S310a in
At step S320a, a target acceleration (deceleration) dVt is calculated based on the target driving time Tt, taking into consideration a present driving speed and the distance Dbet between the own vehicle and the preceding vehicle. The actuator 50 controls the driving speed based on the target acceleration (deceleration) dVt. At step S330a, a target lateral position Plt(own) of the own vehicle in the driving lane is calculated, based on the back side area Sb of the preceding vehicle, a lateral position Pl(pv)of the preceding vehicle in the driving lane and a present lateral position Pl(own) of the own vehicle in the driving lane, so that a better vision field is secured for the driver. More particularly, as shown in
The vehicle control system 100 as the second embodiment of the present invention controls the driving speed and the lateral position in the driving lane based on the back side area of a preceding vehicle. Since the vision field of a driver is more hindered as the size of the preceding vehicle is larger, the driving speed and the lateral position are controlled according to the back side area Sb of the preceding vehicle. A proper vision field of a driver is secured, and accordingly the driver feels safely in driving.
While the present invention has been shown and described with reference to the foregoing preferred embodiments, it will be apparent to those skilled in the art that changes in form and detail may be made therein without departing from the scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2005-008172 | Jan 2005 | JP | national |