The subject application is the U.S. National Phase of PCT/JP2013/083300 filed Dec. 12, 2013, which claims priority to Japanese Patent Application No. 2012-278542 filed Dec. 20, 2012. The subject matter of each is incorporated herein by reference in entirety.
The present invention relates to a driving device and a driving method for a vacuum fluorescent display.
As an exemplary vacuum fluorescent display (VFD), a configuration disclosed in Patent Literature 1 is known. This vacuum fluorescent DISPLAY is an active matrix type vacuum fluorescent display in which a plurality of fluorescent substance-coated anodes are arranged in a matrix pattern, a positive voltage is selectively applied to these anodes to cause thermoelectrons emitted from a cathode filament to collide with the fluorescent substance on arbitrary anodes, whereby a luminous display of a desired image is performed.
Patent Literature 1: Japanese Patent Application Laid-open No. 2004-87404
Patent Literature 2: Japanese Patent Application Laid-open No. 5-13181
An active matrix type vacuum fluorescent display has a problem that luminance unevenness occurs when a positive voltage is applied to a plurality of anodes. This is because, since a positive electric field is generated in anodes in an ON state to which a positive voltage is applied, and a negative electric field is generated in anodes in an OFF state, a deviation occurs in the electric field between a central region and a peripheral region of a plurality of anodes in the ON state and, electrons are easily collected and luminance easily becomes high in the central region and electrons do not easily reach the peripheral region and luminance becomes low in the peripheral region. As an alternative, Patent Literature 2 discloses a method for obtaining stable uniform luminance by causing a magnetic field to generate in a direction vertical to a direction in which electrons move, regarding a driving device for a flat fluorescence tube used for, for example, a backlight of a liquid crystal display.
The method disclosed in Cited Literature 2, however, merely makes the luminance uniform in the direction vertical to the direction in which the electrons move, and therefore has room for improvement in raising display quality about driving an active matrix type vacuum fluorescent display that displays images.
The present invention is made in view of the aforementioned circumstance, and an object thereof is to provide a driving device and a driving method for a vacuum fluorescent display capable of reducing luminance unevenness of a display image and improving a display quality.
To achieve the above object, a present invention is summarized as a driving device for a vacuum fluorescent display which includes: an anode unit constituted by a plurality of fluorescent substance-coated anodes arranged in a matrix pattern, and a cathode filament that emits electrons toward the anode unit, the device comprising: a first magnetic field generating means configured to generate a first magnetic field vertical to a direction in which the anode unit and the cathode filament face each other, and of which polarity is switchable periodically; and a second magnetic field generating means configured to generate a second magnetic field vertical to a direction in which the anode unit and the cathode filament face each other and crossing the first magnetic field, and of which polarity is switchable periodically.
To achieve the above object, a present invention is summarized as a driving method for a vacuum fluorescent display which includes: an anode unit constituted by a plurality of fluorescent substance-coated anodes arranged in a matrix pattern, and a cathode filament that emits electrons toward the anode unit, the method comprising generating a first magnetic field vertical to a direction in which the anode unit and the cathode filament face each other and a second magnetic field vertical to a direction in which the anode unit and the cathode filament face each other and crossing the first magnetic field, with the directions switched periodically.
According to the present invention, a driving device and a driving method for a vacuum fluorescent display capable of reducing luminance unevenness of a display image and improving a display quality can be provided.
A driving device for a vacuum fluorescent display according to an embodiment of the present invention will be described with reference to the drawings.
The vacuum fluorescent display 10 includes an anode unit 11, cathode filaments 12, and a sealing case 13 as illustrated in
The anode unit 11 is constituted by a plurality of fluorescent substance-coated anodes 11a arranged in a matrix pattern on an unillustrated circuit board. A positive voltage (e.g., 5V) or a negative voltage (e.g., −35V; a filament voltage) is selectively applied to each anode 11a by a controller 60 and the anode 11a is switchable between an ON state in which the positive voltage is applied and an OFF state in which the negative voltage is applied.
A plurality of cathode filaments 12, made of thin metal wires, are disposed to face the anode unit 11 with a predetermined interval in a Z axis direction in
The sealing case 13, made of a glass material, is a case that accommodates the anode unit 11 and the cathode filaments 12. Inside of the sealing case 13 is kept in vacuum. A surface of the sealing case 13 on which the cathode filaments 12 are disposed (i.e., an upper surface in
The first drive circuit 20 includes a first alternating current source A1, and supplies a first alternating current of a predetermined frequency to the first magnetic field generating means 30 from the first alternating current source A1 in accordance with control signals from the controller 60. The first drive circuit 20 can adjust the magnitude of the first alternating current.
The first magnetic field generating means 30 is constituted by a pair of coils each having a magnetic substance material as a core and disposed to face each other in an X axis direction in
The second drive circuit 40 includes a second alternating current source A2, and supplies a second alternating current of a predetermined frequency to the second magnetic field generating means 50 from the second alternating current source A2 in accordance with control signals from the controller 60. The second drive circuit 40 can adjust the magnitude of the second alternating current.
The second magnetic field generating means 50 is constituted by a pair of coils each having a magnetic substance material as a core and disposed to face each other in a Y axis direction in
The controller 60 is constituted by, for example, a microcomputer that includes a central processing unit (CPU) and a storage, such as read only memory (ROM), and a graphic display controller (GDC). The controller 60 applies a negative voltage to the cathode filaments 12 and supplies a current to cause the thermoelectrons E to be emitted, and selectively switches the ON state and the OFF state of each anode 11a in accordance with input image data. Thus, the controller 60 selectively causes the fluorescent substance coated on arbitrary anodes 11a to emit light and output display light L, and causes a display image, such as characters and figures, to be displayed on the vacuum fluorescent display 10. Further, the controller 60 outputs control signals to the first and the second drive circuits 20 and 40 in synchronization with the above-described display control, and causes the first and the second magnetic field generating means 30 and 50 to generate the first and the second magnetic fields M1 and M2.
Next, an effect of the first and the second electric fields M1 and M2 in the driving method of the present embodiment will be described.
However, when the first magnetic field M1 is generated by the first magnetic field generating means 30 in the positive direction of the X axis in
Further, when the first magnetic field M1 is generated by the first magnetic field generating means 30 in the negative direction of the X axis in
As described above, by supplying the first alternating current of a predetermined frequency to the first magnetic field generating means 30 and periodically switching the direction of the first magnetic field M1 to the reverse direction, the deviation of the thermoelectrons E in one direction vertical to the direction in which the anode unit 11 and the cathode filament 12 face each other (i.e., the Y axis direction) can be moved.
However, when the second magnetic field M2 is generated by the second magnetic field generating means 50 in the positive direction of the Y axis in
Further, when the second magnetic field M2 is generated by the second magnetic field generating means 50 in the negative direction of the Y axis in
As described above, by supplying the second alternating current of a predetermined frequency to the second magnetic field generating means 50 and periodically switching the direction of the second magnetic field M1 to the reverse direction, the deviation of the thermoelectrons E in one direction vertical to the direction in which the anode unit 11 and the cathode filament 12 face each other (i.e., the X axis direction) is moved. Therefore, by periodically switching each of the directions of the first and the second magnetic fields M1 and M2 to the reverse direction, the deviation of the thermoelectrons E in two directions vertical to the direction in which the anode unit 11 and the cathode filament 12 face each other (i.e., the X axis direction and the Y axis direction) is moved and, whereby luminance unevenness can be reduced about the entire display image.
Next, prescription of the first and the second alternating currents for reducing the luminance unevenness about the entire display image of the vacuum fluorescent display 10 will be described. The first alternating current acts on the first magnetic field generating means 30 to generate the first magnetic field M1, and the second alternating current acts on the second magnetic field generating means 50 to generate the second magnetic field M2. Since the first magnetic field M1 and the second magnetic field M2 cross vertically each other, the first and the second Lorentz forces F1 and F2 acting on the thermoelectrons E also cross vertically each other. Further, since both the first and the second magnetic fields M1 and M2 are alternating current magnetic fields of which direction is periodically switchable, the direction of the Lorentz force that the thermoelectrons E actually receive when the first and the second magnetic fields M1 and M2 are synthesized, i.e., a path traced by the deviation of the thermoelectrons E, can be represented by a Lissajous's waveform (Lissajou's figure) in which the first magnetic field M1 is plotted on the Y axis and the second magnetic field M2 is plotted on the X axis. For example, a case in which sinusoidal currents having a phase difference of 90 degrees as illustrated in
The driving device 1 for the vacuum fluorescent display which is the present embodiment is the driving device for the vacuum fluorescent display 10 that includes the anode unit 11 constituted by a plurality of fluorescent substance-coated anodes 11a arranged in a matrix pattern, and the cathode filaments 12 that emit electrons toward the anode unit 11, the device including: a first magnetic field generating means 30 that generates a first magnetic field M1 vertical to a direction in which the anode unit 11 and the cathode filaments 12 face each other, and of which polarity is switchable periodically; and a second magnetic field generating means 50 that generates the second magnetic field M2 vertical to a direction in which the anode unit 11 and the cathode filaments 12 face each other and crossing the first magnetic field M1, and of which polarity is switched periodically.
According to this, the deviation of the thermoelectrons E can be moved in two directions vertical to the direction in which the anode unit 11 and the cathode filaments 12 face each other (i.e., the X axis direction and the Y axis direction), luminance unevenness can be reduced about the entire display image, and display quality can be improved.
The first and the second alternating currents different in at least any one of amplitude value, frequency, and phase are respectively supplied to the second magnetic field generating means 30 and 50.
According to this, the deviation of the thermoelectrons E can be moved to the entire peripheral region of the collection of the luminous dots, the luminance unevenness can be reduced about the entire display image, and display quality can be improved.
The driving method for the vacuum fluorescent display which is the present embodiment is the driving method for the vacuum fluorescent display 10 that includes the anode unit 11 constituted by a plurality of fluorescent substance-coated anodes 11a arranged in a matrix pattern, and the cathode filaments 12 that emit electrons toward the anode unit 11, the method including generating, the first magnetic field M1 vertical to a direction in which the anode unit 11 and the cathode filaments 12 face each other and the second magnetic field M2 vertical to a direction in which the anode unit 11 and the cathode filaments 12 face each other and crossing the first magnetic field M1, with the directions switched periodically.
According to this, the deviation of the thermoelectrons E can be moved in two directions vertical to the direction in which the anode unit 11 and the cathode filaments 12 face each other (i.e., the X axis direction and the Y axis direction), luminance unevenness can be reduced about the entire display image, and display quality can be improved.
Further, the first and the second magnetic fields M1 and M2 are generated by the first and the second alternating currents different in at least any one of amplitude value, frequency, and phase.
According to this, the deviation of the thermoelectrons E can be moved to the entire peripheral region of the collection of the luminous dots, the luminance unevenness can be reduced about the entire display image, and display quality can be improved.
In the above description, for the ease of understanding of the present invention, description of publicly known technical matters that are not important is omitted as necessary. The present invention is not limited to the above-described embodiment and may be modified (including deletion of components) as necessary without departing from the scope of the present invention.
The present invention is suitably applicable to a driving device and a driving method for a vacuum fluorescent display.
Number | Date | Country | Kind |
---|---|---|---|
2012-278542 | Dec 2012 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2013/083300 | 12/12/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/097955 | 6/26/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5347292 | Ge | Sep 1994 | A |
5814931 | Makishima | Sep 1998 | A |
6525463 | Choi | Feb 2003 | B1 |
20030025467 | Tanaka | Feb 2003 | A1 |
20100194788 | Kikuta | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
4-220690 | Aug 1992 | JP |
5-13181 | Jan 1993 | JP |
9-115426 | May 1997 | JP |
9-288467 | Nov 1997 | JP |
2004-87404 | Mar 2004 | JP |
Entry |
---|
International Search Report PCT/JP2013/083300 dated Mar. 11, 2014 with English translation. |
Number | Date | Country | |
---|---|---|---|
20150348461 A1 | Dec 2015 | US |