1. Field of the Invention
The present invention relates to a drive device aimed at a passive matrix type display panel in which for example organic. EL (electroluminescent) elements are employed as light emitting elements, and particularly to a drive device and a drive method of a light emitting display panel which realizes current drive type gradation control including γ (luminance response) correction without increasing the circuit scale.
2. Description of the Related Art
A display panel constructed by arranging light emitting elements in a matrix pattern has been developed widely, and as the light emitting element employed in such a display panel, for example, an organic EL element in which an organic material is employed in a light emitting layer has attracted attention. This is because of backgrounds one of which is that by employing, in the light emitting layer of the element, an organic compound which enables an excellent light emission characteristic to be expected, a high efficiency and a long life which can be equal to practical use have been advanced.
The organic EL element can be electrically replaced by a structure composed of a light emitting component having a diode characteristic and a parasitic capacitance component which is connected in parallel to this light emitting component, and it can be said that the organic EL element is a capacitive light emitting element. When a light emission drive voltage is applied to this organic EL element, at first, electrical charges corresponding to the electric capacity of this element flow into the electrode as displacement current and are accumulated. It can be considered that when the light emission drive voltage then exceeds a predetermined voltage (light emission threshold voltage=Vth) peculiar to this element, current begins to flow from one electrode (anode side of the diode component) to an organic layer constituting the light emitting layer so that the element emits light at an intensity proportional to this current.
Meanwhile, regarding the organic EL element, due to reasons that the voltage-intensity characteristic thereof is unstable with respect to temperature changes while the current-intensity characteristic thereof is stable with respect to temperature changes and that degradation of the organic EL element is considerable when the organic EL element receives excess current so that the light emission lifetime is shortened, and the like, a constant current drive is performed generally. A passive drive type display panel employing such organic EL elements has already been put into practical use partly.
As gradation control methods of the passive drive type display panel, time gradation method in which light emission time during each scan period is controlled to obtain a predetermined gradation and current gradation method in which drive current given to a light emitting element during each scan period is controlled to obtain a predetermined gradation have been proposed. Although any of the gradation control methods has advantages and shortcomings respectively, specifically the latter current gradation method has been said to be able to prolong the lifetime of the EL element generally compared to the case where the time gradation method is adopted. The reason is that while control in which an approximately maximum drive current flows is performed at a light emission time of the EL element in the case where the time gradation method is adopted, a chance that a maximum drive current flows rarely occurs in the case of the current gradation method.
Here, in the case where the latter current gradation method is adopted, it is relatively easy to linearly control the drive current value given to the light emitting element in response to gradation. In this case, for example, a plurality of resistors which have the same resistance value are connected in series or the like to construct so-called ladder resistors so as to draw electrical potentials of respective connection points so that the drive current generated based on these potentials is supplied to the light emitting elements.
However, in the case where current gradation including γ correction is to be realized with the above-described structure, the above-described relatively simple structure cannot satisfy the current gradation including γ correction, and a problem that the circuit scale thereof is considerably large occurs for the following reasons.
That is,
As understood from the γ correction curve exemplified in this
In order to avoid the above-described problems, means may be considered wherein the ladder resistors are made relatively simple and a DAC (digital to analog converter) prepared to extract voltage outputs from the ladder resistors is allowed to have a γ correction characteristic. However, in the case where such means is employed, another problem that the control bit number of the DAC has to be large occurs.
Thus, avoiding the ladder resistor combination and the DAC which is allowed to have γ correction means as described above, a current mirror circuit generating drive current values given to light emitting elements based on the output of the DAC is allowed to have the function of a γ correction characteristic. This means is disclosed in Japanese Patent Application Laid-Open No. 2003-288051.
In a γ correction circuit disclosed in the Japanese Patent Application Laid-Open No. 2003-288051, a load resistor of the current mirror circuit is allowed to be variable so that the drive current given to light emitting elements is controlled, thereby providing a γ characteristic. However, in specific γ correction means disclosed in Japanese Patent Application Laid-Open No. 2003-288051, in order to vary the load resistor of the current mirror circuit, a large number of resistors (ladder resistors) and a DAC controlled by several bits are employed together, and the basic structure thereof does not substantially differ from the one in which the ladder resistors and the DAC are combined.
In the case where a user needs to change a γ correction characteristic, even in the structure disclosed in Japanese Patent Application Laid-Open No. 2003-288051, a variable resistor or the like has to be prepared separately, and this problem is similar to that of the above-described conventional example.
The present invention has been developed as attention to the above-described technical problems has been paid, and it is an object of the present invention to provide a drive device and a drive method of a light emitting display panel in which the current gradation method in which the value of drive current given to light emitting elements during each scan period is controlled to obtain a predetermined gradation is adopted so as to realize γ correction with sufficient accuracy for practical use without enlarging the circuit scale.
A preferred first form of a drive device of a light emitting display panel according to the present invention which has been developed to solve the problems is a drive device of a passive matrix type light emitting display panel comprising a plurality of data lines and a plurality of scan lines which intersect one another and light emitting elements which are respectively connected between the respective data lines and scan lines at intersection positions between the respective data lines and scan lines, characterized by being constructed in such a way that one scan period is time-divided into a plurality of periods, that a drive current supplied to the light emitting elements is controlled for each of the plural periods to execute light emission control of the light emitting elements for each of the periods, and that gradation control including γ correction is performed by a mean value of light emission intensities of the light emitting elements during the one scan period.
A preferred second form of a drive device of a light emitting display panel according to the present invention is a drive device of a passive matrix type light emitting display panel comprising a plurality of data lines and a plurality of scan lines which intersect one another and light emitting elements which are respectively connected between the respective data lines and scan lines at intersection positions between the respective data lines and scan lines, characterized by being constructed in such a way that for each of plural frame periods or of plural subframe periods, a drive current supplied to the light emitting elements is controlled to execute light emission control of the light emitting elements for each said period, and that gradation control including γ correction is performed by a mean value of light emission intensities of the light emitting elements during the plural frame periods or the plural subframe periods.
A preferred first form of a drive method of a light emitting display panel according to the present invention which has been developed to solve the problems is a drive method of a passive matrix type light emitting display panel comprising a plurality of data lines and a plurality of scan lines which intersect one another and light emitting elements which are respectively connected between the respective data lines and scan lines at intersection positions between the respective data lines and scan lines, characterized in that one scan period is time-divided into a plurality of periods, that intensity conversion data from data tables which are set corresponding to said periods are obtained during each period, and that a process in which a light emission drive current based on the obtained intensity conversion data is added to the light emitting elements is executed sequentially, so that gradation control including γ correction is realized by a mean value of light emission intensities by the light emitting elements during the one scan period.
Further, a preferred second form of a drive method of a light emitting display panel according to the present invention is a drive method of a passive matrix type light emitting display panel comprising a plurality of data lines and a plurality of scan lines which intersect one another and light emitting elements which are respectively connected between the respective data lines and scan lines at intersection positions between the respective data lines and scan lines, characterized in that for each of plural frame periods or of plural subframe periods, intensity conversion data from data tables which are set corresponding to said periods are obtained, and that a process in which a light emission drive current based on the obtained intensity conversion data is added to the light emitting elements is executed sequentially, so that gradation control including γ correction is realized by a mean value of light emission intensities by the light emitting elements during the plural frame periods or plural subframe periods.
A drive device of a light emitting display panel according to the present invention will be described below with reference to the embodiments shown in the drawings. First,
That is, anode lines A1-An as n data lines are arranged in a vertical direction, cathode lines K1-Km as m scan lines are arranged in a horizontal direction, and organic EL elements E11-Enm designated by symbols/marks of diodes are arranged at portions at which the anode lines intersect the cathode lines (in total, n×m portions) to construct a display panel 1.
In the respective EL elements E11-Enm constituting pixels, one ends thereof (anode terminals in equivalent diodes of EL elements) are connected to the anode lines and the other ends thereof (cathode terminals in equivalent diodes of EL elements) are connected to the cathode lines, corresponding to respective intersection positions between the anode lines A1-An extending along the vertical direction and the cathode lines K1-Km extending along the horizontal direction. Further, the respective anode lines A1-An are connected to an anode line drive circuit 2 provided as a data driver, and the respective cathode lines K1-Km are connected to a cathode line scan circuit 3 provided as a scan driver, so as to be driven respectively.
The anode line drive circuit 2 is provided with constant current sources I1-In which utilize a drive voltage VH to be operated and drive switches Sa1-San, and the drive switches Sa1-San are connected to the constant current sources I1-In side so that current from the constant current sources I1-In is supplied to the respective EL elements E11-Enm arranged corresponding to the cathode lines as drive current. When current from the constant current sources I1-In is not supplied to the respective EL elements, the drive switches Sa1-San can allow these anode lines to be connected to a ground side provided as a reference potential point.
Meanwhile, the cathode line scan circuit 3 is equipped with scan switches Sk1-Skm corresponding to the respective cathode lines K1-Km, and these scan switches operate to allow either a reverse bias voltage Vk constituted by a predetermined direct current voltage for mainly preventing cross talk light emission or the ground potential provided as the reference potential point to be connected to corresponding cathode lines. Thus, the constant current sources I1-In are connected to desired anode lines A1-An while the respective cathode lines are sequentially set at the reference potential point (ground potential) at a predetermined cycle, so that the respective EL elements can be selectively illuminated.
A bus line is connected from a controller IC 4 including a CPU to the anode line drive circuit 2 and the cathode line scan circuit 3, and switching operations of the scan switches Sk1-Skm and the drive switches Sa1-San are performed based on a video signal to be displayed. Thus, the constant current sources I1-In are connected to desired anode lines while the cathode scan lines are set to the ground potential at a predetermined cycle based on the video signal as described above, and the respective light emitting elements are selectively illuminated so that an image based on the video signal is displayed on the display panel 1.
In the state shown in
In the embodiment shown in
The intensity conversion data read out of the display data table 11 is supplied to a display DAC 15 via a first switch 13 constituting switch means, and the intensity conversion data read out of the γ correction data table 12 is supplied to the display DAC 15 via a second switch 14 constituting switch means. The display DAC 15 operates to receive the intensity conversion data supplied via the switch means to generate a control voltage Vcon.
An absorption current a in a current mirror circuit 16 is controlled based on the control voltage Vcon generated in the display DAC 15, and thus a light emission drive current a for the EL element is outputted from the current mirror circuit 16 to Aout for the anode lines A1-An which are shown in
The ON/OFF states of the select switches SW1-SW6 are set by a control signal (a digital quantity), and analog amount (control voltage Vcon) is outputted from the buffer 15a. The output characteristic of the DAC shown in
The collector of an NPN type transistor Q3 is connected to the collector of the transistor Q1, and the emitter thereof is connected to the ground via a resistor R3. The control voltage Vcon generated by the display DAC 15 is supplied to the base of the transistor Q3. Therefore, the transistor Q3 constitutes a current absorption circuit which operates by the control voltage Vcon generated by the DAC 15, and current corresponding to the value of the current absorbed by this current absorption circuit is outputted as Aout from the collector of the transistor Q2.
The combination of the transistor Q2 and the load resistor R2 constituting the current mirror circuit 16 corresponds, for example, to the constant current source 11 in the anode line drive circuit 2 shown in
In this reset operation, the scan switches Sk1-Skm in the cathode line scan circuit 3 shown in
Then, during a precharge period shown in
Thus, charge current is supplied from the constant current sources I1-In to the parasitic capacitances of EL elements which become objects of light emission drive next, and at the end time of the precharge period shown in
Then, the precharge period shifts to a constant current supply period shown in
As shown in
At this time, the command signal corresponding to a gradation for which light emission control is to be performed is supplied from the controller IC 4 to the display data table 11 and the γ correction data table 12 as described above, and thus the intensity conversion data corresponding to a gradation for which light emission control is to be performed is read out of the both data tables 11, 12 respectively.
During the first half of the constant current period, the intensity conversion data read out of the γ correction data table (Table 2) 12 is supplied to the display DAC 15, and the current mirror circuit supplies the drive current which is based on the control output Vcon supplied from the display DAC 15 to EL elements which are controlled to emit light. During the latter half of the constant current period which follows the first half, the intensity conversion data read out of the display data table (table 1) 11 is supplied to the display DAC 15, and the current mirror circuit supplies the drive current which is based on the control output Vcon supplied from the display DAC 15 to EL elements which are controlled to emit light.
Thus, EL elements which are controlled to emit light receive light emission control based on the intensity conversion data by the γ correction data table (Table 2) 12 during the first half of the constant current period, and receive light emission control based on the intensity conversion data by the display data table (Table 1) 11 during the latter half of the constant current period. Here, gradation grasped by human vision is supposed to be an integration amount of instantaneous light emission intensities of EL elements during the constant current period. Therefore, where the intensity conversion data by the display data table (Table 1) 1 is t1 and the intensity conversion data by the γ correction data table 12 is t2, it can be said that the gradation at this time is dependent on the mean value of t1 and t2 [=(t1+t2)/2].
A further right side column thereof shows mean values of the intensity conversion data obtained by the table 1 and table 2. A further right side column thereof shows ideal γ correction values, that is, intensity values in response to the gradations. The most right column shows “differences” between the mean values and the γ correction values. Therefore, it can be said that the closer to “0” the absolute values of the “differences”, the closer to the ideal γ correction values the mean values are.
The intensity conversion data shown in Table 1 and Table 2 shown in
In this embodiment, as shown in
The reason is that if light emission control is executed in the order which is reverse to the above-mentioned order, a problem occurs in that accumulation of electrical charges in the parasitic capacitances of EL elements becomes large since the elements are driven to emit light at a high intensity at first, and therefore even if the elements are to be driven to emit light at a low intensity during the latter half, the elements cannot follow the driving, whereby accuracy of light emission intensities in response to gradations is deteriorated. Thus, it is desired that the intensity conversion data stored in the data tables are set so that the value of the light emission drive current applied to EL elements during the latter half period become greater than the value of the light emission drive current applied to EL elements during the first half of the constant current period.
In the embodiment shown in this
Reference numeral 18 in
In the embodiment shown in these
In any of the embodiments described above, although organic EL elements are employed as light emitting elements, for the elements, other light emitting elements whose light intensities are dependent on the drive current can also be employed. In the embodiments shown in
In the embodiment shown in
Number | Date | Country | Kind |
---|---|---|---|
2003-399126 | Nov 2003 | JP | national |