1. Field of the Invention
The invention relates to a drive device, in particular for a vehicle, to a method for operating a drive device, and to a vehicle, in particular a commercial vehicle, with the drive device.
2. Description of the Related Art
It is generally known to use an exhaust gas turbocharger to optimize the operation of an internal combustion engine. It is also known in this connection to provide a bypass line at an exhaust gas tract connected to the internal combustion engine, by which bypass line at least some of the exhaust gas flowing through the exhaust gas tract can be conducted past a turbine wheel of an exhaust gas turbocharger turbine. By a bypass line of this type, it can be simply and effectively prevented that the turbine wheel of the exhaust gas turbine exceeds its maximum rotational speed limit.
DE 103 31 653 A1, for example, discloses an exhaust gas tract, in which the exhaust gas is conducted out of an exhaust gas main line of the exhaust gas tract upstream of an exhaust gas turbine of an exhaust gas turbocharger, as seen in the direction of flow of the exhaust gas, and is conducted as a bypass exhaust gas flow into a bypass line. The bypass exhaust gas flow is conducted again into the exhaust gas main line downstream of the turbine wheel and upstream of a catalytic convertor.
Furthermore, it is also known to provide an SCR catalytic convertor at an exhaust gas tract, by which SCR catalytic convertor nitrogen oxides emitted by the internal combustion engine, which is configured in particular as a diesel engine, are reduced with ammonia as the reducing agent. The ammonia is customarily conducted here in the form of an aqueous urea solution into the exhaust gas tract upstream of the SCR catalytic convertor. In the case of certain types of vehicle, in particular in the case of commercial vehicles, SCR catalytic convertors with vanadium as the active component have proven particularly effective for reducing the nitrogen oxides. However, vanadium-containing SCR catalytic convertors have a relatively low overheating temperature of approximately 500° C., after which the purification of the exhaust gas deteriorates and the catalytic convertor begins to degrade. On account of the ever increasing specific powers of the internal combustion engines and the exhaust gas temperatures which likewise increase as a result, in particular the vanadium-containing SCR catalytic convertors are therefore coming in the mean time to their physical limits, which makes the use said catalytic convertors more difficult.
It is therefore the object of the invention to provide a drive device, in particular for a vehicle, and a method for operating a drive device, by which drive device and method overheating of a catalytic convertor of an exhaust gas tract can be countered in a simple and effective manner.
According to one aspect of the invention, a drive device, in particular for a vehicle, is proposed, with an internal combustion engine and an exhaust gas tract which is connected to the internal combustion engine, wherein the exhaust gas tract has an exhaust gas main line with at least one exhaust gas turbine of an exhaust gas turbocharger and at least one catalytic convertor arranged downstream of the exhaust gas turbine, as seen in the direction of flow of the exhaust gas, wherein the exhaust gas tract has at least one bypass line, by which at least some of the exhaust gas flowing through the exhaust gas tract is conductible past a turbine wheel of the exhaust gas turbine in such a manner that the exhaust gas is conductible out of the exhaust gas main line at at least one exhaust gas conducting-out region arranged upstream of the turbine wheel and is conductible into the bypass line. In addition, the bypass exhaust gas flow flowing through the bypass line can be conducted again into the exhaust gas main line at an exhaust gas conducting-in region arranged downstream of the turbine wheel and upstream of the catalytic convertor. According to one aspect of the invention, in particular for preventing overheating of the at least one catalytic convertor, a cooling device is provided, by which the bypass exhaust gas flow flowing through the bypass line can be cooled.
As a result, overheating of the catalytic convertor arranged downstream of the exhaust gas turbine can be simply and effectively countered since the exhaust gas flow conducted past the turbine wheel of the exhaust gas turbine can now be cooled by the cooling device according to the invention. The cooled bypass exhaust gas flow is then conducted again into the exhaust gas main line upstream of the at least one catalytic convertor, as a result of which the exhaust gas temperature in the region of the catalytic convertor is reduced and the catalytic convertor is no longer so greatly heated up. The bypass therefore takes on two functions here. Firstly, the charging pressure can be adjusted via the bypass mass flow since, depending on the bypass mass flow, the mass flow via the turbine wheel increases or drops and therefore the charging pressure of the internal combustion engine also increases or drops. In addition, thermal energy can be extracted from the bypass mass flow, as a result of which a lower exhaust gas temperature arises downstream of the exhaust gas conducting-in region than in the case of a system without the cooling device according to one aspect of the invention.
In a preferred refinement of the drive device according to one aspect of the invention, the cooling device here is designed in such a manner that, by said cooling device, the maximum exhaust gas temperature in the region of the catalytic convertor, which is configured in the form of an SCR catalytic convertor, can be reduced by at least 20° C., preferably by at least 40° C. As a result, overheating of the SCR catalytic convertor can already be effectively countered.
In a preferred specific refinement, the cooling device has at least one bypass heat exchanger, which is assigned to the bypass line, by which heat can be removed from the bypass exhaust gas flow flowing through the bypass line. By a bypass heat exchanger of this type, the bypass exhaust gas flow flowing through the bypass line can be effectively cooled. In addition, by a heat exchanger of this type, the cooling of the bypass exhaust gas flow or the quantity of heat removed from the bypass exhaust gas flow can also be set as desired in a simple manner. A liquid coolant can expediently flow through the bypass heat exchanger here. The bypass heat exchanger can operate, for example, according to the counterflow principle, according to the parallel flow principle or according to the cross flow principle. In a particularly preferred refinement, the bypass heat exchanger is also formed by a component which is separate from the exhaust gas turbine, in order to simplify the construction of the drive device according to one aspect of the invention.
In a specific refinement, the bypass heat exchanger can be, for example, part of a coolant circuit. It is preferably provided here that the bypass heat exchanger is incorporated into a coolant circuit, by which not only can the bypass exhaust gas flow, but also the internal combustion engine be cooled.
As an alternative to the coolant circuit, the bypass heat exchanger can also be part of an energy recovery system, by which the thermal energy of the exhaust gas can be converted into a useable form of energy. In a preferred specific configuration, the conversion of energy takes place here by a thermodynamic cycle, in particular by a Clausius-Rankine cycle.
Furthermore, a control device is advantageously provided, by which the quantity of exhaust gas conducted into the bypass line can be controlled depending on at least one control parameter. In a preferred specific refinement, the control device for controlling the quantity of exhaust gas introduced into the bypass line has at least one valve. Said at least one valve is preferably assigned here to the bypass line in order to simplify the construction of the drive device according to the invention. Alternatively or additionally the valve could, however, also be designed as a waste gate valve on the exhaust gas turbine side. A waste gate valve of this type has a valve seat formed by a turbine housing of the exhaust gas turbine and a valve body which is shiftable relative to the turbine housing.
The control device preferably has a control unit, by which the, preferably electrically actuable, valve can be controlled in order to set at least one defined valve position. With a control of this type, the quantity of exhaust gas conducted into the bypass line can be set as desired simply and reliably. It is preferably provided here that the at least one control parameter is formed by the charging pressure of the combustion air flowing through an intake tract of the internal combustion engine and/or by the exhaust gas temperature in the region of the at least one catalytic convertor. The charging pressure of the combustion air flowing through the intake tract can be measured here, for example, by a pressure sensor connected in terms of signalling to the control unit. Similarly, for example, the exhaust gas temperature in the region of the catalytic convertor can also be measured by a temperature sensor which is arranged in the region of the catalytic convertor and is connected in terms of signalling to the control unit.
As an alternative to control using the control unit, the at least one valve can also be formed by a valve which is actuable by air pressure, wherein the valve is connected in terms of flow to an intake tract of the internal combustion engine in such a manner that the valve automatically opens and closes depending on the charging pressure of the combustion air flowing through the intake tract as the control parameter. With a valve of this type, the quantity of exhaust gas conducted into the bypass line can be reliably and effectively controlled depending on the charging pressure of the combustion air.
In principle, it would, of course, be conceivable to provide the exhaust gas conducting-out region directly at the exhaust gas turbine. However, it is preferred if the exhaust gas conducting-out region is arranged upstream of the exhaust gas turbine, as seen in the direction of flow of the exhaust gas, in order to keep the construction of the drive device according to the invention simple. Likewise preferably, the exhaust gas conducting-in region can also be arranged downstream of the exhaust gas turbine, as seen in the direction of flow of the exhaust gas.
The main exhaust feed can expediently have an exhaust gas combining portion formed by at least one exhaust gas manifold and by which a plurality of partial exhaust gas flows coming from the internal combustion engine can be combined to form a single overall exhaust gas flow. It is preferably provided here for a combining region of the exhaust gas tract, at which combining region the partial exhaust gas flows are combined to form the overall exhaust gas flow, is arranged upstream of the exhaust gas turbine and/or upstream of the turbine wheel of the exhaust gas turbine, in order to conduct the overall exhaust gas flow via the exhaust gas turbine or via the turbine wheel of the exhaust gas turbine.
In a preferred refinement, the at least one exhaust gas conducting-out region of the exhaust gas tract is arranged downstream of the exhaust gas flow combining region. At least some of the combined overall exhaust gas flow can thereby be conducted into the bypass line. It is preferably provided here that the at least one exhaust gas conducting-out region of the exhaust gas tract is arranged in a defined near region in the region of the exhaust gas turbine. As an alternative to the arrangement of the exhaust gas conducting-out region downstream of the exhaust gas flow combining region, the exhaust gas conducting-out region can also be arranged upstream of the exhaust gas flow combining region. As a result, at least a partial exhaust gas flow can be conducted into the bypass line.
It is preferably provided here that at least one exhaust gas conducting-out region is in each case provided at a plurality of, in particular at two, line portions of the main exhaust gas line, through which line portions a partial exhaust gas flow in each case flows, in order to be able to conduct a plurality of partial exhaust gas flows into the bypass line and therefore to realise a multi-flow exhaust gas feed.
In a specific refinement, the drive device can also have a plurality of, in particular two, exhaust gas turbochargers. It is preferably provided here that the exhaust gas conducting-out region is arranged upstream of the turbine wheels of the plurality of exhaust gas turbochargers. The exhaust gas conducting-in region can then be arranged downstream of the turbine wheels of all of the exhaust gas turbochargers or between two turbine wheels of the plurality of exhaust gas turbochargers, as seen in the direction of flow of the exhaust gas. Overheating of a catalytic convertor arranged downstream of the exhaust gas turbines can thereby be simply and effectively countered in the case of multi-stage supercharging of the internal combustion engine.
The at least one catalytic convertor is preferably formed by an SCR catalytic convertor, by which nitrogen oxides of the exhaust gas emitted by the internal combustion engine can be reduced with ammonia as the reducing agent. In addition, the SCR catalytic convertor preferably has vanadium as the active component.
To solve the problem already mentioned, a method for operating a drive device is disclosed, wherein the drive device has an internal combustion engine and an exhaust gas tract connected to the internal combustion engine. The exhaust gas tract has an exhaust gas main line with at least one exhaust gas turbine of an exhaust gas turbocharger and at least one catalytic convertor arranged downstream of the exhaust gas turbine, as seen in the direction of flow of the exhaust gas. The exhaust gas tract has at least one bypass line, by which at least some of the exhaust gas flowing through the exhaust gas tract is conducted past a turbine wheel of the exhaust gas turbine in such a manner that the exhaust gas is conducted out of the exhaust gas main line at at least one exhaust gas conducting-out region arranged upstream of the turbine wheel and conducted into the bypass line. The bypass exhaust gas flow flowing through the bypass line is then conducted again into the exhaust gas main line downstream of the turbine wheel and upstream of the catalytic convertor. According to one aspect of the invention, in particular for preventing overheating of the at least one catalytic convertor, a cooling device is provided, by means of which the bypass exhaust gas flow flowing through the bypass line is cooled. In addition, it is preferably provided here that a control device is provided, by means of which the quantity of exhaust gas introduced into the bypass line and/or the cooling power of the cooling device is controlled depending on at least one control parameter.
The advantages arising through the method procedure according to one aspect of the invention are identical to the already acknowledged advantages of the drive device according to the invention, and therefore are not repeated at this juncture.
Furthermore, a vehicle, in particular a utility vehicle, with the drive device according to the invention is also claimed. The advantages arising therefrom are likewise identical to the already acknowledged advantages of the drive device according to the invention and are likewise not repeated here.
Apart from, for example, in the cases of unambiguous dependences or uncombinable alternatives, the advantageous embodiments and/or developments of the invention that are explained above and/or are reproduced in the dependent claims can be used individually or else in any combination with one another.
Other objects and features of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims. It should be further understood that the drawings are not necessarily drawn to scale and that, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein.
The invention and its advantageous embodiments and/or developments and also the advantages thereof are explained in more detail merely by way of example below with reference to drawings.
In the drawings:
Combustion air 11 from the free surroundings is supplied here to the internal combustion engine 3 by the intake tract 5. The intake tract 5 has here, as seen in the flow direction of the air, a compressor 13 of an exhaust gas turbocharger 15, an air cooler 17 and a pressure sensor 19. The combustion air 11 drawing into the intake tract 5 is first of all compressed by the compressor 13. Subsequently, the compressed combustion air 11 is cooled by the air cooler 17 and is finally supplied to the internal combustion engine 3. The charging pressure of the combustion air 11 directly upstream of the internal combustion engine 3 is measured by the pressure sensor 19. The charging pressure measured by the pressure sensor 19 is then transmitted to a control unit 23 of the drive device 1, said control unit being connected to the pressure sensor 21 in terms of signalling.
Furthermore, an exhaust gas 25 emitted by the external combustion engine 3 is conducted into the free surroundings by the exhaust gas tract 7, which is connected to the internal combustion engine 3. The exhaust gas tract 7 here has a main exhaust gas line 26 which, as seen in the direction of flow of the exhaust gas, has an exhaust gas combining portion 27, an exhaust gas turbine 29 of the exhaust gas turbocharger 15, an injector 31, a temperature sensor 33 and an SCR catalytic convertor 35.
The partial exhaust gas flows, six here by way of example, coming from the cylinders of the internal combustion engine 3 are combined by the exhaust gas combining portion 27 to form a single overall exhaust gas flow. The exhaust gas combining portion 27 is formed here by way of example by a single exhaust gas manifold element which here by way of example has six inflow openings and a single outflow opening. In addition, a combining region 37 at which the partial exhaust gas flows are combined to form the overall exhaust gas flow is arranged here upstream of the exhaust gas turbine 29.
Furthermore, the exhaust gas turbine 29 of the exhaust gas turbocharger 15 is driven with the exhaust gas 25 flowing through the main exhaust gas line 26. Here by way of example, an aqueous urea solution can be injected into the main exhaust gas line 26 by the injector 31. The exhaust gas temperature immediately upstream of the SCR catalytic convertor 35 is measured by the temperature sensor 33 arranged here directly upstream of the SCR catalytic convertor 35. The exhaust gas temperature measured by the temperature sensor 33 is then transmitted to the control unit 23, which is connected in terms of signalling to the temperature sensor 33. By the SCR catalytic convertor 35, nitrogen oxides of the exhaust gas 25 emitted by the internal combustion engine 3 are reduced with ammonia as the reducing agent. The ammonia is provided here by the aqueous urea solution conducted into the main exhaust gas line 24 by the injector 31. In addition, the SCR catalytic convertor 35 has here by way of example vanadium as the active component.
As is furthermore clear from
According to
As is furthermore shown in
Thus, while there have shown and described and pointed out fundamental novel features of the invention as applied to a preferred embodiment thereof, it will be understood that various omissions and substitutions and changes in the form and details of the devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the invention. For example, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. Moreover, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or embodiment of the invention may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
Number | Date | Country | Kind |
---|---|---|---|
102016 010 572.0 | Sep 2016 | DE | national |