1. Field of the Invention
The invention pertains to a drive device for screw centrifuges with a rotating, motorized drum and a screw.
2. Description of the Related Art
Various systems for driving screw centrifuges are known. The simplest drive is a gearbox drive, in which an electric motor drives the drum by a first V-belt, whereas a second V-belt, operating in parallel with the first, causes the screw to rotate by way of a planetary gear train. The planetary gear train is used to produce the speed differential for the screw. With this drive, the two rotational speeds can be varied independently of each other. For this purpose, the system must be stopped, and one of the two pairs of V-belts must be replaced.
Another concept is the so-called “hybrid” drive, in which an electric motor drives the drum via replaceable V-belts, whereas a hydraulic motor is provided to drive the screw. Thus the speed differential can be varied continuously while the system is running. The disadvantages of this system, however, are that it is difficult to control the speed differential at low speeds and that there is a large power loss at high speeds. It is also impossible to avoid leaks in a hydraulic drive, which is disadvantageous, especially, in the case of applications involving food products. Also, it is very expensive to manufacture and to maintain this type of drive.
Finally, there is another drive possibility, namely, the so-called “four-shaft” drive with two electric motors. This drive occupies a large amount of space, however, and frequently causes problems with respect to the sealing of the four shafts.
The objective of the invention is to provide a drive device for screw centrifuges in which the speed differential between the drum and the screw can be varied continuously during operation without above-discussed disadvantages of the hybrid drive and the four-shaft drive.
This task is accomplished according to the invention with a drive device of the basic type described briefly above and comprising an electric torque motor, which is disconnected from the motor which drives the drum, and has its housing connected to the drum and rotating along with it.
A drive device of this type consumes very little energy and offers optimal efficiency. It is characterized by high flexibility with respect to the choice of operating speeds while having a compact structure. Because the electric torque motor which is disconnected from the drum drive motor rotates along with the drum, the drive device is highly compact. Furthermore, since there is no hydraulic motor for the screw drive, there is no risk of leakage, which is particularly important in the food product area.
One possibility of realizing the invention consists in flanging the housing to a radial flange of a hollow shaft, which is permanently connected to the drum. The shaft of the screw extends through this hollow shaft, which also carries a V-belt pulley connected to the motor that drives the drum.
Alternatively, the housing can be flanged to an end wall of the drum and carry a V-belt pulley connected to the motor which drives the drum.
The electric torque motor operates like a normal, multipolar synchronous motor, the rotor of which is equipped with permanent magnets on its cylindrical inside surface, whereas the stator, located internally, caries the coils which are supplied with 3-phase current. As a result of this design principle, the motor takes up very little space. This space, in turn, is utilized very efficiently with respect to the amount of torque the motor produces.
Other objects and features of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims. It should be further understood that the drawings are not necessarily drawn to scale and that, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein.
The above and other advantages and features of the invention can be derived from the claims and from the following description of exemplary embodiments, which are illustrated in the drawing; wherein like reference numerals delineate similar elements through the several views:
A multipolar torque motor 26 is used to rotate the screw 14. The housing 28 of the motor is permanently connected to the drum 12 by way of a flange 30 of the hollow shaft 22. The shaft 32 of the screw 14 passes through the hollow shaft 22. The stator 34 of the torque motor 26 carries a plurality of coils 36, which are supplied with cuffent by way of a slip-ring induction motor 38, and is pushed onto the shaft 32 of the screw 14.
The housing 28 of the torque motor 26 is designed as an external rotor 40, the cylindrical inside surface of which is equipped with permanent magnets 42, which are adhesively bonded to the inside surface.
The drive motor 16 causes rotation of v-belt pulley 20 via v-belt 18. Rotation of the v-belt pulley 20 causes rotation of the hollow shaft 22, thereby causing rotation of the drum 12 which is permanently connected to the hollow shaft 22. Rotation of the hollow shaft 22 also causes rotation of the housing 28, which is connected to the hollow shaft by the flange 30. Accordingly, the drive motor 16 causes each of the hollow shaft 22, the drum 12, and the housing 28 to rotate.
Rotation of the stator 34 of the torque motor 26 causes rotation of shaft 32 and screw 14.
In the variant shown in
The hollow shaft 22 for the rotary drive of the drum 12 is designed as an integral part of the V-belt pulley 20, located between the bearing 24 and the flange 30, to which the housing 28 of the torque motor 26 is attached. As shown in the example of
The exemplary embodiment shown in
In the embodiment of
As in the previous embodiments, rotation of the coils 36 of stator 34 of the torque motor 26 causes rotation of shaft 32 and screw 14.
It is obvious that the invention also comprises the use of torque motors in which the stator carries the permanent magnets and the rotor carries the coils.
Thus, while there have shown and described and pointed out fundamental novel features of the invention as applied to a preferred embodiment thereof, it will be understood that various omissions and substitutions and changes in the form and details of the devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the invention. For example, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. Moreover, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or embodiment of the invention may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
Number | Date | Country | Kind |
---|---|---|---|
10 2004 034 409 | Jul 2004 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3343786 | Sharples | Sep 1967 | A |
5714858 | Pieralisi | Feb 1998 | A |
5941810 | Gay | Aug 1999 | A |
7041044 | Gilbert | May 2006 | B2 |
7358635 | Fout et al. | Apr 2008 | B2 |
7438678 | Beyer | Oct 2008 | B2 |
20060014619 | Haider | Jan 2006 | A1 |
20060183621 | Beyer | Aug 2006 | A1 |
20080196890 | Fout et al. | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
3325566 | Jan 1985 | DE |
Number | Date | Country | |
---|---|---|---|
20060014619 A1 | Jan 2006 | US |