This application is a U.S. National Stage Application of International Application No. PCT/EP2011/064111 filed Aug. 16, 2011, which designates the United States of America, and claims priority to DE Application No. 10 2010 039 478.5 filed Aug. 18, 2010, the contents of which are hereby incorporated by reference in their entirety.
The disclosure relates to a drive device for an injection valve, having an actuator, a lever device, a drive output element and a transmission element. The disclosure also relates to an injection valve.
Ever more stringent legal regulations with regard to the admissible pollutant emissions of internal combustion engines used in motor vehicles make it necessary to implement various measures for lowering pollutant emissions. The formation of pollutants is highly dependent on the preparation of the air/fuel mixture in the respective cylinder of the internal combustion engine. Correspondingly improved mixture preparation can be attained if the fuel is metered in at very high pressure. For diesel internal combustion engines, the fluid pressures are over 2000 bar. In particular in the case of internal combustion engines, high demands are placed on the precision of the injection valve.
One embodiment provides a drive device for an injection valve which has an actuator designed to exert a force along a first axis of force action, a lever device which is mechanically coupled to the actuator, a drive output element which is mechanically coupled to the lever device and which is designed to absorb a force from the lever device along a second axis of force action, wherein the second axis of force action is arranged offset with respect to the first axis of force action, and a transmission element which is arranged between the actuator and the lever device, which transmission element is coupled in a first contact region to the actuator and in a second contact region to the lever device, wherein the first contact region of the transmission element is arranged so as to be intersected by the first axis of force action, and the second contact region of the transmission element is arranged so as to be intersected by the second axis of force action.
In a further embodiment, the transmission element is of convexly curved design in the first contact region and/or in the second contact region. In a further embodiment, the transmission element is of substantially hemispherical design in the first contact region and/or in the second contact region. In a further embodiment, the transmission element is, in the first contact region and/or in the second contact region, of substantially hemispherical design with a radius considerably smaller than half of a distance between the first contact region and the second contact region. In a further embodiment, the transmission element is, in the first contact region and/or in the second contact region, designed substantially as a spherical segment, and the spherical segment has a radius greater than half of the distance between the first contact region and the second contact region. In a further embodiment, the transmission element is designed in the form of a pin.
Another embodiment provides an injection valve including a drive device as disclosed above.
Exemplary embodiments will be explained in more detail below on the basis of the schematic drawings, wherein:
Embodiments of the present disclosure provide a drive device for an injection valve, which drive device exhibits permanently reliable operation. Some embodiments provide an injection valve having a drive device, which injection valve permits a reliable metering-in of fluid.
Some embodiments provide a drive device for an injection valve which has an actuator, a lever device, a drive output element and a transmission element. The actuator is designed to exert a force along a first axis of force action. The lever device is mechanically coupled to the actuator. The drive output element is mechanically coupled to the lever device and is designed to absorb a force from the lever device along a second axis of force action. The second axis of force action is arranged offset with respect to the first axis of force action. The transmission element is arranged between the actuator and the lever device. The transmission element is coupled in a first contact region to the actuator and in a second contact region to the lever device. The first contact region of the transmission element is arranged so as to be intersected by the first axis of force action. The second contact region of the transmission element is arranged so as to be intersected by the second axis of force action.
A possible advantage of such a drive device is that guidance of force between the first axis of force action and the second axis of force action can be realized in a targeted manner even if the second axis of force action is arranged offset with respect to the first axis of force action. It is thus possible to attain an expedient introduction of force both into the actuator and also into the lever device. Another possible advantage is that a drive device of said type exhibits virtually no friction and no wear. The characteristics of the drive device can thus remain virtually permanently unchanged.
In one embodiment of the drive device, the transmission element is of convexly curved design in the first contact region and/or in the second contact region. This has the advantage that the first contact region and/or the second contact region can be designed to be very small. The friction and the wear on the drive device can be very low because the convexly curved surfaces of the transmission element permit a rolling motion. Furthermore, angular deviations between the axes of force action can be compensated.
In a further embodiment of the drive device, the transmission element is of substantially hemispherical design in the first contact region and/or in the second contact region. This has the advantage that the contact regions can be very small.
In a further embodiment of the drive device, the transmission element is, in the first contact region and/or in the second contact region, of substantially hemispherical design with a radius considerably smaller than half of a distance between the first contact region and the second contact region. This has the advantage that the contact regions can be very small.
In a further embodiment of the drive device, the transmission element is, in the first contact region and/or in the second contact region, designed substantially as a spherical segment. The spherical segment has a radius greater than half of the distance between the first contact region and the second contact region. This has the advantage that high contact forces can permanently be transmitted.
In a further embodiment of the drive device, the transmission element is designed in the form of a pin. This has the advantage that the transmission element can have a low mass.
Other embodiments provide an injection valve which has a drive device according to the first aspect.
The injector body 14 has a second recess 20 in which an actuator 22 is arranged. The actuator 22 is designed as a stroke actuator and may be a piezo actuator which comprises a stack of piezoelectric elements. The piezo actuator changes its axial extent as a function of an applied voltage signal. The actuator 22 may however also be designed as some other actuating drive known to a person skilled in the art as being suitable for this purpose, in particular as a solenoid.
The actuator 22 has a piston 24. The actuator 22 acts via the piston 24 on a lever device 26. The lever device 26 comprises a bell-shaped body 28 and lever elements 30. The bell-shaped body 28 and the lever elements 30 are arranged in the first recess 16. The bell-shaped body 28 is coupled to the lever elements 30. In the first recess 16 there is also arranged a drive output element 32. The drive output element 32 may be designed as a nozzle needle. In alternative embodiments, the drive output element 32 is formed as a separate component which is coupled to the nozzle needle. The drive output element 32 designed as a nozzle needle has a nozzle needle head 34. The lever elements 30 interact with the nozzle needle head 34 in order to axially move the drive output element 32.
A nozzle spring 36 is arranged between a support 42 of the injector body 14 and a shoulder 44 of the drive output element 32. The drive output element 32 designed as a nozzle needle is preloaded by means of the nozzle spring 36 in such a way that said drive output element, when in a closed position, prevents a fluid flow through at least one injection orifice 40, which is arranged in the injector body 14, when no other forces act on the drive output element 32. In the event of actuation of the actuator 22, the drive output element 32 designed as a nozzle needle is moved from its closed position into an open position in which it permits the flow of fluid through the at least one injection orifice 40.
The actuator 22 can exert a force along a first axis of force action L_1. The lever device 26 with the bell-shaped body 28 and the lever elements 30 can exert a force on the drive output element 32 along a second axis of force action L_2. The second axis of force action L_2 is arranged offset with respect to the first axis of force action L_1.
The transmission element 52 is coupled in a first contact region K_1, which is intersected by the first axis of force action L_1, to the actuator 22. The transmission element 52 is furthermore coupled in a second contact region K_2, which is intersected by the second axis of force action L_2, to the lever device 26, in particular to the bell-shaped body 28. Since the second axis of force action L_2 is arranged offset with respect to the first axis of force action L_1, the transmission element 52 is arranged so as to be inclined relative to the axes of force action L_1, L_2.
The force exerted by the actuator 22 along the first axis of force action L_1 can be conducted via the first contact region K_1 and the second contact region K_2 to the bell-shaped body 28 of the lever device 26. As can be seen in
In a further embodiment of the drive device 50 corresponding to
The invention is not restricted to the exemplary embodiments specified. It is possible in particular for the features of the different exemplary embodiments to be combined with one another; such arrangements are therefore also encompassed by the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 039 478 | Aug 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/064111 | 8/16/2011 | WO | 00 | 2/18/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/022752 | 2/23/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6595436 | Kirzhner et al. | Jul 2003 | B2 |
7225790 | Bartunek et al. | Jun 2007 | B2 |
20030160202 | Boecking | Aug 2003 | A1 |
20040119377 | Frank et al. | Jun 2004 | A1 |
Number | Date | Country |
---|---|---|
102004044154 | Mar 2006 | DE |
02057622 | Jul 2002 | WO |
2004109087 | Dec 2004 | WO |
2008071636 | Jun 2008 | WO |
2009019178 | Feb 2009 | WO |
2012022752 | Feb 2012 | WO |
Entry |
---|
International Search Report and Written Opinion, Application No. PCT/EP2011/064111, 16 pages, Sep. 26, 2011. |
Number | Date | Country | |
---|---|---|---|
20130153678 A1 | Jun 2013 | US |