Drive equipment and methods for mobile fracturing transportation platforms

Information

  • Patent Grant
  • 11643915
  • Patent Number
    11,643,915
  • Date Filed
    Monday, August 30, 2021
    3 years ago
  • Date Issued
    Tuesday, May 9, 2023
    a year ago
Abstract
Embodiments of drive equipment for mobile hydraulic fracturing power units and methods for changing and controlling the drive equipment are disclosed. The mobile power units include a gas turbine engine that provides mechanical power to drive shaft which is connected to the drive equipment such that the drive equipment is driven by the engine. The drive equipment may be a hydraulic fracturing pump or an electrical generator. The drive shaft is rotated at a speed suitable for the hydraulic fracturing pump and the electrical generator includes a step up gearbox to increase a rotational speed of the drive shaft for use by the electrical generator. The drive equipment may be secured to a skid that is field changeable with a crane or a fork lift to change the drive equipment at a well pad based on the demands of the well pad.
Description
TECHNICAL FIELD

The application generally relates to mobile power units and, more specifically, drive equipment and methods for usage and installation on mobile fracturing transportation platforms.


BACKGROUND

Conventional hydraulic fracturing horsepower units often utilize diesel reciprocating engines to drive positive displacement reciprocating pumps. These pumps generally form a part of a fracturing fluid system which often includes auxiliary equipment such as blenders, hydration, and chemical pumps. This auxiliary equipment is commonly referred to as backside equipment and may be powered by diesel reciprocating deck engines or small mobile diesel generators.


The fracturing industry has been making strides to reduce emissions and footprint. Specifically, the fracturing industry has been making strides to reach government mandated tier 4 emissions standards, namely a government mandated reduction in harmful exhaust gases for diesel powered equipment. One way the fracturing industry is moving towards tier 4 emissions is to replace the diesel reciprocating engines with turbine engines that are fueled with natural gas to directly drive hydraulic fracturing pumps. This allows fracturing horsepower units to reach tier 4 emission standards. The backside equipment, however, remains driven by engines or generators that struggle with meeting or otherwise do not meet tier 4 emission standards.


In addition, often it is necessary to run multiple diesel engines to power backside equipment, and running multiple diesel engines to power backside equipment may increase costs both through fuel consumption and maintenance. The reciprocating engines on the auxiliary equipment, specifically blenders and hydration units, may include a transmission and gearbox inline to power a pump. These added parts may add another mode of failure and further increase maintenance spending.


One method that has been used for achieving tier 4 emissions standards for the backside equipment is to convert the backside equipment to an electrical fracturing fleet. These electrical fracturing fleets generally use a standalone gas turbine engine generator trailer, or other transportation platform as understood by those skilled in the art, to produce electrical power that is distributed through electrical switch gear to drive electrical motors directly coupled to the horsepower units. These electrical motors may be controlled with a high efficiency, high power factor active front end drive (AFE) or variable frequency drive. The standalone gas turbine engine generator trailer also may be rigged into the backside equipment to power the backside equipment. Although this arrangement may meet tier 4 emission standards under some conditions, an electrical fracturing fleet requires a dedicated generator unit. A dedicated generator unit requires additional cost to develop, build, and maintain.


Applicant has recognized that using an electrical fracturing fleet with a dedicated turbine generator may not always be feasible or economical. For example, electrical generators are commonly mounted on skids which may restrict mobility and requires extensive rig up procedures. In addition, power transfer may not always be efficient depending on cable lengths and motor efficiencies. Further, weather conditions also play a factor as the fracturing service may be supplied in a wide range of weather conditions which may affect service. For example, high temperature conditions may require different cooling packages since generators start losing efficiency at higher temperatures. During high temperature conditions resistance in generators decreases causing lower efficiencies, if this effect is too high, running an electrical generator may no longer be economical. As such it is not always beneficial to have a dedicated generator.


SUMMARY

In today's oil and gas service environment, flexibility and adaptability may be important. Applicant also has recognized that due to the nature of hydraulic fracturing, more horsepower than what is readily available is often required. Having a mobile power unit that may drive a hydraulic fracturing pump or an electric power generator may be beneficial in terms of flexibility. Accordingly, Applicant further has recognized that being able to quickly configure a mobile power unit driving a turbine generator into a mobile power unit driving a reciprocating pump may allow fracturing equipment to meet these changing horsepower demands and effectuate tier 4 emission standards. In other cases, due to site footprints, providing horsepower is the priority for all available space. As such, having a dedicated generator may not be the best solution for power generation.


Applicant still further has recognized that another drawback of a dedicated generator is the upfront engineering and cost to produce the unit. The generators may require extensive engineering hours along with different components and parts. The benefit of having a turbine driven fracturing pump that may be configured into an electrical generator provides flexibility and adaptability and may save costs by utilizing similar parts and components.


According to embodiments of systems and methods of the disclosure, for systems that include a natural gas turbine generator, the backside equipment such as the diesel deck engines, gearboxes, and transmissions may be removed, and instead, backside equipment, such as centrifugal or other types of pumps, may be powered with higher reliability electric pumps. One of the most common modes of failure with this backside equipment is hydraulic leaks or failures. With an electric motor, the need for hydraulic circuits to power the backside equipment may be removed. Thus, converting the backside equipment to be driven by electrical motors may also increase reliability of the backside equipment and, thus, increase uptime or reduce maintenance costs. Also, having electric motors connected to or coupled to pumps, as opposed to hydraulic motors, may yield more efficiency in an electric fleet arrangement, and this, in turn, may result in an improvement in running costs and a reduction in heat rejection which removes need, in some instances, for high air to oil cooler systems, as will be understood by those skilled in the art.


According to embodiments of systems and methods, it also is anticipated that the natural gas turbine fleets may be converted to be completely electric. With enough turbine generator units and a power distribution system, the natural gas turbine fleets may remove the tier 4 diesel deck engines on the fracturing pumps that often are used to start the turbines and run the on-board auxiliary equipment. This may reduce costs as tier 4 diesel deck engines may be expensive.


Further, this application is directed to embodiments of high pressure pumps and power generators that readily are installable on mobile fracturing transportation platforms, such as trailers, and that may include a dual fuel, dual shaft turbine engine mounted to the mobile fracturing trailer selectively to drive either the high pressure pumps or the power generators when installed on the mobile fracturing trailer.


According to one embodiment of the disclosure, a mobile power unit includes a gas turbine engine, a drive shaft, a reduction gearbox, and a transportation platform. The gas turbine engine includes an engine output shaft that rotates to provide energy from the gas turbine engine. The reduction gearbox is disposed between the engine output shaft and the drive shaft such that the speed of rotation of the engine output shaft to a speed of rotation of the drive shaft is reduced. The reduction gearbox may have a ratio in a range of 5:1 to 20:1. The transportation platform includes a drive equipment receiver that is configured to receive drive equipment therein such that the drive equipment is positioned to be connected to the drive shaft. The gas turbine engine is mounted to the transportation platform so that the reduction gearbox and the drive shaft are attached to the transportation platform. The transportation platform having a first configuration when a pump is installed in the drive equipment receiver such that the pump is driven by the gas turbine engine. The pump connected to the drive shaft when the pump is installed in the drive equipment receiver such that the pump is configured to provide high pressure fluid when driven by the gas turbine engine. The transportation platform having a second configuration when an electrical generator is installed in the drive equipment receiver such that the electrical generator is driven by the gas turbine engine. The electrical generator being connected to the drive shaft and configured to provide electrical power when driven by the gas turbine engine.


In embodiments, the reduction gearbox may have a ratio of 11:1. The electrical generator may include a generator gearbox that is configured to step up a speed of rotation of the drive shaft. The generator gearbox may have a ratio in a range of 1:1.25 to 1:5.


In another embodiment of the disclosure, a mobile power unit includes a gas turbine engine, a drive shaft, a fixed reduction gearbox, and an electrical generator. The gas turbine engine includes an engine output shaft. The drive shaft is driven by the gas turbine engine and is configured to connect to a hydraulic fracturing pump so that the pump provides high pressure fluid for hydraulic fracturing. The fixed reduction gearbox is positioned between the gas turbine engine and the drive shaft. The reduction gear box reducing a speed of rotation of the engine output shaft of the gas turbine engine to a speed for rotation of the drive shaft. The electrical generator is connected to the drive shaft and includes a step up generator gearbox and an alternator. The alternator being configured to generate electrical power.


In embodiment, the fixed reduction gearbox may have a ratio in a range of 5:1 to 20:1, e.g., 11:1. The fixed reduction gearbox may reduce a maximum speed of the drive shaft to 1500 RPM. The alternator may be a permanent magnet alternator having 2 or 4 poles.


In yet another embodiment of the disclosure, a well pad includes a plurality of mobile power units, and a blender unit, a hydration unit, or a chemical additive unit. Each mobile power unit of the plurality of mobile power units includes a gas turbine engine, a drive shaft, a reduction gearbox, and a transportation platform. The gas turbine engine includes an engine output shaft that rotates to provide energy from the gas turbine engine. The reduction gearbox is disposed between the engine output shaft and the drive shaft such that the speed of rotation of the engine output shaft is reduced to a speed of the drive shaft. The reduction gearbox may have a ratio in a range of 5:1 to 20:1. The transportation platform may include a drive equipment receiver defined thereon. The gas turbine engine mounted to the transportation platform such that the reduction gearbox and the drive shaft are secured to the transportation platform. The well pad includes a first mobile power unit that includes an electrical generator installed in the drive equipment receiver of the transportation platform such that the electrical generator is driven by the gas turbine engine of the first mobile power unit. The well pad includes a second mobile power unit that includes a hydraulic fracturing pump installed in the drive equipment receiver of the transportation platform such that the hydraulic fracturing pump is driven by the gas turbine engine of the second mobile power unit. The blender unit, hydration unit, or chemical additive unit includes a first pump that includes an electric motor to rotate the first pump. The first pump receiving electrical power from the electrical generator of the first mobile power unit.


In yet another embodiment of the disclosure, a method of changing drive equipment of a mobile power unit includes operating a first mobile power unit in a first configuration, operating the first mobile power unit in a second configuration, and interchanging the first mobile power unit between the first configuration and the second configuration. Operating the first mobile power unit in the first configuration includes a gas turbine engine of the first mobile power unit driving a pump to provide high pressure fluid. The pump connected to a drive shaft that has a maximum speed of rotation in a range of 1000 RPM to 1700 RPM. Operating the first mobile power unit in the second configuration includes the gas turbine engine driving an electrical generator to provide electrical power with the electrical generator connected to the drive shaft. Interchanging the first mobile power unit between the first and second configurations includes changing the pump or the electrical generator for the other of the pump and the electrical generator.


In embodiments, operating the first mobile power unit in the second configuration includes providing electrical power to a blender unit, a hydration unit, or a chemical additive unit of a well pad or providing electrical energy to auxiliary equipment of the second mobile power unit.


In some embodiments, interchanging the first mobile power unit between the first configuration and the second configuration may include disconnecting the pump form an output flange of the drive shaft, lifting a first skid including the pump from a drive equipment receiver of a transportation platform of the first mobile power unit, installing a second skid including the electrical generator into the drive equipment receiver, and connecting the electrical generator to the output flange of the drive shaft. The first skid may be lifted with a crane or a forklift and may occur at a well pad.


In yet another embodiment of the present disclosure, a method of controlling a well pad includes controlling a first mobile power unit, a second mobile power unit, and a blender unit, a hydration unit, or a chemical additive unit with a supervisory control unit. The first mobile power unit includes a gas turbine engine driving an electrical generator. The second mobile power unit includes a gas turbine engine driving a hydraulic fracturing pump. The blender unit, hydration unit, or chemical additive unit receives electrical power from the first mobile power unit.


To the extent consistent, any of the embodiments or aspects described herein may be used in conjunction with any or all of the other embodiments or aspects described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the embodiments of the present disclosure, are incorporated in and constitute a part of this specification, and together with the detailed description, serve to explain the principles of the embodiments discussed herein. The present disclosure may be more readily described with reference to the accompanying drawings.



FIG. 1 is a schematic view of a well pad layout according to an embodiment of the disclosure.



FIG. 2 is a table illustrating exemplary power consumption of pumps of a blender unit according to an embodiment of the disclosure.



FIG. 3 is a perspective view of a mobile power unit according to an embodiment of the disclosure.



FIG. 4 is a schematic view of the mobile power unit of FIG. 3 driving a fracturing pump according to an embodiment of the disclosure.



FIG. 5 is a schematic view of the mobile power unit of FIG. 3 driving a generator according to an embodiment of the disclosure.



FIG. 6 is schematic view of a mobile power unit driving a reciprocating fracturing pump according to an embodiment of the present disclosure.



FIG. 7 is schematic view of a mobile power unit driving a reciprocating fracturing pump including a torsional vibration dampener and torque sensor according to an embodiment of the present disclosure.



FIG. 8 is schematic view of a mobile power unit driving a generator including a torsional vibration dampener and torque sensor according to an embodiment of the present disclosure.



FIG. 9 is an exploded perspective view, with parts separated, of an alternator of an electrical generator of a mobile power unit of FIG. 8 according to an embodiment of the present disclosure.



FIG. 10 is a flow chart of a method of changing drive equipment of a mobile power unit according to an embodiment of the disclosure.



FIG. 11 is a flow chart of a method of controlling a well pad according to an embodiment of the disclosure.



FIG. 12 is a flow chart of a method of changing drive equipment of a mobile power unit according to an embodiment of the disclosure.





DETAILED DESCRIPTION

The present disclosure will now be described more fully hereinafter with reference to example embodiments thereof with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. These example embodiments are described so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Features from one embodiment or aspect may be combined with features from any other embodiment or aspect in any appropriate combination. For example, any individual or collective features of method aspects or embodiments may be applied to apparatus, product, or component aspects or embodiments and vice versa. The disclosure may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. As used in the specification and the appended claims, the singular forms “a,” “an,” “the,” and the like include plural referents unless the context clearly dictates otherwise. In addition, while reference may be made herein to quantitative measures, values, geometric relationships or the like, unless otherwise stated, any one or more if not all of these may be absolute or approximate to account for acceptable variations that may occur, such as those due to manufacturing or engineering tolerances or the like.


Embodiments of the present disclosure are directed to mobile power units and associated methods that may include interchangeable drive equipment. Specifically, mobile power units may include an engine that is coupled to drive equipment such that the drive equipment is driven by the engine. The drive equipment may be a hydraulic fracturing pump or an electrical generator that is interchangeable in the field to allow for a quick changeover between providing high pressure fluid with the fracturing pump and providing electrical power with the electrical generator or vice versa depending on the demands of the well pad.



FIG. 1 illustrates an exemplary well pad layout 1000 that is provided in accordance with an embodiment of the present disclosure. The well pad layout 1000 includes a plurality of mobile power units 100 arranged around a wellhead 10 to supply the wellhead 10 with high-pressure fracturing fluids and recover oil and/or gas from the wellhead 10 as will be understood by those skilled in the art. As shown, some of the mobile power units 100, e.g., mobile power units 100a, drive a hydraulic fracturing pump 200 that provides high pressure fluid to a manifold 20 such that the high pressure fluid is provided to the wellhead 10.


Additionally, some of the mobile power units 100, e.g., mobile power units 100b, drive an electrical generator 300 that provides electrical power to the well pad layout 1000. For example, the well pad layout 1000 may include auxiliary or backside equipment 400, as will be understood by those skilled in the art, that requires electrical power to provide fluids to the manifold 20 or the wellhead 10. Specifically, the backside equipment 400 of the well pad layout 100, for example, may include a blender unit 410, a hydration unit 420, or a chemical additive unit 430. Each of the units 410, 420, 430 may be supplied electrical power or electrified such that pumps and other equipment of the units 410, 420, 430 run on the electrical power. Traditionally, blender units, hydration units, and chemical additive units require horsepower provided by diesel deck engines or small diesel generators. The diesel deck engines and generators may include gearboxes, transmissions, and hydraulic circuits that each require maintenance and may cause failures or breakdowns of the respective unit 410, 420, 430. Electrifying the units 410, 420, 430 by replacing the diesel deck engines, gearboxes, transmissions, and hydraulic circuits with electrical motors may increase in-service time, reduce running costs, decrease maintenance, and decrease emissions of the units 410, 420, 430. In addition, electrifying the units 410, 420, 430 may allow the units 410, 420, 430 of the auxiliary or backside equipment to meet tier 4 emissions standards.


As also shown in FIG. 2, in an embodiment, the electrical power requirements of the units 410, 420, 430 may be calculated for a wellhead, e.g., wellhead 10, having a maximum anticipated flow rate of 125 barrels per minute (BPM). For example, if pumps of a blender unit 410 are to be electrified, the electrical power demands of the pumps of the blender unit 410 may be calculated based on a maximum anticipated flow rate of the well pad or the fracturing site. Given the maximum anticipated flow rate of 125 BPM, the table of FIG. 2 illustrates exemplary calculations of the power demands of pumps of the blender unit 410. As shown, the blender unit 410 may include a suction pump 412, a discharge pump 414, and multiple chemical pumps 416. The chemical pumps 416 may be included on the blender unit 410 or the chemical additive unit 430. The maximum flow rate of 125 BPM converts to a maximum flow rate of 5250 gallons per minute (GPM) through the blender unit 410. With such a flow rate, a suction pump 412 of the blender unit 410 may operate at 1250 revolutions per minute (RPM) with an output pressure of 30 pounds per square inch (psi) such that with an eighty percent efficiency of the suction pump 412, the suction pump 412 may be sized as a 115 horsepower electrical pump. Such a 115 horsepower pump, for example, may have an electrical draw of 86 kilowatts (kW) as will be understood by those skilled in the art. Given a motor efficiency of eighty percent, however, an electrical driving motor for the suction pump 412 may have an electrical draw of 110 kW. Repeating this calculation for the discharge pump 414 results in an electrical draw of 750 kW for the motor driving the discharge pump 414. Similarly, the chemical pumps 416 may have an electrical draw of 1 kW. In addition, the blender unit 410 also may include other auxiliary components that require electrical power including, but not limited to, sand augers, air compressors, and PLC controllers. The power requirements for these auxiliary components of the blender unit 410 may require 250 kW of electrical power. Thus, the total electrical power to run the blender unit 410 at the maximum flow rate of 125 BPM is 1,100 kW. This process may be repeated for a hydration unit 420 which may have an electrical power requirement of 690 kW. Thus, for example, the total electrical requirement to run the units 410, 420, 430 may be 1,790 kW as will be understood by those skilled in the art. A single mobile power unit 100 including an engine 120 producing 5100 horsepower may be converted by an electrical generator 300 to produce 3,800 kW of electrical power which would be more than sufficient to provide electrical power for the units 410, 420, 430 of the auxiliary equipment.


In some embodiments, it also may be desirable to electrify the auxiliary equipment of the mobile power units 100, e.g., mobile power units 100a. The auxiliary equipment of the mobile power units 100a, for example, may include, but not be limited to, fuel pumps, cooling pumps, oil/lubrication pumps, cooling fans, and controllers as understood by those skilled in the art. The electrical power requirements for the auxiliary equipment of the mobile power unit may be 270 kW. As a well pad layout, e.g., well pad layout 1000, may include eight mobile power units 100a driving pumps, and the total electrical power requirement for electrifying the auxiliary equipment of the mobile power units 100 of the well pad layout 1000 collectively may be 2,160 kW.


If it is desired to electrify the units 410, 420, 430 and the auxiliary equipment of the mobile power units 100b, the total electrical power requirement of the well pad layout 1000 may be the sum of the 1,790 kW for the units 410, 420, 430 and the 2,160 kW for electrifying the auxiliary equipment of eight mobile power units 100a such that the total electrical power requirement for the well pad layout 1000 may be 3,950 kW. This electrical power requirement may be beyond the capability of a single mobile power unit 100b driving an electrical generator 300. As such, were the auxiliary equipment of the mobile power units 100a also electrified, at least two mobile power units 100b driving electrical generators 300 would be required. Additionally, a third mobile power unit 100b driving an electrical generator 300 may be desired for redundancy sake. The third mobile power unit 100b driving an electrical generator 300 may allow for maintenance and downtime on one of the mobile power units 100b driving electrical generators 300 or be available as an extra mobile power unit 100a as the drive equipment, e.g., the pump 200 or electrical generator 300, is and field changeable as detailed below.


The well pad layout 1000 may include a supervisory control unit 30 that monitors and controls operation of the mobile power units 100a driving fracturing pumps 200, the mobile power units 100b driving electrical generators 300, and the units 410, 420, 430. The supervisory control unit 30 may be a mobile control unit in the form of a trailer or a van, as appreciated by those skilled in the art. In some embodiments, the supervisory control unit 30 receives electrical power from the mobile power units 100b.



FIG. 3 illustrates an exemplary mobile power unit 100 that is provided in accordance with an embodiment of the present disclosure. As noted above, the mobile power units 100 detailed herein include a gas turbine engine 120 that provides mechanical horsepower to drive equipment in the form of a hydraulic fracturing pump 200 or an electrical generator 300. As described in greater detail below, the hydraulic fracturing pump 200 and the electrical generator 300 are designed as modular components that may be removed and replaced with another pump 200 or generator 300 without modifying the remainder of the mobile power unit 100. Such a modular design may allow for a single mobile power unit 100 to drive a pump 200 and then be changed over to drive an electrical generator 300, or vice versa, depending on the demands of the well pad.


The exemplary mobile power unit 100a of FIG. 3 includes transportation platform 110, an engine 120, and a hydraulic fracturing pump 200. The transportation platform 110 is shown as a single trailer with the entire mobile power unit 100 and components thereof mounted or installed thereto. For example, it may be advantageous to have the entire mobile power unit 100 mounted to a single trailer such that setup and startup of the mobile power unit 100 does not require onsite assembly of the mobile power unit 100. In addition, mounting the entire mobile power unit 100 to a single trailer may decrease a footprint of the mobile power unit 100. The transportation platform 110 may be a trailer that may be pulled by a tractor (not shown) on and off public highways as will be understood by those skilled in the art. In some embodiments, the transportation platform may include more than one trailer.


The engine 120 is mounted to the transportation platform 110 and may be any suitable engine including, but not limited to, an internal combustion engine or a gas turbine engine. The engine 120 may be a dual fuel engine operating on gasoline, natural gas, well gas, field gas, diesel, and/or other suitable fuel. In some embodiments, the engine 120 may be a dual fuel engine operating on a liquid fuel and a gaseous fuel. In certain embodiments, the engine 120 is a dual fuel gas turbine engine that asynchronously operates on diesel fuel, e.g., #2 diesel as will be understood by those skilled in the art, and on a gaseous fuel, e.g., natural gas, well gas, or field gas. In particular embodiments, the engine 120 is a dual fuel, dual shaft gas turbine engine that operates on a liquid fuel such as diesel fuel and a gaseous fuel such as natural gas, well gas, or field gas.



FIGS. 4 and 5 illustrate that an embodiment of a mobile power unit 100 that selectively may be provided with either a fracturing pump 200 (FIG. 4) or an electrical generator 300 (FIG. 5) that is driven by the engine 120. The pump 200 and the electrical generator 300 may be referred to generally as the “drive equipment.” The mobile power unit 100 includes a drive equipment position or receiver 190 that receives and secures the drive equipment to the mobile power unit 100 such that the drive equipment is driven by the engine 120 of the mobile power unit 100. The mobile power unit 100 may include auxiliary equipment to support the mobile power unit 100. For example, the engine 120 may include a starter 121 that is used to start the engine 120. A gearbox 130 may include a gearbox lubrication pump 138 that provides lubrication to the gearbox 130. The mobile power unit 100 also may include a drive lubrication pump 180 that provides lubrication to drive equipment installed in a drive equipment receiver 190. The drive equipment receiver 190 may be a recess in an upper surface of the transportation platform 110 that is sized to receive the drive equipment therein. The embodiment of the mobile power unit 100 further may include other auxiliary equipment in the form of cooling or heating fans, controllers, and pumps. The auxiliary equipment of the mobile power unit 100 may be driven by deck engines or may be electrified as detailed herein.


The pump 200 and the electrical generator 300 may be secured to a skid 220, 320, as will be understood by those skilled in the art, that provides for a stable base for the pump 200 or the electrical generator 300 and allows for the pump 200 or the electrical generator 300 to be lifted from and installed or mounted within the drive equipment receiver 190 of the mobile power unit 100. The skid 220, 320 may be constructed from a structural steel, e.g., AISI 1018 steel. The skid 220, 320 may include alignment features that align the skid 220, 320 within the drive equipment receiver 190 such that drive components and/or auxiliary equipment of the pump 200 or the generator 300 are aligned with the components of the mobile power unit 100, e.g., the engine 120. The skids 220, 320 may include lifting slots 225, 325 positioned therein that are sized to be engaged by components of a lifting device, e.g., a fork of a forklift, as would be appreciated by one skilled in the art, such that the respective skid 220, 320, including a pump 220 or generator 300, to be lifted onto or removed from the drive equipment receiver 190 of the mobile power unit 100. The skid 220, 320 may include auxiliary components that support operation of the respective one of the pump 200 or the electrical generator 300.


In some embodiments, the pump 200 or the electrical generator 300 may include lifting loops 210, 310, respectively, that allow for lifting of the pump 200 or the electrical generator 300 by a crane or other lifting device, as would be appreciated by one skilled in the art, to be lifted onto or removed from the drive equipment receiver 190 of the mobile power unit 100. The lifting loops 210, 310 may be secured to the skids 220, 320 or to a body of the pump 200 or the generator 300. Having both the lifting loops 210, 310 and the lifting slots 215, 315 allow for removal and installation of the pump 200 or the electrical generator 300 in a field or in a shop environment.



FIG. 6 schematically illustrates an embodiment of the mobile power unit 100 with an engine 120 connected to a pump 200 that is installed in the drive equipment receiver 190 of the mobile power unit 100. The engine 120 includes a power end 126 that directly drives an engine output shaft 128. The engine output shaft 128 is coupled to a reduction gearbox 130 such that a speed of rotation of the engine output shaft 128 is stepped down to a speed of rotation of a gearbox output shaft 134 of the gearbox 130 that is suitable for a hydraulic fracturing pump, e.g., pump 200. For example, a speed of rotation of the engine output shaft 128 of the engine 120 may be 16,500 RPM and a speed of rotation of the gearbox output shaft 134 of the gearbox 130 that is suitable for the pump 200 may be 1500 RPM such that a ratio of the reduction gearbox 130 is an 11:1 reduction. The reduction gearbox 130, for example, in some embodiments, may have a ratio in a range of 5:1 to 20:1 depending on the specifications of the engine 120 and the pump 200 to be driven by the engine 120. It will be appreciated that as the rotation speed of the engine output shaft 128 is stepped down to the rotation speed of the gearbox output shaft 134 at the ratio of the gearbox 130 that the torque of the output shaft 128 is stepped up to torque of the output shaft 134 at the inverse of the ratio, e.g., 1:11 step up for a 11:1 step down.


The gearbox output shaft 134 of gearbox 130 includes an output flange 136 that is coupled to an input flange 142 of a drive shaft 140 such that the drive shaft 140 is directly driven by the engine 120 via the gearbox 130. The drive shaft 140 includes an output flange 144 that releasably and selectively may be connected to an input shaft 250 of the pump 200 such that the pump 200 is directly driven by the engine 120 via the drive shaft 140.



FIG. 7 schematically illustrates an embodiment of a mobile power unit 100 with the engine 120 connected to the pump 200 that is installed in the drive equipment receiver 190 of the mobile power unit 100 such that the pump 200 is driven by the engine 120 via the drive shaft 140 in a manner as detailed above. The drive shaft 140 includes a torsional vibration damper (TVD) system 150 and a torque sensor 158, as will be understood by those skilled in the art. The TVD system 150 may dampen torque variations from the engine 120 to the pump 200 and/or may dampen reaction torque variations from the pump 200 to the engine 120. The TVD system 150 may prevent or reduce torque variations experienced by the engine 120, the gearbox 130, the drive shaft 140, and/or the pump 200 such that a service interval or the service life of the engine 120, the gearbox 130, the drive shaft 140, and/or the pump 200 may be extended. The drive shaft 140 also may include one or more torque sensors 160 installed thereon that measure a torque of the drive shaft 140. The torque sensors 160 may provide a signal to one or more controllers of the mobile power unit 100, e.g., a controller of the engine 120 or a controller of the pump 200. The controllers of the mobile power unit 100 or the torque sensors 160 may provide a signal to the supervisory control unit 30 (FIG. 1) indicative of the torque of the drive shaft 140. The torque of the drive shaft 140 may be used in one or more control algorithms for the engine 120.



FIG. 8 schematically illustrates an embodiment of a mobile power unit 100 with the engine 120 connected to an electrical generator 300 that is installed in the drive equipment receiver 190 of the mobile power unit 100 such that the electrical generator 300 is driven by the engine 120 via the drive shaft 140. Specifically, the generator 300 includes an alternator 330 that rotates to generate alternating current (AC) electrical power which is suitable for the units 410, 420, 430 (FIG. 1), the auxiliary equipment of the mobile power units 100a, or the supervisory control unit 30 (FIG. 1). The speed of rotation of the alternator 330 that is suitable for generation of electrical power depends on the number of poles of the alternator 330 and the frequency of the AC power as represented by the following equation:






f
=


P
·
N


1

2

0







where f is the output frequency in hertz (Hz), P is the number of poles, and N is the RPM of the alternator. As most electrical equipment in the United States operates at a frequency of 60 hertz (Hz), the rotational speed of the alternator 330 to provide AC power 60 Hz, for example, may be 3600 RPM for a 2-pole configuration and 1800 RPM for a 4-pole configuration. Those skilled in the art recognize that other speeds may be suitable for rotation of the alternator 330 depending on the desired frequency of the AC power, e.g., 50 Hz or 60 Hz, or the number of poles of the alternator, e.g., 2, 4, 6, 8, 10 poles.


The electrical generator 300 includes an input shaft 350 that releasably couples or otherwise connects to the output flange 144 of the drive shaft 140. As the electrical generator 300 may be a selective replacement for the pump 200, and the gearbox 130 has a fixed reduction ratio in a range of 5:1 to 20:1, e.g., 11:1, based on the speed requirements of the pump 200, the drive shaft 140 has a maximum speed of rotation of 1500 RPM. This results in the speed of rotation of the drive shaft 140 being less that what is required by the alternator 330 of the electrical generator 300 as detailed above with respect to a 2-pole or 4-pole configuration of the alternator 330. For this reason, the electrical generator 300 includes a step up generator gearbox 360 to increase the speed of rotation of the input shaft 350 to a speed of rotation that is suitable for the electrical generator 300. The ratio of the generator gearbox 360 ratio is set based on keeping the engine running at as high of a load and speed as possible and the number of poles of the electrical generator 300. As the input speed of the drive shaft 140 has a maximum speed of rotation of 1500 RPM, the generator gearbox 310 may have a ratio of 1:2.5 which allows for the speed of rotation of the electrical generator 300 to be 1800 RPM or 3600 RPM depending on the number of poles of the generator 300 installed on the mobile power unit 100. However, other ratios in a range of 1:1.25 to 1:5 may be used based on a desired speed of rotation of the electrical generator 300 as will be understood by those skilled in the art. Those skilled in the art appreciate that the speed of the engine 120 may be controlled by the supervisory control unit 30. Including a generator gearbox 360 which may allow for the electrical generator 300 selectively to be changed with the pump 200 by releasably coupling or connecting to the drive shaft 140 without changing the ratio of the reduction gearbox 130 of the engine 120. By not requiring the changing of the reduction gearbox 130 or requiring the reduction gearbox 130 to have multiple settings, one for the pump 200 and one for the generator 300, the efficiency of the reduction gearbox 130 may be increased and/or the complexity of changing the drive equipment may be simplified.


The alternator 330 of the electrical generator 300 is designed and sized based on the electrical demands of the fracturing fleet, e.g., the power demands of the well pad layout. As detailed above, when the alternator 330 is providing electrical power for the units 410, 420, 430 (FIG. 1), the electrical power requirement is 1,790 kW, and when the engine 120 is a 5,100 horsepower engine, the engine 120 may be capable of providing 3,800 kW of energy. Thus, the alternator 330 should be sized to generate at least 1,800 kW and to be capable of generating 3,800 kW when required. For example, when auxiliary equipment of the mobile power units 100a also are provided with electrical power from one or more generators 300.



FIG. 9 illustrates a construction of an exemplary alternator 330 in an exploded perspective view as provided in accordance with embodiments of this disclosure. The alternator 330 may be a permanent magnet alternator and more specifically, an AC synchronous alternator in which the stator and the rotor spin at the same speed. Such an alternator may have increased efficiency when compared to other alternators and does not require electrical power to the rotor to generate electrical power. As shown, the alternator 330 includes a rotor mount 332, a solid rotor 334, a stator 336, a field coil 338, and a housing 440. The rotor mount 332 is attached to an output shaft of the generator gearbox 360 (FIG. 8) such that the rotor mount 332 rotates at the output speed of the generator gearbox 360. The rotor mount 332 may include a blower 333 that includes vanes to direct fluid flow within the alternator 330 to cool internal components of the alternator 330. The rotor 334 is mounted to the rotor mount 332 such that the rotor 334 is rotatably fixed to the rotor mount 332. The rotor 334 may be a solid rotor and includes permanent magnets 335 mounted therein. The rotor 334 may include 12 permanent magnets 335 which may be NdFeB magnets, for example, as will be understood by those skilled in the art. The stator 336 is mounted to the rotor mount 332 within the rotor 334 such that the stator 336 rotates in concert with the rotor 334. The stator 336 may be a 6-phase stator, for example. The field coil 338 is mounted to the housing 340 about the stator 336 such that as the rotor 334 and the stator 336 rotate, AC power is transferred to terminals 342 of the housing 340. The housing 340 is disposed over the rotor mount 332, the solid rotor 334, the stator 336, and the field coil 338 such that the rotor mount 332, the solid rotor 334, the stator 336, and the field coil 338 rotate within the housing 340.


As shown in FIG. 5, embodiments of the alternator 330 also may require a cooling system 370 to cool internal components of the alternator 330. In some embodiments, the cooling system 370 includes a coolant pump 372 that circulates fluid through the alternator 330 to cool internal components thereof. The fluid may be air or glycol water, as will be understood by those skilled in the art. In certain embodiments, the cooling system 370 of the alternator 330 is self-sufficient such that the cooling system 370 is powered by the alternator 330 when the alternator 330 generates electrical power. In particular embodiments, the cooling system 370 of the alternator 330 requires external power to power the cooling system 370. In such embodiments, the cooling system 370 may be powered by a lubrication system 180 of the mobile power unit 100 (FIG. 4) that is configured to cool the pump 200 when the pump 200 is installed on the mobile power unit 100. The lubrication system 180 may include a changeover valve to be compatible with the cooling pump 372 of the generator 300. The cooling system 370 may require a coolant storage tank 374 which may be mounted to the skid 320 or the alternator 330 such that the cooling system 370 and the coolant storage tank is part of the electrical generator 300 and is installed with the electrical generator 300.



FIG. 10 illustrates a method 1001 of changing a power device of a mobile power unit in accordance with exemplary embodiments of the present disclosure with reference to the mobile power unit of FIGS. 3-5. As described in greater detail below, the method 1001 includes a mobile power unit 100 driving a pump 200 in a first configuration (Step 1010), an electrical generator 300 in a second configuration (Step 1020), and changing the pump 200 or the electrical generator 300 for the other of the pump 200 or the electrical generator 300 (Step 1100). The method 1001 may include receiving a signal indicative of an electrical demand, an electrical supply, a fluid requirement, or a fluid supply of a well pad site. Changing the mobile power unit 100 between the first configuration and the second configuration may occur at least in part as a result of analyzing or determining that the electrical demand of the well pad site is greater than the electrical supply, that a fluid supply is greater than a fluid requirement of the well pad site, that an electrical supply is greater than an electrical demand of the well pad site, or that the fluid requirement of the well pad site is greater than the fluid supply.


In the first configuration, a gas turbine engine 120 of the mobile power unit 100 drives the pump 200 to provide high pressure fluid (Step 1010). The pump 200 is connected to a drive shaft 140 of the mobile power unit 100. The drive shaft 140 may have a maximum speed of rotation in a range of 1000 RPM to 1700 RPM. Operating the mobile power unit 100 in the first configuration may include operating the gas turbine engine 120 on field gas, for example.


The method 1001 may include selectively interchanging the pump 200 of the mobile power unit 100 for the electrical generator 300 (Step 1100). Interchanging the pump 200 for the electrical generator 300 may include disconnecting the pump 200 from an output flange 144 of the drive shaft 140 (Step 1110) before lifting a skid 220 that includes the pump 200 from a drive equipment receiver 190 of a transportation platform 110 of the mobile power unit 100 (Step 1120). Lifting the skid 220 may include lifting the skid 200 with a crane or a forklift. With the pump 200 removed, a skid 320 including the electrical generator 300 is installed into the drive equipment receiver 190 of the transportation platform 110 (Step 1130). With the skid 320 installed in the drive equipment receiver 190, the electrical generator 300 is connected to the output flange 144 of the drive shaft 140 (Step 1140). Interchanging the pump 200 for the electrical generator 300 may occur at a well pad or at a plant.


With the electrical generator 300 connected to the output flange 144, the mobile power unit 100 is operated in a second configuration in which the gas turbine engine 120 drives the electrical generator 300 (Step 1020), e.g., instead of the pump 200, to provide electrical power. In the second configuration, the mobile power unit 100 may provide electrical power to a blender unit 410, a hydration unit 420, or a chemical additive unit 430 of a well pad 1000. Additionally or alternatively, in the second configuration, the mobile power unit 100 may provide electrical power to auxiliary equipment of another mobile power unit 100 which includes a gas turbine engine 120 driving a hydraulic fracturing pump 200. Operating the mobile power unit 100 in the second configuration may include operating the gas turbine engine 120 on field gas.


In the second configuration, the method 1001 may include monitoring and controlling the electrical generator of the first mobile power unit 100 with a supervisory control unit 30 (FIG. 1). As described in greater detail below with respect to method 1200, the supervisory control unit 30 may monitor and control delivery of a high pressure fluid of a second mobile power unit having a gas turbine engine driving a pump simultaneously with monitoring and controlling the first mobile power unit in the second configuration.


The method 1001 may include selectively interchanging the electrical generator 300 of the mobile power unit 100 for the pump 200 (Step 1150). Interchanging the electrical generator 300 for the pump 200 may include disconnecting the electrical generator 300 from the output flange 144 of the drive shaft 140 (Step 1160) before lifting a skid 220 that includes the electrical generator 300 from a drive equipment receiver 190 of a transportation platform 110 of the mobile power unit 100 (Step 1170). Lifting the skid 220 may include lifting the skid 200 with a crane or a forklift. With the electrical generator 300 removed, a skid 220 including the pump 200 is installed into the drive equipment receiver 190 of the transportation platform 110 (Step 1180). With the skid 220 installed in the drive equipment receiver 190, the pump 200 is connected to the output flange 144 of the drive shaft 140 (Step 1190). Interchanging the electrical generator 300 for the pump 200 may occur at a well pad or at a plant.



FIG. 11 shows a method 1200 of controlling a well pad in accordance with exemplary embodiments of the present disclosure with reference to the well pad 1000 of FIG. 1. The method 1200 includes operating a supervisory control unit 30 to control a first mobile power unit 100, to control a second mobile power unit 100, and to control a blender unit 410, a hydration unit 420, or a chemical additive unit 430.


Operating the supervisory control unit 30 includes receiving operating parameters of the well pad 1000 at the supervisory control unit 30 (1210). In response to receiving operating parameters, the supervisor control unit 30 provides control signals to the first mobile power unit 100 to control the first mobile power unit 100 (Step 1230), provides control signals to the second mobile power unit 100 (Step 1250), and provides control signals to the blender unit 410, the hydration unit 420, or the chemical additive unit 430 (Step 1270).


The supervisory control unit 30 may receive feedback signals from first mobile power unit 100 (Step 1220) and may modify control signals provided to the first mobile power unit 100 in response to the feedback signals (Step 1240). For example, the supervisory control unit 30 may change a supply of air or fuel to the gas turbine engine 120 such that the gas turbine engine 120 changes power delivery to the electrical generator 300 based on energy demands of the well pad 100. The supervisory control unit 30 may calculate energy demands of the well pad 1000 by monitoring or receiving feedback from the first mobile power unit 100, the second mobile power unit 100, and a blender unit 410, a hydration unit 420, or a chemical additive unit 430. In some embodiments, the method 1200 may include the first mobile power unit 100 providing power to a supervisory control vehicle that includes the supervisory control unit 30.


The supervisory control unit 30 may receive feedback signals from the second mobile power unit 100 (Step 1220) and may modify control signals provided to the second mobile power unit 100 in response to the feedback signals (Step 1260). For example, the supervisory control unit 30 may change the supply of air or fuel to the gas turbine engine 120 of the second mobile power unit 100 to change an amount or pressure of a high pressure fluid from the pump 200 in response to the feedback signals of the second mobile power unit 100.


The supervisory control unit 30 may receive feedback signals from the blender unit 410, the hydration unit 420, or the chemical additive unit 430 (Step 1220) and may modify control signals provided to the units 410, 420, or 430 based on the feedback signals (Step 1280). For example, the supervisory control unit 30 may change an amount of fluid provided to the pump 200 by a respective one units 410, 420, or 430. The supervisory control unit 30 may control the units 410, 420, 430 by changing a supply or electrical power from the electrical generator 300 of the first mobile power unit 100.



FIG. 12 illustrates a method 1300 of changing drive equipment of a mobile power unit in accordance with exemplary embodiments of the present disclosure with reference to the mobile power unit of FIGS. 3-5. The method 1300 includes operating a mobile power unit 100 in a first configuration (Step 1310), receiving one or more signals indicative of an electrical demand or fluid requirements of a well pad site (Step 1320), determining that the electrical demand of the well pad site 1000 is greater than an electrical supply or that a fluid capacity is greater than the fluid requirements (Step 1330), and interchanging the first mobile power unit 100 from a first configuration to a second configuration (Step 1340).


Operating the first mobile power unit 100 in the first configuration (Step 1310) includes the first mobile power unit 100 driving a pump 200 to provide high pressure fluid to the well pad site 1000. The mobile power unit 100 includes a gas turbine engine 120 that drives the pump 200 to provide the high pressure fluid. The pump 200 is connected to a drive shaft 140 of the mobile power unit 100 which has a reduction gearbox 130 such that the drive shaft 140 may have a maximum speed of rotation in a range of 1000 RPM to 1700 RPM. Operating the mobile power unit 100 in the first configuration may include operating the gas turbine engine 120 on field gas, for example.


When the first mobile power unit 100 is operating in the first configuration, a supervisory control unit 30 of the well pad site 1000 receives demand signals from equipment of the well pad site 1000 and input from the operators at the well pad site 1000 that are indicative of an electrical demand and fluid requirements of the well pad site 1000 (Step 1320). In addition, the supervisory control unit 30 may receive performance signals from equipment of the well pad site 1000 (e.g., mobile power units 100, pumps 200, generators 300, or auxiliary units 410, 420, 430) (Step 1325). The supervisory control unit 30 may display the electrical demand and the fluid requirements of the well pad site 1000 and display the current electrical supply and fluid supply of the well pad site 1000 based on the signals received.


The operator or the supervisory control unit 30 may compare the electrical demand to the electrical supply or the fluid requirements to the fluid capacity (Step 1330). When the operator or the supervisory control unit 30 determines that the electrical demand of the well pad site 1000 is greater than the electrical supply or that the fluid capacity is greater than the fluid requirements, the first mobile power unit 100 may be interchanged from the first configuration to a second configuration (Step 1340). The decision to interchange the first mobile power unit 100 may be made to optimize electrical supply or fluid capacity or to allow for maintenance of other mobile power units 100. When the electrical demand is less than the electrical supply and the fluid capacity is less than the fluid requirements, the first mobile power unit 100 may remain in the first configuration.


When the first mobile power unit 100 is interchanged to the second configuration, the pump 200 of the first mobile power unit 100 is changed for an electrical generator 300 (Step 1350). In the second configuration, the electrical generator 300 is connected to the drive shaft 140 to produce electrical energy for the well pad site 1000. The electrical generator 300 includes a generator gearbox 360 to at least partially offset the reduction gearbox 130. The electrical generator 300 may provide electrical power to auxiliary units such as a blender unit 410, a hydration unit 420, or a chemical additive unit 430.


When the first mobile power unit 100 is operating in the second configuration, the supervisory control unit 30 of the well pad site 1000 may continue to receive demand signals from equipment of the well pad site 1000 and input from the operators at the well pad site 1000 that are indicative of an electrical demand and fluid requirements of the well pad site 1000 (Step 1360). In addition, the supervisory control unit 30 may receive performance signals from equipment of the well pad site 1000 (e.g., mobile power units 100, pumps 200, generators 300, or auxiliary units 410, 420, 430) (Step 1365). The supervisory control unit 30 may display the electrical demand and the fluid requirements of the well pad site 1000 and display the current electrical supply and fluid supply of the well pad site 1000 based on the signals received.


The operator or the supervisory control unit 30 may compare the electrical demand to the electrical supply or the fluid requirements to the fluid capacity (Step 1370). When the operator or the supervisory control unit 30 determines that the fluid requirements of the well pad site 1000 is greater than the fluid capacity or that the electrical supply is greater than the electrical demand, the first mobile power unit 100 may be interchanged from the first configuration to a second configuration (Step 1380). The decision to interchange the first mobile power unit 100 may be made to optimize electrical supply or fluid capacity or to allow for maintenance of other mobile power units 100. When the fluid requirement is less than the fluid capacity and the electrical supply is less than the electrical demand, the first mobile power unit 100 may remain in the second configuration.


When the first mobile power unit 100 is interchanged to the first configuration, the electrical generator 300 of the first mobile power unit 100 is changed for a pump 200 (Step 1390). As detailed above, in the first configuration, the pump 200 is connected to the drive shaft 140 to produce fluid capacity for the well pad site 1000. Interchanging the first mobile power unit 100 between the first configuration and the second configuration may occur at a well pad site 1000.


This is a divisional of U.S. Non-Provisional application Ser. No. 17/377,884, filed Jul. 16, 2021, titled “DRIVE EQUIPMENT AND METHODS FOR MOBILE FRACTURING TRANSPORTATION PLATFORMS,” which is a divisional of U.S. Non-Provisional application Ser. No. 17/301,305, filed Mar. 31, 2021, titled “DRIVE EQUIPMENT AND METHODS FOR MOBILE FRACTURING TRANSPORTATION PLATFORMS,” now U.S. Pat. No. 11,111,768, issued Sep. 7, 2021, which claims priority to and the benefit of, under 35 U.S.C. § 119(e), U.S. Provisional Application No. 62/705,055, filed Jun. 9, 2020, titled “DRIVE EQUIPMENT AND METHODS FOR MOBILE FRACTURING TRANSPORTATION PLATFORMS,” the disclosures of which are incorporated herein by reference in their entireties.


The foregoing description of the disclosure illustrates and describes various exemplary embodiments. Various additions, modifications, changes, etc., may be made to the exemplary embodiments without departing from the spirit and scope of the disclosure. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. Additionally, the disclosure shows and describes only selected embodiments of the disclosure, but the disclosure is capable of use in various other combinations, modifications, and environments and is capable of changes or modifications within the scope of the inventive concept as expressed herein, commensurate with the above teachings, and/or within the skill or knowledge of the relevant art. Furthermore, certain features and characteristics of each embodiment may be selectively interchanged and applied to other illustrated and non-illustrated embodiments of the disclosure.

Claims
  • 1. A well pad comprising: a plurality of mobile power units, each of the plurality of mobile power units comprising: a gas turbine engine including an engine output shaft that rotates to provide energy from the gas turbine engine,a drive shaft,a reduction gearbox disposed between the engine output shaft and the drive shaft, the reduction gearbox reducing a speed of rotation of the engine output shaft to a speed of rotation of the drive shaft, the reduction gearbox having a ratio in a range of 5:1 to 20:1, anda transportation platform including a drive equipment receiver, the gas turbine engine and the reduction gearbox mounted to the transportation platform such that the drive shaft is secured to the transportation platform;a first mobile power unit of the plurality of mobile power units, the first mobile power unit including an electrical generator installed in the drive equipment receiver of the transportation platform such that the electrical generator is driven by the gas turbine engine of the first mobile power unit, the electrical generator including a generator gearbox configured to step up the speed of rotation of the drive shaft;a second mobile power unit of the plurality of mobile power units, the second mobile power unit including a hydraulic fracturing pump installed in the drive equipment receiver of the transportation platform such that the hydraulic fracturing pump is driven by the engine output shaft of the second mobile power unit at the speed of rotation of the drive shaft; andone or more of a blender unit, a hydration unit, or a chemical additive unit including a first pump that includes an electric motor to rotate the first pump, the first pump receiving electrical power from the electrical generator of the first mobile power unit.
  • 2. The well pad according to claim 1, wherein the gas turbine engines of the plurality of mobile power units are configured to operate on field gas.
  • 3. The well pad according to claim 1, wherein the first mobile power unit is configured to interchange the electrical generator for a hydraulic fracturing pump such that the hydraulic fracturing pump is driven by the gas turbine engine of the first mobile power unit to provide high pressure fluid.
  • 4. The well pad according to claim 1, wherein the electrical generator of the first mobile power unit is secured to a skid, the skid being selectively securable to the drive equipment receiver so that the electrical generator is aligned with the drive shaft.
  • 5. The well pad according to claim 1, wherein the generator gearbox has a ratio in a range of 1:1.25 to 1:5.
  • 6. The well pad according to claim 5, wherein the drive shaft of each of the plurality of mobile power units has a maximum speed of rotation of 1500 revolutions per minute (RPM).
  • 7. The well pad according to claim 1, wherein, for each of the plurality of mobile power units, the drive equipment receiver comprises a recess in an upper surface of the transportation platform.
  • 8. A well pad comprising: a plurality of mobile power units, each of the plurality of mobile power units comprising: a gas turbine engine including an engine output shaft that rotates to provide energy from the gas turbine engine,a drive shaft,a reduction gearbox disposed between the engine output shaft and the drive shaft, the reduction gearbox reducing a speed of rotation of the engine output shaft to a speed of rotation of the drive shaft, the reduction gearbox having a ratio in a range of 5:1 to 20:1, anda transportation platform including a drive equipment receiver that is configured to receive either an electrical generator or a hydraulic fracturing pump, the gas turbine engine and the reduction gearbox mounted to the transportation platform such that the drive shaft is secured to the transportation platform;a first mobile power unit of the plurality of mobile power units, the first mobile power unit including the electrical generator installed in the drive equipment receiver such that the electrical generator is driven by the gas turbine engine via the reduction gearbox and the drive shaft of the first mobile power unit, the electrical generator including a generator gearbox configured to step up the speed of rotation of the drive shaft;a second mobile power unit of the plurality of mobile power units, the second mobile power unit including the hydraulic fracturing pump installed in the drive equipment receiver such that the hydraulic fracturing pump is driven by the engine output shaft of the second mobile power unit at the speed of rotation of the drive shaft; andone or more of a blender unit, a hydration unit, or a chemical additive unit including a first pump that includes an electric motor to rotate the first pump, the first pump receiving electrical power from the electrical generator of the first mobile power unit.
  • 9. The well pad according to claim 8, wherein the gas turbine engines of the plurality of mobile power units are configured to operate on field gas.
  • 10. The well pad according to claim 8, wherein the first mobile power unit is configured to interchange the electrical generator for a hydraulic fracturing pump such that the hydraulic fracturing pump is driven by the gas turbine engine of the first mobile power unit to provide high pressure fluid.
  • 11. The well pad according to claim 8, wherein the electrical generator of the first mobile power unit is secured to a skid, the skid being selectively securable to the drive equipment receiver so that the electrical generator is aligned with the drive shaft.
  • 12. The well pad according to claim 8, wherein the generator gearbox has a ratio in a range of 1:1.25 to 1:5.
  • 13. The well pad according to claim 12, wherein the drive shaft of each of the plurality of mobile power units has a maximum speed of rotation of 1500 revolutions per minute (RPM).
  • 14. The well pad according to claim 8, wherein, for each of the plurality of mobile power units, the drive equipment receiver comprises a recess in an upper surface of the transportation platform.
  • 15. A well pad comprising: a plurality of mobile power units, each of the plurality of mobile power units comprising: a transportation platform including a drive equipment receiver,a gas turbine engine mounted to the transportation platform;a drive shaft, anda reduction gearbox mounted to the transportation platform and positioned between the gas turbine engine and the drive shaft, the reduction gearbox reducing a speed of rotation of the gas turbine engine to a speed of rotation of the drive shaft, the reduction gearbox having a ratio in a range of 5:1 to 20:1;a first mobile power unit of the plurality of mobile power units being in a first configuration in which an electrical generator is installed in the drive equipment receiver such that the electrical generator is driven by the gas turbine engine via the reduction gearbox and the drive shaft of the first mobile power unit, the electrical generator including a generator gearbox configured to step up a speed of rotation of the drive shaft;a second mobile power unit of the plurality of mobile power units being in a second configuration in which a hydraulic fracturing pump installed in the drive equipment receiver such that the hydraulic fracturing pump is driven by the engine output shaft of the second mobile power unit at the speed of rotation of the drive shaft; andone or more of a blender unit, a hydration unit, or a chemical additive unit including a first pump that includes an electric motor to rotate the first pump, the first pump receiving electrical power from the electrical generator of the first mobile power unit.
  • 16. The well pad according to claim 15, wherein the gas turbine engines of the plurality of mobile power units are configured to operate on field gas.
  • 17. The well pad according to claim 15, wherein the first mobile power unit is configured to be placed in the second configuration, and wherein the second mobile power unit is configured to be placed in the first configuration.
  • 18. The well pad according to claim 15, wherein the electrical generator of the first mobile power unit is secured to a skid, the skid being selectively securable to the drive equipment receiver so that the electrical generator is aligned with the drive shaft.
  • 19. The well pad according to claim 15, wherein the generator gearbox has a ratio in a range of 1:1.25 to 1:5.
  • 20. The well pad according to claim 15, wherein, for each of the plurality of mobile power units, the drive equipment receiver comprises a recess in an upper surface of the transportation platform.
PRIORITY CLAIM

This is a divisional of U.S. Non-Provisional application Ser. No. 17/377,884, filed Jul. 16, 2021, titled “DRIVE EQUIPMENT AND METHODS FOR MOBILE FRACTURING TRANSPORTATION PLATFORMS,” which is a divisional of U.S. Non-Provisional application Ser. No. 17/301,305, filed Mar. 31, 2021, titled “DRIVE EQUIPMENT AND METHODS FOR MOBILE FRACTURING TRANSPORTATION PLATFORMS,” now U.S. Pat. No. 11,111,768, issued Sep. 7, 2021, which claims priority to and the benefit of, under 35 U.S.C. § 119(e), U.S. Provisional Application No. 62/705,055, filed Jun. 9, 2020, titled “DRIVE EQUIPMENT AND METHODS FOR MOBILE FRACTURING TRANSPORTATION PLATFORMS,” the disclosures of which are incorporated herein by reference in their entireties.

US Referenced Citations (903)
Number Name Date Kind
1716049 Greve Jun 1929 A
1726633 Smith Sep 1929 A
2178662 Lars Nov 1939 A
2427638 Vilter Sep 1947 A
2498229 Adler Feb 1950 A
2535703 Smith et al. Dec 1950 A
2572711 Fischer Oct 1951 A
2820341 Amann Jan 1958 A
2868004 Runde Jan 1959 A
2940377 Darnell et al. Jun 1960 A
2947141 Russ Aug 1960 A
2956738 Rosenschold Oct 1960 A
3068796 Pfluger et al. Dec 1962 A
3191517 Solzman Jun 1965 A
3257031 Dietz Jun 1966 A
3274768 Klein Sep 1966 A
3378074 Kiel Apr 1968 A
3382671 Ehni, III May 1968 A
3401873 Privon Sep 1968 A
3463612 Whitsel Aug 1969 A
3496880 Wolff Feb 1970 A
3550696 Kenneday Dec 1970 A
3586459 Zerlauth Jun 1971 A
3632222 Cronstedt Jan 1972 A
3656582 Alcock Apr 1972 A
3667868 Brunner Jun 1972 A
3692434 Schnear Sep 1972 A
3739872 McNair Jun 1973 A
3757581 Mankin Sep 1973 A
3759063 Bendall Sep 1973 A
3765173 Harris Oct 1973 A
3771916 Flanigan et al. Nov 1973 A
3773438 Hall et al. Nov 1973 A
3786835 Finger Jan 1974 A
3791682 Mitchell Feb 1974 A
3796045 Foster Mar 1974 A
3814549 Cronstedt Jun 1974 A
3820922 Buse et al. Jun 1974 A
3847511 Cole Nov 1974 A
3866108 Yannone Feb 1975 A
3875380 Rankin Apr 1975 A
3963372 McLain et al. Jun 1976 A
4010613 McInerney Mar 1977 A
4019477 Overton Apr 1977 A
4031407 Reed Jun 1977 A
4050862 Buse Sep 1977 A
4059045 McClain Nov 1977 A
4086976 Holm et al. May 1978 A
4117342 Melley, Jr. Sep 1978 A
4173121 Yu Nov 1979 A
4204808 Reese et al. May 1980 A
4209079 Marchal et al. Jun 1980 A
4209979 Woodhouse et al. Jul 1980 A
4222229 Uram Sep 1980 A
4269569 Hoover May 1981 A
4311395 Douthitt et al. Jan 1982 A
4330237 Battah May 1982 A
4341508 Rambin, Jr. Jul 1982 A
4357027 Zeitlow Nov 1982 A
4383478 Jones May 1983 A
4402504 Christian Sep 1983 A
4430047 Ilg Feb 1984 A
4442665 Fick Apr 1984 A
4457325 Green Jul 1984 A
4470771 Hall et al. Sep 1984 A
4483684 Black Nov 1984 A
4505650 Hannett et al. Mar 1985 A
4574880 Handke Mar 1986 A
4584654 Crane Apr 1986 A
4620330 Izzi, Sr. Nov 1986 A
4672813 David Jun 1987 A
4754607 Mackay Jul 1988 A
4782244 Wakimoto Nov 1988 A
4796777 Keller Jan 1989 A
4869209 Young Sep 1989 A
4913625 Gerlowski Apr 1990 A
4983259 Duncan Jan 1991 A
4990058 Eslinger Feb 1991 A
5032065 Yamamuro Jul 1991 A
5135361 Dion Aug 1992 A
5167493 Kobari Dec 1992 A
5245970 Iwaszkiewicz et al. Sep 1993 A
5291842 Sallstrom et al. Mar 1994 A
5326231 Pandeya Jul 1994 A
5362219 Paul et al. Nov 1994 A
5511956 Hasegawa Apr 1996 A
5537813 Davis et al. Jul 1996 A
5553514 Walkowc Sep 1996 A
5560195 Anderson et al. Oct 1996 A
5586444 Fung Dec 1996 A
5622245 Reik Apr 1997 A
5626103 Haws et al. May 1997 A
5634777 Albertin Jun 1997 A
5651400 Corts et al. Jul 1997 A
5678460 Walkowc Oct 1997 A
5717172 Griffin, Jr. et al. Feb 1998 A
5720598 de Chizzelle Feb 1998 A
5761084 Edwards Jun 1998 A
5811676 Spalding et al. Sep 1998 A
5839888 Harrison Nov 1998 A
5846062 Yanagisawa et al. Dec 1998 A
5875744 Vallejos Mar 1999 A
5983962 Gerardot Nov 1999 A
5992944 Hara Nov 1999 A
6041856 Thrasher et al. Mar 2000 A
6050080 Horner Apr 2000 A
6067962 Bartley et al. May 2000 A
6071188 O'Neill et al. Jun 2000 A
6074170 Bert et al. Jun 2000 A
6123751 Nelson et al. Sep 2000 A
6129335 Yokogi Oct 2000 A
6145318 Kaplan et al. Nov 2000 A
6230481 Jahr May 2001 B1
6279309 Lawlor, II et al. Aug 2001 B1
6321860 Reddoch Nov 2001 B1
6334746 Nguyen et al. Jan 2002 B1
6401472 Pollrich Jun 2002 B2
6530224 Conchier Mar 2003 B1
6543395 Green Apr 2003 B2
6655922 Flek Dec 2003 B1
6669453 Breeden Dec 2003 B1
6765304 Baten et al. Jul 2004 B2
6786051 Kristich et al. Sep 2004 B2
6832900 Leu Dec 2004 B2
6851514 Han et al. Feb 2005 B2
6859740 Stephenson et al. Feb 2005 B2
6901735 Lohn Jun 2005 B2
6962057 Kurokawa et al. Nov 2005 B2
7007966 Campion Mar 2006 B2
7047747 Tanaka May 2006 B2
7065953 Kopko Jun 2006 B1
7143016 Discenzo et al. Nov 2006 B1
7222015 Davis et al. May 2007 B2
7281519 Schroeder Oct 2007 B2
7388303 Seiver Jun 2008 B2
7404294 Sundin Jul 2008 B2
7442239 Armstrong et al. Oct 2008 B2
7524173 Cummins Apr 2009 B2
7545130 Latham Jun 2009 B2
7552903 Dunn et al. Jun 2009 B2
7563076 Brunet et al. Jul 2009 B2
7563413 Naets et al. Jul 2009 B2
7574325 Dykstra Aug 2009 B2
7594424 Fazekas Sep 2009 B2
7614239 Herzog et al. Nov 2009 B2
7627416 Batenburg et al. Dec 2009 B2
7677316 Butler et al. Mar 2010 B2
7721521 Kunkle et al. May 2010 B2
7730711 Kunkle et al. Jun 2010 B2
7779961 Matte Aug 2010 B2
7789452 Dempsey et al. Sep 2010 B2
7836949 Dykstra Nov 2010 B2
7841394 McNeel et al. Nov 2010 B2
7845413 Shampine et al. Dec 2010 B2
7861679 Lemke et al. Jan 2011 B2
7886702 Jerrell et al. Feb 2011 B2
7900724 Promersberger et al. Mar 2011 B2
7921914 Bruins et al. Apr 2011 B2
7938151 Hockner May 2011 B2
7955056 Pettersson Jun 2011 B2
7980357 Edwards Jul 2011 B2
8056635 Shampine et al. Nov 2011 B2
8083504 Williams et al. Dec 2011 B2
8099942 Alexander Jan 2012 B2
8186334 Ooyama May 2012 B2
8196555 Ikeda et al. Jun 2012 B2
8202354 Iijima Jun 2012 B2
8316936 Roddy Nov 2012 B2
8336631 Shampine et al. Dec 2012 B2
8388317 Sung Mar 2013 B2
8414673 Raje et al. Apr 2013 B2
8469826 Brosowske Jun 2013 B2
8500215 Gastauer Aug 2013 B2
8506267 Gambier et al. Aug 2013 B2
8575873 Peterson et al. Nov 2013 B2
8616005 Cousino, Sr. et al. Dec 2013 B1
8621873 Robertson et al. Jan 2014 B2
8641399 Mucibabic Feb 2014 B2
8656990 Kajaria et al. Feb 2014 B2
8672606 Glynn et al. Mar 2014 B2
8707853 Dille et al. Apr 2014 B1
8714253 Sherwood et al. May 2014 B2
8757918 Ramnarain et al. Jun 2014 B2
8763583 Hofbauer et al. Jul 2014 B2
8770329 Spitler Jul 2014 B2
8784081 Blume Jul 2014 B1
8789601 Broussard et al. Jul 2014 B2
8794307 Coquilleau et al. Aug 2014 B2
8801394 Anderson Aug 2014 B2
8851186 Shampine et al. Oct 2014 B2
8851441 Acuna et al. Oct 2014 B2
8905056 Kendrick Dec 2014 B2
8951019 Hains et al. Feb 2015 B2
8973560 Krug Mar 2015 B2
8997904 Cryer et al. Apr 2015 B2
9011111 Lesko Apr 2015 B2
9016383 Shampine et al. Apr 2015 B2
9032620 Frassinelli et al. May 2015 B2
9057247 Kumar et al. Jun 2015 B2
9097249 Petersen Aug 2015 B2
9103193 Coli et al. Aug 2015 B2
9121257 Coli et al. Sep 2015 B2
9140110 Coli et al. Sep 2015 B2
9175810 Hains Nov 2015 B2
9187982 Dehring et al. Nov 2015 B2
9206667 Khvoshchev et al. Dec 2015 B2
9212643 Deliyski Dec 2015 B2
9222346 Walls Dec 2015 B1
9324049 Thomeer et al. Apr 2016 B2
9341055 Weightman et al. May 2016 B2
9346662 Van Vliet et al. May 2016 B2
9366114 Coli et al. Jun 2016 B2
9376786 Numasawa Jun 2016 B2
9394829 Cabeen et al. Jul 2016 B2
9395049 Vicknair et al. Jul 2016 B2
9401670 Minato et al. Jul 2016 B2
9410410 Broussard et al. Aug 2016 B2
9410546 Jaeger et al. Aug 2016 B2
9429078 Crowe et al. Aug 2016 B1
9435333 McCoy et al. Sep 2016 B2
9488169 Cochran et al. Nov 2016 B2
9493997 Liu et al. Nov 2016 B2
9512783 Veilleux et al. Dec 2016 B2
9534473 Morris et al. Jan 2017 B2
9546652 Yin Jan 2017 B2
9550501 Ledbetter Jan 2017 B2
9556721 Jang et al. Jan 2017 B2
9562420 Morris et al. Feb 2017 B2
9570945 Fischer Feb 2017 B2
9579980 Cryer et al. Feb 2017 B2
9587649 Oehring Mar 2017 B2
9593710 Laimboeck et al. Mar 2017 B2
9611728 Oehring Apr 2017 B2
9617808 Liu et al. Apr 2017 B2
9638101 Crowe et al. May 2017 B1
9638194 Megman et al. May 2017 B2
9650871 Oehring et al. May 2017 B2
9656762 Kamath et al. May 2017 B2
9689316 Crom Jun 2017 B1
9695808 Giessbach et al. Jul 2017 B2
9739130 Young Aug 2017 B2
9764266 Carter Sep 2017 B1
9777748 Lu et al. Oct 2017 B2
9803467 Tang et al. Oct 2017 B2
9803793 Davi et al. Oct 2017 B2
9809308 Aguilar et al. Nov 2017 B2
9829002 Crom Nov 2017 B2
9840897 Larson Dec 2017 B2
9840901 Oering et al. Dec 2017 B2
9845730 Betti et al. Dec 2017 B2
9850422 Lestz et al. Dec 2017 B2
9856131 Moffitt Jan 2018 B1
9863279 Laing et al. Jan 2018 B2
9869305 Crowe et al. Jan 2018 B1
9871406 Churnock et al. Jan 2018 B1
9879609 Crowe et al. Jan 2018 B1
RE46725 Case et al. Feb 2018 E
9893500 Oehring et al. Feb 2018 B2
9893660 Peterson et al. Feb 2018 B2
9897003 Motakef et al. Feb 2018 B2
9920615 Zhang et al. Mar 2018 B2
9945365 Hernandez et al. Apr 2018 B2
9964052 Millican et al. May 2018 B2
9970278 Broussard et al. May 2018 B2
9981840 Shock May 2018 B2
9995102 Dillie et al. Jun 2018 B2
9995218 Oehring et al. Jun 2018 B2
10008880 Vicknair et al. Jun 2018 B2
10008912 Davey et al. Jun 2018 B2
10018096 Wallimann et al. Jul 2018 B2
10020711 Oehring et al. Jul 2018 B2
10024123 Steffenhagen et al. Jul 2018 B2
10029289 Wendorski et al. Jul 2018 B2
10030579 Austin et al. Jul 2018 B2
10036238 Gehring Jul 2018 B2
10040541 Wilson et al. Aug 2018 B2
10060293 Del Bono Aug 2018 B2
10060349 Álvarez et al. Aug 2018 B2
10077933 Nelson et al. Sep 2018 B2
10082137 Graham et al. Sep 2018 B2
10094366 Marica Oct 2018 B2
10100827 Devan et al. Oct 2018 B2
10107084 Coli et al. Oct 2018 B2
10107085 Coli et al. Oct 2018 B2
10114061 Frampton et al. Oct 2018 B2
10119381 Oehring et al. Nov 2018 B2
10125750 Pfaff Nov 2018 B2
10134257 Zhang et al. Nov 2018 B2
10138098 Sørensen et al. Nov 2018 B2
10151244 Giancotti et al. Dec 2018 B2
10161423 Rampen Dec 2018 B2
10174599 Shampine et al. Jan 2019 B2
10184397 Austin et al. Jan 2019 B2
10196258 Kalala et al. Feb 2019 B2
10221856 Hernandez et al. Mar 2019 B2
10227854 Glass Mar 2019 B2
10227855 Coli et al. Mar 2019 B2
10246984 Payne et al. Apr 2019 B2
10247182 Zhang et al. Apr 2019 B2
10254732 Oehring et al. Apr 2019 B2
10267439 Pryce et al. Apr 2019 B2
10280724 Hinderliter May 2019 B2
10287943 Schiltz May 2019 B1
10288519 De La Cruz May 2019 B2
10303190 Shock May 2019 B2
10305350 Johnson et al. May 2019 B2
10316832 Byrne Jun 2019 B2
10317875 Pandurangan et al. Jun 2019 B2
10337402 Austin et al. Jul 2019 B2
10358035 Cryer Jul 2019 B2
10371012 Davis et al. Aug 2019 B2
10374485 Morris et al. Aug 2019 B2
10378326 Morris et al. Aug 2019 B2
10393108 Chong et al. Aug 2019 B2
10407990 Oehring et al. Sep 2019 B2
10408031 Oehring et al. Sep 2019 B2
10415348 Zhang et al. Sep 2019 B2
10415557 Crowe et al. Sep 2019 B1
10415562 Kajita et al. Sep 2019 B2
RE47695 Case et al. Nov 2019 E
10465689 Crom Nov 2019 B2
10478753 Elms et al. Nov 2019 B1
10526882 Oehring et al. Jan 2020 B2
10563649 Zhang et al. Feb 2020 B2
10577910 Stephenson Mar 2020 B2
10584645 Nakagawa et al. Mar 2020 B2
10590867 Thomassin et al. Mar 2020 B2
10598258 Oehring et al. Mar 2020 B2
10610842 Chong Apr 2020 B2
10662749 Hill et al. May 2020 B1
10711787 Darley Jul 2020 B1
10738580 Fischer et al. Aug 2020 B1
10753153 Fischer et al. Aug 2020 B1
10753165 Fischer et al. Aug 2020 B1
10760556 Crom et al. Sep 2020 B1
10794165 Fischer et al. Oct 2020 B2
10794166 Reckels et al. Oct 2020 B2
10801311 Cui et al. Oct 2020 B1
10815764 Yeung et al. Oct 2020 B1
10815978 Glass Oct 2020 B2
10830032 Zhang et al. Nov 2020 B1
10830225 Repaci Nov 2020 B2
10859203 Cui et al. Dec 2020 B1
10864487 Han et al. Dec 2020 B1
10865624 Cui et al. Dec 2020 B1
10865631 Zhang et al. Dec 2020 B1
10870093 Zhong et al. Dec 2020 B1
10871045 Fischer et al. Dec 2020 B2
10895202 Yeung et al. Jan 2021 B1
10900475 Weightman et al. Jan 2021 B2
10907459 Yeung et al. Feb 2021 B1
10927774 Cai et al. Feb 2021 B2
10927802 Oehring Feb 2021 B2
10954770 Yeung et al. Mar 2021 B1
10954855 Ji et al. Mar 2021 B1
10961908 Yeung et al. Mar 2021 B1
10961912 Yeung et al. Mar 2021 B1
10961914 Yeung et al. Mar 2021 B1
10961993 Ji et al. Mar 2021 B1
10961995 Mayorca Mar 2021 B2
10982523 Hill et al. Apr 2021 B1
10989019 Cai et al. Apr 2021 B2
10995564 Miller et al. May 2021 B2
11002189 Yeung et al. May 2021 B2
11008950 Ethier et al. May 2021 B2
11015423 Yeung et al. May 2021 B1
11035213 Dusterhoft et al. Jun 2021 B2
11035214 Cui et al. Jun 2021 B2
11047379 Li et al. Jun 2021 B1
11053853 Li et al. Jul 2021 B2
11060455 Yeung et al. Jul 2021 B1
11068455 Shabi et al. Jul 2021 B2
11085281 Yeung et al. Aug 2021 B1
11085282 Mazrooee et al. Aug 2021 B2
11105250 Zhang et al. Aug 2021 B1
11105266 Zhou et al. Aug 2021 B2
11125156 Zhang et al. Sep 2021 B2
11143000 Li et al. Oct 2021 B2
11143006 Zhang et al. Oct 2021 B1
11168681 Boguski Nov 2021 B2
11236739 Yeung et al. Feb 2022 B2
11242737 Zhang et al. Feb 2022 B2
11243509 Cai et al. Feb 2022 B2
11251650 Liu et al. Feb 2022 B1
11261717 Yeung et al. Mar 2022 B2
11268346 Yeung et al. Mar 2022 B2
11280266 Yeung et al. Mar 2022 B2
RE49083 Case et al. May 2022 E
11339638 Yeung et al. May 2022 B1
11346200 Cai et al. May 2022 B2
11373058 Jaaskelainen et al. Jun 2022 B2
RE49140 Case et al. Jul 2022 E
11377943 Kriebel et al. Jul 2022 B2
RE49155 Case et al. Aug 2022 E
RE49156 Case et al. Aug 2022 E
11401927 Li et al. Aug 2022 B2
11428165 Yeung et al. Aug 2022 B2
11441483 Li et al. Sep 2022 B2
11448122 Feng et al. Sep 2022 B2
11466680 Yeung et al. Oct 2022 B2
11480040 Han et al. Oct 2022 B2
11492887 Cui et al. Nov 2022 B2
11499405 Zhang et al. Nov 2022 B2
11506039 Zhang et al. Nov 2022 B2
11512570 Yeung Nov 2022 B2
11519395 Zhang et al. Dec 2022 B2
11519405 Deng et al. Dec 2022 B2
11530602 Yeung et al. Dec 2022 B2
11549349 Wang et al. Jan 2023 B2
11555390 Cui et al. Jan 2023 B2
11555756 Yeung et al. Jan 2023 B2
11557887 Ji et al. Jan 2023 B2
11560779 Mao et al. Jan 2023 B2
11560845 Yeung et al. Jan 2023 B2
11572775 Mao et al. Feb 2023 B2
11575249 Ji et al. Feb 2023 B2
11592020 Chang et al. Feb 2023 B2
11596047 Liu et al. Feb 2023 B2
20020126922 Cheng et al. Sep 2002 A1
20020197176 Kondo Dec 2002 A1
20030031568 Stiefel Feb 2003 A1
20030061819 Kuroki et al. Apr 2003 A1
20030161212 Neal et al. Aug 2003 A1
20040016245 Pierson Jan 2004 A1
20040074238 Wantanabe et al. Apr 2004 A1
20040076526 Fukano et al. Apr 2004 A1
20040187950 Cohen et al. Sep 2004 A1
20040219040 Kugelev et al. Nov 2004 A1
20050051322 Speer Mar 2005 A1
20050056081 Gocho Mar 2005 A1
20050139286 Poulter Jun 2005 A1
20050196298 Manning Sep 2005 A1
20050226754 Orr et al. Oct 2005 A1
20050274134 Ryu et al. Dec 2005 A1
20060061091 Osterloh Mar 2006 A1
20060062914 Garg et al. Mar 2006 A1
20060196251 Richey Sep 2006 A1
20060211356 Grassman Sep 2006 A1
20060228225 Rogers Oct 2006 A1
20060260331 Andreychuk Nov 2006 A1
20060272333 Sundin Dec 2006 A1
20070029090 Andreychuk et al. Feb 2007 A1
20070041848 Wood et al. Feb 2007 A1
20070066406 Keller et al. Mar 2007 A1
20070098580 Petersen May 2007 A1
20070107981 Sicotte May 2007 A1
20070125544 Robinson et al. Jun 2007 A1
20070169543 Fazekas Jul 2007 A1
20070181212 Fell Aug 2007 A1
20070277982 Shampine et al. Dec 2007 A1
20070295569 Manzoor et al. Dec 2007 A1
20080006089 Adnan et al. Jan 2008 A1
20080098891 Feher May 2008 A1
20080161974 Alston Jul 2008 A1
20080212275 Waryck et al. Sep 2008 A1
20080229757 Alexander et al. Sep 2008 A1
20080264625 Ochoa Oct 2008 A1
20080264649 Crawford Oct 2008 A1
20080298982 Pabst Dec 2008 A1
20090064685 Busekros et al. Mar 2009 A1
20090068031 Gambier et al. Mar 2009 A1
20090092510 Williams et al. Apr 2009 A1
20090124191 Van Becelaere et al. May 2009 A1
20090178412 Spytek Jul 2009 A1
20090212630 Flegel et al. Aug 2009 A1
20090249794 Wilkes et al. Oct 2009 A1
20090252616 Brunet et al. Oct 2009 A1
20090308602 Bruins et al. Dec 2009 A1
20100019626 Stout et al. Jan 2010 A1
20100071899 Coquilleau et al. Mar 2010 A1
20100218508 Brown et al. Sep 2010 A1
20100300683 Looper et al. Dec 2010 A1
20100310384 Stephenson et al. Dec 2010 A1
20110041681 Duerr Feb 2011 A1
20110052423 Gambier et al. Mar 2011 A1
20110054704 Karpman et al. Mar 2011 A1
20110085924 Shampine et al. Apr 2011 A1
20110146244 Farman et al. Jun 2011 A1
20110146246 Farman et al. Jun 2011 A1
20110173991 Dean Jul 2011 A1
20110197988 Van Vliet et al. Aug 2011 A1
20110241888 Lu et al. Oct 2011 A1
20110265443 Ansari Nov 2011 A1
20110272158 Neal Nov 2011 A1
20120023973 Mayorca Feb 2012 A1
20120048242 Sumilla et al. Mar 2012 A1
20120085541 Love et al. Apr 2012 A1
20120137699 Montagne et al. Jun 2012 A1
20120179444 Ganguly et al. Jul 2012 A1
20120192542 Chillar et al. Aug 2012 A1
20120199001 Chillar et al. Aug 2012 A1
20120204627 Anderl et al. Aug 2012 A1
20120255734 Coli et al. Oct 2012 A1
20120310509 Pardo et al. Dec 2012 A1
20120324903 Dewis et al. Dec 2012 A1
20130068307 Hains et al. Mar 2013 A1
20130087045 Sullivan et al. Apr 2013 A1
20130087945 Kusters et al. Apr 2013 A1
20130134702 Boraas et al. May 2013 A1
20130189915 Hazard Jul 2013 A1
20130233165 Matzner et al. Sep 2013 A1
20130255953 Tudor Oct 2013 A1
20130259707 Yin Oct 2013 A1
20130284455 Kajaria et al. Oct 2013 A1
20130300341 Gillette Nov 2013 A1
20130306322 Sanborn Nov 2013 A1
20140010671 Cryer et al. Jan 2014 A1
20140013768 Laing et al. Jan 2014 A1
20140032082 Gehrke et al. Jan 2014 A1
20140044517 Saha et al. Feb 2014 A1
20140048253 Andreychuk Feb 2014 A1
20140090729 Coulter et al. Apr 2014 A1
20140090742 Coskrey et al. Apr 2014 A1
20140094105 Lundh et al. Apr 2014 A1
20140095114 Thomeer et al. Apr 2014 A1
20140095554 Thomeer et al. Apr 2014 A1
20140123621 Driessens et al. May 2014 A1
20140130422 Laing et al. May 2014 A1
20140138079 Broussard et al. May 2014 A1
20140144641 Chandler May 2014 A1
20140147291 Burnette May 2014 A1
20140158345 Jang et al. Jun 2014 A1
20140196459 Futa et al. Jul 2014 A1
20140216736 Leugemors et al. Aug 2014 A1
20140219824 Burnette Aug 2014 A1
20140250845 Jackson et al. Sep 2014 A1
20140251623 Lestz et al. Sep 2014 A1
20140277772 Lopez et al. Sep 2014 A1
20140290266 Veilleux, Jr. et al. Oct 2014 A1
20140318638 Harwood et al. Oct 2014 A1
20140322050 Marette et al. Oct 2014 A1
20150027730 Hall et al. Jan 2015 A1
20150078924 Zhang et al. Mar 2015 A1
20150101344 Jarrier et al. Apr 2015 A1
20150114652 Lestz et al. Apr 2015 A1
20150129210 Chong et al. May 2015 A1
20150135659 Jarrier et al. May 2015 A1
20150159553 Kippel et al. Jun 2015 A1
20150192117 Bridges Jul 2015 A1
20150204148 Liu et al. Jul 2015 A1
20150204322 Iund et al. Jul 2015 A1
20150211512 Wiegman et al. Jul 2015 A1
20150214816 Raad Jul 2015 A1
20150217672 Shampine et al. Aug 2015 A1
20150226140 Zhang et al. Aug 2015 A1
20150252661 Glass Sep 2015 A1
20150275891 Chong et al. Oct 2015 A1
20150337730 Kupiszewski et al. Nov 2015 A1
20150340864 Compton Nov 2015 A1
20150345385 Santini Dec 2015 A1
20150369351 Hermann et al. Dec 2015 A1
20160032703 Broussard et al. Feb 2016 A1
20160032836 Hawkinson et al. Feb 2016 A1
20160102581 Del Bono Apr 2016 A1
20160105022 Oehring et al. Apr 2016 A1
20160108713 Dunaeva et al. Apr 2016 A1
20160168979 Zhang et al. Jun 2016 A1
20160177675 Morris et al. Jun 2016 A1
20160177945 Byrne et al. Jun 2016 A1
20160186671 Austin et al. Jun 2016 A1
20160195082 Wiegman et al. Jul 2016 A1
20160215774 Oklejas et al. Jul 2016 A1
20160230525 Lestz et al. Aug 2016 A1
20160244314 Van Vliet et al. Aug 2016 A1
20160248230 Tawy et al. Aug 2016 A1
20160253634 Thomeer et al. Sep 2016 A1
20160258267 Payne et al. Sep 2016 A1
20160273328 Oehring Sep 2016 A1
20160273346 Tang et al. Sep 2016 A1
20160290114 Oehring et al. Oct 2016 A1
20160319650 Oehring et al. Nov 2016 A1
20160326845 Djikpesse et al. Nov 2016 A1
20160348479 Oehring et al. Dec 2016 A1
20160369609 Morris et al. Dec 2016 A1
20170009905 Arnold Jan 2017 A1
20170016433 Chong et al. Jan 2017 A1
20170030177 Oehring et al. Feb 2017 A1
20170038137 Turney Feb 2017 A1
20170045055 Hoefel et al. Feb 2017 A1
20170052087 Faqihi et al. Feb 2017 A1
20170074074 Joseph et al. Mar 2017 A1
20170074076 Joseph et al. Mar 2017 A1
20170074089 Agarwal et al. Mar 2017 A1
20170082110 Lammers Mar 2017 A1
20170089189 Norris et al. Mar 2017 A1
20170114613 Lecerf et al. Apr 2017 A1
20170114625 Norris et al. Apr 2017 A1
20170122310 Ladron de Guevara May 2017 A1
20170131174 Enev et al. May 2017 A1
20170145918 Oehring et al. May 2017 A1
20170191350 Johns et al. Jul 2017 A1
20170218727 Oehring et al. Aug 2017 A1
20170226839 Broussard et al. Aug 2017 A1
20170226842 Omont et al. Aug 2017 A1
20170226998 Zhang et al. Aug 2017 A1
20170227002 Mikulski et al. Aug 2017 A1
20170233103 Teicholz et al. Aug 2017 A1
20170234165 Kersey et al. Aug 2017 A1
20170234308 Buckley Aug 2017 A1
20170241336 Jones et al. Aug 2017 A1
20170248034 Dzieciol et al. Aug 2017 A1
20170248208 Tamura Aug 2017 A1
20170248308 Makarychev-Mikhailov et al. Aug 2017 A1
20170275149 Schmidt Sep 2017 A1
20170288400 Williams Oct 2017 A1
20170292409 Aguilar et al. Oct 2017 A1
20170302135 Cory Oct 2017 A1
20170305736 Haile et al. Oct 2017 A1
20170306847 Suciu et al. Oct 2017 A1
20170306936 Dole Oct 2017 A1
20170322086 Luharuka Nov 2017 A1
20170333086 Jackson Nov 2017 A1
20170334448 Schwunk Nov 2017 A1
20170335842 Robinson et al. Nov 2017 A1
20170350471 Steidl et al. Dec 2017 A1
20170370199 Witkowski et al. Dec 2017 A1
20170370480 Witkowski et al. Dec 2017 A1
20180034280 Pedersen Feb 2018 A1
20180038328 Louven et al. Feb 2018 A1
20180041093 Miranda Feb 2018 A1
20180045202 Crom Feb 2018 A1
20180038216 Zhang et al. Mar 2018 A1
20180058171 Roesner et al. Mar 2018 A1
20180087499 Zhang et al. Mar 2018 A1
20180087996 De La Cruz Mar 2018 A1
20180156210 Oehring et al. Jun 2018 A1
20180172294 Owen Jun 2018 A1
20180183219 Oehring et al. Jun 2018 A1
20180186442 Maier Jul 2018 A1
20180187662 Hill et al. Jul 2018 A1
20180209415 Zhang et al. Jul 2018 A1
20180223640 Keihany et al. Aug 2018 A1
20180224044 Penney Aug 2018 A1
20180229998 Shock Aug 2018 A1
20180258746 Broussard et al. Sep 2018 A1
20180266412 Stokkevag et al. Sep 2018 A1
20180278124 Oehring et al. Sep 2018 A1
20180283102 Cook Oct 2018 A1
20180283618 Cook Oct 2018 A1
20180284817 Cook et al. Oct 2018 A1
20180290877 Shock Oct 2018 A1
20180291781 Pedrini Oct 2018 A1
20180298731 Bishop Oct 2018 A1
20180298735 Conrad Oct 2018 A1
20180307255 Bishop Oct 2018 A1
20180313456 Bayyouk et al. Nov 2018 A1
20180328157 Bishop Nov 2018 A1
20180334893 Oehring Nov 2018 A1
20180363435 Coli et al. Dec 2018 A1
20180363436 Coli et al. Dec 2018 A1
20180363437 Coli et al. Dec 2018 A1
20180363438 Coli et al. Dec 2018 A1
20190003272 Morris et al. Jan 2019 A1
20190003329 Morris et al. Jan 2019 A1
20190010793 Hinderliter Jan 2019 A1
20190011051 Yeung Jan 2019 A1
20190048993 Akiyama et al. Feb 2019 A1
20190063263 Davis et al. Feb 2019 A1
20190063341 Davis Feb 2019 A1
20190067991 Davis et al. Feb 2019 A1
20190071992 Feng Mar 2019 A1
20190072005 Fisher et al. Mar 2019 A1
20190078471 Braglia et al. Mar 2019 A1
20190091619 Huang Mar 2019 A1
20190106316 Van Vliet et al. Apr 2019 A1
20190106970 Oehring Apr 2019 A1
20190112908 Coli et al. Apr 2019 A1
20190112910 Oehring et al. Apr 2019 A1
20190119096 Haile et al. Apr 2019 A1
20190120024 Oehring et al. Apr 2019 A1
20190120031 Gilje Apr 2019 A1
20190120134 Goleczka et al. Apr 2019 A1
20190128247 Douglas, III May 2019 A1
20190128288 Konada et al. May 2019 A1
20190131607 Gillette May 2019 A1
20190136677 Shampine et al. May 2019 A1
20190153843 Headrick May 2019 A1
20190153938 Hammoud May 2019 A1
20190154020 Glass May 2019 A1
20190155318 Meunier May 2019 A1
20190264667 Byrne May 2019 A1
20190178234 Beisel Jun 2019 A1
20190178235 Coskrey et al. Jun 2019 A1
20190185312 Bush et al. Jun 2019 A1
20190203572 Morris et al. Jul 2019 A1
20190204021 Morris et al. Jul 2019 A1
20190211661 Reckles et al. Jul 2019 A1
20190211814 Weightman et al. Jul 2019 A1
20190217258 Bishop Jul 2019 A1
20190226317 Payne et al. Jul 2019 A1
20190245348 Hinderliter et al. Aug 2019 A1
20190249652 Stephenson et al. Aug 2019 A1
20190249754 Oehring et al. Aug 2019 A1
20190257297 Botting et al. Aug 2019 A1
20190277279 Byrne et al. Sep 2019 A1
20190277295 Clyburn et al. Sep 2019 A1
20190309585 Miller et al. Oct 2019 A1
20190316447 Oehring et al. Oct 2019 A1
20190316456 Beisel et al. Oct 2019 A1
20190323337 Glass et al. Oct 2019 A1
20190330923 Gable et al. Oct 2019 A1
20190331117 Gable et al. Oct 2019 A1
20190337392 Joshi et al. Nov 2019 A1
20190338762 Curry et al. Nov 2019 A1
20190345920 Surjaatmadja et al. Nov 2019 A1
20190353103 Roberge Nov 2019 A1
20190356199 Morris et al. Nov 2019 A1
20190376449 Carrell Dec 2019 A1
20190383123 Hinderliter Dec 2019 A1
20200003205 Stokkevåg et al. Jan 2020 A1
20200011165 George et al. Jan 2020 A1
20200040878 Morris Feb 2020 A1
20200049136 Stephenson Feb 2020 A1
20200049153 Headrick et al. Feb 2020 A1
20200071998 Oehring et al. Mar 2020 A1
20200072201 Marica Mar 2020 A1
20200088202 Sigmar et al. Mar 2020 A1
20200095854 Hinderliter Mar 2020 A1
20200109610 Husoy et al. Apr 2020 A1
20200132058 Mollatt Apr 2020 A1
20200141219 Oehring et al. May 2020 A1
20200141326 Redford et al. May 2020 A1
20200141907 Meek et al. May 2020 A1
20200166026 Marica May 2020 A1
20200206704 Chong Jul 2020 A1
20200208733 Kim Jul 2020 A1
20200223648 Herman et al. Jul 2020 A1
20200224645 Buckley Jul 2020 A1
20200232454 Chretien et al. Jul 2020 A1
20200256333 Surjaatmadja Aug 2020 A1
20200263498 Fischer et al. Aug 2020 A1
20200263525 Reid Aug 2020 A1
20200263526 Fischer et al. Aug 2020 A1
20200263527 Fischer et al. Aug 2020 A1
20200263528 Fischer et al. Aug 2020 A1
20200267888 Putz Aug 2020 A1
20200291731 Haiderer et al. Sep 2020 A1
20200295574 Batsch-Smith Sep 2020 A1
20200300050 Oehring et al. Sep 2020 A1
20200309113 Hunter et al. Oct 2020 A1
20200325752 Clark et al. Oct 2020 A1
20200325760 Markham Oct 2020 A1
20200325761 Williams Oct 2020 A1
20200325893 Kraige et al. Oct 2020 A1
20200332784 Zhang et al. Oct 2020 A1
20200332788 Cui et al. Oct 2020 A1
20200340313 Fischer et al. Oct 2020 A1
20200340340 Oehring et al. Oct 2020 A1
20200340344 Reckels et al. Oct 2020 A1
20200340404 Stockstill Oct 2020 A1
20200347725 Morris et al. Nov 2020 A1
20200354928 Wehler et al. Nov 2020 A1
20200362760 Morenko et al. Nov 2020 A1
20200362764 Saintignan et al. Nov 2020 A1
20200370394 Cai et al. Nov 2020 A1
20200370408 Cai et al. Nov 2020 A1
20200370429 Cai et al. Nov 2020 A1
20200371490 Cai et al. Nov 2020 A1
20200340322 Sizemore et al. Dec 2020 A1
20200386222 Pham et al. Dec 2020 A1
20200388140 Gomez et al. Dec 2020 A1
20200392826 Cui et al. Dec 2020 A1
20200392827 George et al. Dec 2020 A1
20200393088 Sizemore et al. Dec 2020 A1
20200398238 Zhong et al. Dec 2020 A1
20200400000 Ghasripoor et al. Dec 2020 A1
20200400005 Han et al. Dec 2020 A1
20200407625 Stephenson Dec 2020 A1
20200408071 Li et al. Dec 2020 A1
20200408144 Feng et al. Dec 2020 A1
20200408147 Zhang et al. Dec 2020 A1
20200408149 Li et al. Dec 2020 A1
20210025324 Morris et al. Jan 2021 A1
20210025383 Bodishbaugh et al. Jan 2021 A1
20210032961 Hinderliter et al. Feb 2021 A1
20210054727 Floyd Feb 2021 A1
20210071503 Ogg et al. Mar 2021 A1
20210071574 Feng et al. Mar 2021 A1
20210071579 Li et al. Mar 2021 A1
20210071654 Brunson Mar 2021 A1
20210071752 Cui et al. Mar 2021 A1
20210079758 Yeung et al. Mar 2021 A1
20210079851 Yeung et al. Mar 2021 A1
20210086851 Zhang et al. Mar 2021 A1
20210087883 Zhang et al. Mar 2021 A1
20210087916 Zhang et al. Mar 2021 A1
20210087925 Heidari et al. Mar 2021 A1
20210087943 Cui et al. Mar 2021 A1
20210088042 Zhang et al. Mar 2021 A1
20210123425 Cui et al. Apr 2021 A1
20210123434 Cui et al. Apr 2021 A1
20210123435 Cui et al. Apr 2021 A1
20210131409 Cui et al. May 2021 A1
20210140416 Buckley May 2021 A1
20210148208 Thomas et al. May 2021 A1
20210156240 Cicci et al. May 2021 A1
20210156241 Cook May 2021 A1
20210172282 Wang et al. Jun 2021 A1
20210180517 Zhou et al. Jun 2021 A1
20210199110 Albert et al. Jul 2021 A1
20210222690 Beisel Jul 2021 A1
20210239112 Buckley Aug 2021 A1
20210246774 Cui et al. Aug 2021 A1
20210270261 Zhang et al. Sep 2021 A1
20210270264 Byrne Sep 2021 A1
20210285311 Ji et al. Sep 2021 A1
20210285432 Ji et al. Sep 2021 A1
20210301807 Cui et al. Sep 2021 A1
20210306720 Sandoval et al. Sep 2021 A1
20210308638 Zhong et al. Oct 2021 A1
20210348475 Yeung et al. Nov 2021 A1
20210348476 Yeung et al. Nov 2021 A1
20210348477 Yeung et al. Nov 2021 A1
20210355927 Jian et al. Nov 2021 A1
20210372394 Bagulayan et al. Dec 2021 A1
20210372395 Li et al. Dec 2021 A1
20210388760 Feng et al. Dec 2021 A1
20220082007 Zhang et al. Mar 2022 A1
20220090476 Zhang et al. Mar 2022 A1
20220090477 Zhang et al. Mar 2022 A1
20220090478 Zhang et al. Mar 2022 A1
20220112892 Cui et al. Apr 2022 A1
20220120262 Ji et al. Apr 2022 A1
20220145740 Yuan et al. May 2022 A1
20220154775 Liu et al. May 2022 A1
20220155373 Liu et al. May 2022 A1
20220162931 Zhong et al. May 2022 A1
20220162991 Zhang et al. May 2022 A1
20220181859 Ji et al. Jun 2022 A1
20220186724 Chang et al. Jun 2022 A1
20220213777 Cui et al. Jul 2022 A1
20220220836 Zhang et al. Jul 2022 A1
20220224087 Ji et al. Jul 2022 A1
20220228468 Cui et al. Jul 2022 A1
20220228469 Zhang et al. Jul 2022 A1
20220235639 Zhang et al. Jul 2022 A1
20220235640 Mao et al. Jul 2022 A1
20220235641 Zhang et al. Jul 2022 A1
20220235642 Zhang et al. Jul 2022 A1
20220235802 Jiang et al. Jul 2022 A1
20220242297 Tian et al. Aug 2022 A1
20220243613 Ji et al. Aug 2022 A1
20220243724 Li et al. Aug 2022 A1
20220250000 Zhang et al. Aug 2022 A1
20220255319 Liu et al. Aug 2022 A1
20220258659 Cui et al. Aug 2022 A1
20220259947 Li et al. Aug 2022 A1
20220259964 Zhang et al. Aug 2022 A1
20220268201 Feng et al. Aug 2022 A1
20220282606 Zhong et al. Sep 2022 A1
20220282726 Zhang et al. Sep 2022 A1
20220290549 Zhang et al. Sep 2022 A1
20220294194 Cao et al. Sep 2022 A1
20220298906 Zhong et al. Sep 2022 A1
20220307359 Liu et al. Sep 2022 A1
20220307424 Wang et al. Sep 2022 A1
20220314248 Ge et al. Oct 2022 A1
20220315347 Liu et al. Oct 2022 A1
20220316306 Liu et al. Oct 2022 A1
20220316362 Zhang et al. Oct 2022 A1
20220316461 Wang et al. Oct 2022 A1
20220325608 Zhang et al. Oct 2022 A1
20220330411 Liu et al. Oct 2022 A1
20220333471 Zhong et al. Oct 2022 A1
20220339646 Yu et al. Oct 2022 A1
20220341358 Ji et al. Oct 2022 A1
20220341362 Feng et al. Oct 2022 A1
20220341415 Deng et al. Oct 2022 A1
20220345007 Liu et al. Oct 2022 A1
20220349345 Zhang et al. Nov 2022 A1
20220353980 Liu et al. Nov 2022 A1
20220361309 Liu et al. Nov 2022 A1
20220364452 Wang et al. Nov 2022 A1
20220364453 Chang et al. Nov 2022 A1
20220372865 Lin et al. Nov 2022 A1
20220376280 Shao et al. Nov 2022 A1
20220381126 Cui et al. Dec 2022 A1
20220389799 Mao Dec 2022 A1
20220389803 Zhang et al. Dec 2022 A1
20220389804 Cui et al. Dec 2022 A1
20220389865 Feng et al. Dec 2022 A1
20220389867 Li et al. Dec 2022 A1
20220412196 Cui et al. Dec 2022 A1
20220412199 Mao et al. Dec 2022 A1
20220412200 Zhang et al. Dec 2022 A1
20220412258 Li et al. Dec 2022 A1
20220412379 Wang et al. Dec 2022 A1
20230001524 Jiang et al. Jan 2023 A1
20230003238 Du et al. Jan 2023 A1
20230015132 Feng et al. Jan 2023 A1
20230015529 Zhang et al. Jan 2023 A1
20230015581 Ji et al. Jan 2023 A1
20230017968 Deng et al. Jan 2023 A1
20230029574 Zhang et al. Feb 2023 A1
20230029671 Han et al. Feb 2023 A1
20230036118 Xing et al. Feb 2023 A1
20230040970 Liu et al. Feb 2023 A1
20230042379 Zhang et al. Feb 2023 A1
20230047033 Fu et al. Feb 2023 A1
20230048551 Feng et al. Feb 2023 A1
20230049462 Zhang et al. Feb 2023 A1
20230064964 Wang et al. Mar 2023 A1
20230074794 Liu et al. Mar 2023 A1
Foreign Referenced Citations (111)
Number Date Country
9609498 Jul 1999 AU
737970 Sep 2001 AU
2043184 Aug 1994 CA
2829762 Sep 2012 CA
2737321 Sep 2013 CA
2876687 May 2014 CA
2693567 Sep 2014 CA
2964597 Oct 2017 CA
2876687 Apr 2019 CA
3138533 Nov 2020 CA
2919175 Mar 2021 CA
2622404 Jun 2004 CN
101323151 Dec 2008 CN
101414171 Apr 2009 CN
101323151 Jul 2010 CN
101949382 Jan 2011 CN
101414171 May 2011 CN
102128011 Jul 2011 CN
102182904 Sep 2011 CN
101885307 Jul 2012 CN
202926404 May 2013 CN
202935216 May 2013 CN
PCTCN2012074945 Nov 2013 CN
203412658 Jan 2014 CN
103790927 Dec 2015 CN
105207097 Dec 2015 CN
102602323 Jan 2016 CN
204944834 Jan 2016 CN
205260249 May 2016 CN
106715165 May 2017 CN
107120822 Sep 2017 CN
107956708 Apr 2018 CN
108799473 Nov 2018 CN
208169068 Nov 2018 CN
208253147 Dec 2018 CN
110159432 Aug 2019 CN
4004854 Aug 1991 DE
4241614 Jun 1994 DE
102009022859 Dec 2010 DE
102012018825 Mar 2014 DE
102013111655 Dec 2014 DE
102015103872 Oct 2015 DE
102013114335 Dec 2020 DE
0835983 Apr 1998 EP
1378683 Jan 2004 EP
2143916 Jan 2010 EP
2613023 Jul 2013 EP
3095989 Nov 2016 EP
3211766 Aug 2017 EP
3049642 Apr 2018 EP
3354866 Aug 2018 EP
3075946 May 2019 EP
2795774 Jun 1999 FR
474072 Oct 1937 GB
1438172 Jun 1976 GB
S57135212 Feb 1984 JP
20020026398 Apr 2002 KR
13562 Apr 2000 RU
1993020328 Oct 1993 WO
2006025886 Mar 2006 WO
2009023042 Feb 2009 WO
20110133821 Oct 2011 WO
2012139380 Oct 2012 WO
2013158822 Oct 2013 WO
2013185399 Dec 2013 WO
2015158020 Oct 2015 WO
2016014476 Jan 2016 WO
2016033983 Mar 2016 WO
2016078181 May 2016 WO
2016101374 Jun 2016 WO
2016112590 Jul 2016 WO
2017123656 Jul 2017 WO
2017146279 Aug 2017 WO
2017213848 Dec 2017 WO
2018031029 Feb 2018 WO
2018038710 Mar 2018 WO
2018044293 Mar 2018 WO
2018044307 Mar 2018 WO
2018071738 Apr 2018 WO
2018101909 Jun 2018 WO
2018101912 Jun 2018 WO
2018106210 Jun 2018 WO
2018106225 Jun 2018 WO
2018106252 Jun 2018 WO
2018132106 Jul 2018 WO
2018156131 Aug 2018 WO
2018075034 Oct 2018 WO
2018187346 Oct 2018 WO
2018031031 Feb 2019 WO
2019045691 Mar 2019 WO
2019046680 Mar 2019 WO
2019060922 Mar 2019 WO
2019117862 Jun 2019 WO
2019126742 Jun 2019 WO
2019147601 Aug 2019 WO
2019169366 Sep 2019 WO
2019195651 Oct 2019 WO
2019200510 Oct 2019 WO
2019210417 Nov 2019 WO
2020018068 Jan 2020 WO
2020046866 Mar 2020 WO
2020072076 Apr 2020 WO
2020076569 Apr 2020 WO
2020097060 May 2020 WO
2020104088 May 2020 WO
2020131085 Jun 2020 WO
2020211083 Oct 2020 WO
2020211086 Oct 2020 WO
2021038604 Mar 2021 WO
2021038604 Mar 2021 WO
2021041783 Mar 2021 WO
Non-Patent Literature Citations (117)
Entry
US 11,459,865 B2, 10/2022, Cui et al. (withdrawn)
US 11,555,493 B2, 01/2023, Chang et al. (withdrawn)
Dziubak, Tadeusz, “Experimental Studies of Dust Suction Irregularity from Multi-Cyclone Dust Collector of Two-Stage Air Filter”, Energies 2021, 14, 3577, 28 pages.
ResearchGate, Answer by Byron Woolridge, found at https://www.researchgate.net/post/How_can_we_improve_the_efficiency_of_the_gas_turbine_cycles, Jan. 1, 2013.
Filipović, Ivan, Preliminary Selection of Basic Parameters of Different Torsional Vibration Dampers Intended for use in Medium-Speed Diesel Engines, Transactions of Famena XXXVI-3 (2012).
Marine Turbine Technologies, 1 MW Power Generation Package, http://marineturbine.com/power-generation, 2017.
Business Week: Fiber-optic cables help fracking, cablinginstall.com. Jul. 12, 2013. https://www.cablinginstall.com/cable/article/16474208/businessweek-fiberoptic-cables-help-fracking.
Fracking companies switch to electric motors to power pumps, iadd-intl.org. Jun. 27, 2019. https://www.iadd-intl.org/articles/fracking-companies-switch-to-electric-motors-to-power-pumps/.
The Leader in Frac Fueling, suncoastresources.com. Jun. 29, 2015. https://web.archive.org/web/20150629220609/https://www.suncoastresources.com/oilfield/fueling-services/.
Mobile Fuel Delivery, atlasoil.com. Mar. 6, 2019. https://www.atlasoil.com/nationwide-fueling/onsite-and-mobile-fueling.
Frac Tank Hose (FRAC), 4starhose.com. Accessed: Nov. 10, 2019. http://www.4starhose.com/product/frac_tank_hose_frac.aspx.
PLOS One, Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis. Oct. 21, 2015.
FMC Technologies, Operation and Maintenance Manual, L06 Through L16 Triplex Pumps Doc No. OMM50000903 Rev: E p. 1 of 66. Aug. 27, 2009.
Gardner Denver Hydraulic Fracturing Pumps GD 3000 https://www.gardnerdenver.com/en-us/pumps/triplex-fracking-pump-gd-3000.
Lekontsev, Yu M., et al. “Two-side sealer operation.” Journal of Mining Science 49.5 (2013): 757-762.
Tom Hausfeld, GE Power & Water, and Eldon Schelske, Evolution Well Services, TM2500+ Power for Hydraulic Fracturing.
FTS International'S Dual Fuel Hydraulic Fracturing Equipment Increases Operational Efficiencies, Provides Cost Benefits, Jan. 3, 2018.
CNG Delivery, Fracturing with natural gas, dual-fuel drilling with CNG, Aug. 22, 2019.
PbNG, Natural Gas Fuel for Drilling and Hydraulic Fracturing, Diesel Displacement/Dual Fuel & Bi-Fuel, May 2014.
Integrated Flow, Skid-mounted Modular Process Systems, Jul. 15, 2017, https://ifsolutions.com/why-modular/.
Cameron, A Schlumberger Company, Frac Manifold Systems, 2016.
ZSi-Foster, Energy | Solar | Fracking | Oil and Gas, Aug. 2020, https://www.zsi-foster.com/energy-solar-fracking-oil-and-gas.html.
JBG Enterprises, Inc., WS-Series Blowout Prevention Safety Coupling—Quick Release Couplings, Sep. 11, 2015, http://www.jgbhose.com/products/WS-Series-Blowout-Prevention-Safety-Coupling.asp.
Halliburton, Vessel-based Modular Solution (VMS), 2015.
Chun, M. K., H. K. Song, and R. Lallemand. “Heavy duty gas turbines in petrochemical plants: Samsung's Daesan plant (Korea) beats fuel flexibility records with over 95% hydrogen in process gas.” Proceedings of PowerGen Asia Conference, Singapore. 1999.
Wolf, Jürgen J., and Marko A. Perkavec. “Safety Aspects and Environmental Considerations for a 10 MW Cogeneration Heavy Duty Gas Turbine Burning Coke Oven Gas with 60% Hydrogen Content.” ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 1992.
Ginter, Timothy, and Thomas Bouvay. “Uprate options for the MS7001 heavy duty gas turbine.” GE paper GER-3808C, GE Energy 12 (2006).
Chaichan, Miqdam Tariq. “The impact of equivalence ratio on performance and emissions of a hydrogen-diesel dual fuel engine with cooled exhaust gas recirculation.” International Journal of Scientific & Engineering Research 6.6 (2015): 938-941.
Ecob, David J., et al. “Design and Development of a Landfill Gas Combustion System for the Typhoon Gas Turbine.” ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers Digital Collection, 1996.
II-VI Marlow Industries, Thermoelectric Technologies in Oil, Gas, and Mining Industries, blog.marlow.com (Jul. 24, 2019).
B.M. Mahlalela, et al., Electric Power Generation Potential Based on Waste Heat and Geothermal Resources in South Africa, pangea stanford.edu (Feb. 11, 2019).
Department of Energy, United States of America, The Water-Energy Nexus: Challenges and Opportunities purenergypolicy.org (Jun. 2014).
Ankit Tiwari, Design of a Cooling System for a Hydraulic Fracturing Equipment, The Pennsylvania State University, The Graduate School, College of Engineering, 2015.
Jp Yadav et al., Power Enhancement of Gas Turbine Plant by Intake Air Fog Cooling, Jun. 2015.
Mee Industries: Inlet Air Fogging Systems for Oil, Gas and Petrochemical Processing, Verdict Media Limited Copyright 2020.
M. Ahmadzadehtalatapeh et al.Performance enhancement of gas turbine units by retrofitting with inlet air cooling technologies (IACTs): an hour-by-hour simulation study, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Mar. 2020.
Advances in Popular Torque-Link Solution Offer OEMs Greater Benefit, Jun. 21, 2018.
Emmanuel Akita et al., Mewboume College of Earth & Energy, Society of Petroleum Engineers; Drilling Systems Automation Technical Section (DSATS); 2019.
PowerShelter Kit II, nooutage.com, Sep. 6, 2019.
EMPengineering.com, HEMP Resistant Electrical Generators/Hardened Structures HEMP/GMD Shielded Generators, Virginia, Nov. 3, 2012.
Blago Minovski, Coupled Simulations of Cooling and Engine Systems for Unsteady Analysis of the Benefits of Thermal Engine Encapsulation, Department of Applied Mechanics, Chalmers University of Technology G'oteborg, Sweden 2015.
J. Porteiro et al., Feasibility of a new domestic CHP trigeneration with heat pump: II. Availability analysis. Design and development, Applied Thermal Engineering 24 (2004) 1421-1429.
International Search Report and Written Opinion for PCT/US2022/030647, dated Oct. 7, 2022.
De Gevigney et al., “Analysis of no-load dependent power losses in a planetary gear train by using thermal network method”, International Gear Conference 2014: Aug. 26-28, 2014, Lyon, pp. 615-624.
“Honghua developing new-generation shale-drilling rig, plans testing of frac pump”; Katherine Scott; Drilling Contractor; May 23, 2013; accessed at https://www.drillingcontractor.org/honghua-developing-new-generation-shale-drilling-rig-plans-testing-of-frac-pump-23278.
Europump and Hydrualic Institute, Variable Speed Pumping: A Guide to Successful Applications, Elsevier Ltd, 2004.
Capstone Turbine Corporation, Capstone Receives Three Megawatt Order from Large Independent Oil & Gas Company in Eagle Ford Shale Play, Dec. 7, 2010.
Wikipedia, Westinghouse Combustion Turbine Systems Division, https://en.wikipedia.org/wiki/Westinghouse_Combustion_Turbine_Systems_Division, circa 1960.
Wikipedia,Union Pacific GTELs, https://en.wikipedia.org/wiki/Union_Pacific_GTELs, circa 1950.
HCI JET Frac, Screenshots from YouTube, Dec. 11, 2010. https://www.youtube.com/watch?v=6HjXkdbFaFQ.
AFD Petroleum Ltd., Automated Hot Zone, Frac Refueling System, Dec. 2018.
Eygun, Christiane, et al., URTeC: 2687987, Mitigating Shale Gas Developments Carbon Footprint: Evaluating and Implementing Solutions in Argentina, Copyright 2017, Unconventional Resources Technology Conference.
Walzel, Brian, Hart Energy, Oil, Gas Industry Discovers Innovative Solutions to Environmental Concerns, Dec. 10, 2018.
Frac Shack, Bi-Fuel FracFueller brochure, 2011.
Pettigrew, Dana, et al., High Pressure Multi-Stage Centrifugal Pump for 10,000 psi Frac Pump-HPHPS Frac Pump, Copyright 2013, Society of Petroleum Engineers, SPE 166191.
Elle Seybold, et al., Evolution of Dual Fuel Pressure Pumping for Fracturing: Methods, Economics, Field Trial Results and Improvements in Availability of Fuel, Copyright 2013, Society of Petroleum Engineers, SPE 166443.
Wallace, E.M., Associated Shale Gas: From Flares to Rig Power, Copyright 2015, Society of Petroleum Engineers, SPE-173491-MS.
Williams, C.W. (Gulf Oil Corp. Odessa Texas), The Use of Gas-turbine Engines in an Automated High-Pressure Water-Injection Stations; American Petroleum Institute; API-63 144 (Jan. 1, 1963).
Neal, J.C. (Gulf Oil Corp. Odessa Texas), Gas Turbine Driven Centrifugal Pumps for High Pressure Water Injection American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.; SPE-1888 (1967).
Porter, John A. (Solar Division International Harvester Co.), Modern Industrial Gas Turbines for the Oil Field American Petroleum Institute; Drilling and Production Practice; API-67-243 (Jan. 1, 1967).
Cooper et al., Jet Frac Porta-Skid—A New Concept in Oil Field Service Pump Equipments[sic]; Halliburton Services SPE-2706 (1969).
Bragimov, É.S., Use of gas-turbine engines in oil field pumping units; Chern Petrol Eng; (1994) 30: 530. https://doi.org/10.1007/BF01154919. (Translated from Khimicheskaya i Neftyanoe Mashinostroenie, No. 11, pp. 24-26, Nov. 1994.).
Kas'yanov et al., Application of gas-turbine engines in pumping units complexes of hydraulic fracturing of oil and gas reservoirs; Exposition Oil & Gas; (Oct. 2012) (published in Russian).
American Petroleum Institute. API 674: Positive Displacement Pumps—Reciprocating. 3rd ed. Washington, DC: API Publishing Services, 2010.
American Petroleum Institute. API 616: Gas Turbines for the Petroleum, Chemical, and Gas Industry Services. 5th ed. Nashington, DC: API Publishing Services, 2011.
Karassik, Igor, Joseph Messina, Paul Cooper, and Charles Heald. Pump Handbook. 4th ed. New York: McGraw-Hill Education, 2008.
Weir SPM. Weir SPM General Catalog: Well Service Pumps, Flow Control Products, Manifold Trailers, Safety Products, Post Sale Services. Ft. Worth, TX: Weir Oil & Gas. May 28, 2016. https://www.pumpfundamentals.com/pumpdatabase2/weir-spm-general.pdf.
The Weir Group, Inc. Weir SPM Pump Product Catalog. Ft. Worth, TX: S.P.M. Flow Control, Inc. Oct. 30, 2017. https://manage.global.weir/assets/files/product%20brochures/SPM_2P140706_Pump_Product_Catalogue_View.pdf.
Shandong Saigao Group Corporation. Q4 (5W115) Quintuplex Plunger Pump. Jinan City, Shandong Province, China: Saigao. Oct. 20, 2014. https://www.saigaogroup.com/product/q400-5w115-quintuplex-plunger-pump.html.
Marine Turbine. Turbine Powered Frac Units. Franklin, Louisiana: Marine Turbine Technologies, 2020.
Rotating Right. Quintuplex Power Pump Model Q700. Edmonton, Alberta, Canada: Weatherford International Ltd. https://www.rotatingright.com/pdf/weatherford/RR%2026-Weatherford%20Model%20Q700pdf, 2021.
CanDyne Pump Services, Inc. Weatherford Q700 Pump. Calgary, Alberta, Canada: CanDyne Pump Services. Aug. 15, 2015. http://candyne.com/wp-content/uploads/2014/10/181905-94921.q700-quintuplex-pump.pdf.
Arop, Julius Bankong. Geomechanical review of hydraulic fracturing technology. Thesis (M. Eng.). Cambridge, MA: Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering. Oct. 29, 2013. https://dspace.mit.edu/handle/1721.1/82176.
ISM, What is Cracking Pressure, 2019.
Swagelok, The right valve for controlling flow direction? Check, 2016.
Technology.org, Check valves how do they work and what are the main type, 2018.
Special-Purpose Couplings for Petroleum, Chemical, and Gas Industry Services, API Standard 671 (4th Edition) (2010).
The Application of Flexible Couplings for Turbomachinery, Jon R.Mancuso et al., Proceedings of the EighteenthTurbomachinery Symposium (1989).
Pump Control With Variable Frequency Drives, Kevin Tory, Pumps & Systems: Advances in Motors and Drives, Reprint from Jun. 2008.
Fracture Design and Stimulation, Mike Eberhard, P.E., WellConstruction & Operations Technical Workshop Insupport of the EPA Hydraulic Fracturing Study, Mar. 10-11, 2011.
General Purpose vs. Special Purpose Couplings, Jon Mancuso, Proceedings of the Twenty-Third TurbomachinerySymposium (1994).
Overview of Industry Guidance/Best Practices on Hydraulic Fracturing (HF), American Petroleum Institute, © 2012.
API Member Companies, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20130424080625/http://api.org/globalitems/globalheaderpages/membership/api-member-companies, accessed Jan. 4, 2021.
API's Global Industry Services, American Petroleum Institute, © Aug. 2020.
About API, American Petroleum Institute, https://www.api.org /about, accessed Dec. 30, 2021.
About API, American Petroleum Institute, WaybackMachine Capture, https://webarchive.org/web/20110422104346 /http://api.org/aboutapi/, captured Apr. 22, 2011.
Publications, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110427043936 /http://www.api.org:80/Publications/, captured Apr. 27, 2011.
Procedures for Standards Development, American Petroleum Institute, Third Edition (2006).
WorldCat Library Collections Database Records for API Standard 671 and API Standard 674, https://www.worldcat.org/title/positive-displacement-pumps-reciprocating/oclc/ 858692269&referer=brief_results, accessed Dec. 30, 2021; and https://www.worldcat.org/title/special-purpose-couplings-for-petroleum-chemical-and-gas-industry-services/oclc/871254217&referer=brief_results, accessed Dec. 22, 2021.
2011 Publications and Services, American Petroleum Institute (2011).
Standards, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110207195046/http:/www.api.org/Standards/, captured Feb. 7, 2011; and https://web.archive.org/web/20110204112554/http://global.ihs.com/?RID=API1, captured Feb. 4, 2011.
IHS Markit Standards Store, https://global.ihs.com/doc_detail.cfm?document_name=API%20STD%20674&item_s_key=00010672#doc-detail-history-anchor, accessed Dec. 30, 2021; and https://global.ihs.com/doc_detail.cfm?&input_doc _number=671&input_doc_title=&document_name=API%20STD%20671&item_s_key=00010669&item_key_date=890331&origin=DSSC, accessed Dec. 30, 2021.
AFGlobal Corporation, Durastim Hydraulic Fracturing Pump, A Revolutionary Design for Continuous Duty Hydraulic Fracturing, 2018.
SPM® QEM 5000 E-Frac Pump Specification Sheet, Weir Group (2019) (“Weir 5000”).
Green Field Energy Services Natural Gas Driven Turbine Frac Pumps HHP Summit Presentation, Yumpu (Sep. 2012), https://www.yumpu.com/en/document/read/49685291/turbine-frac-pump-assembly-hhp (“Green Field”).
Dowell B908 “Turbo-Jet” Operator's Manual.
Jereh Debut's Super-power Turbine Fracturing Pump, Leading the Industrial Revolution, Jereh Oilfield Services Group (Mar. 19, 2014), https://www.prnewswire.com/news-releases/jereh-debuts-super-power-turbine-fracturing-pump-leading-the-industrial-revolution-250992111.html.
Jereh Apollo 4500 Turbine Frac Pumper Finishes Successful Field Operation in China, Jereh Group (Feb. 13, 2015), as available on Apr. 20, 2015, https://web.archive.org/web/20150420220625/https://www. prnewswire.com/news-releases/jereh-apollo-4500-turbine-frac-pumper-finishes-successful-field-operation-in-china-300035829.html.
35% Economy Increase, Dual-fuel System Highlighting Jereh Apollo Frac Pumper, Jereh Group (Apr. 13, 2015), https://www.jereh.com/en/news/press-release/news-detail-7345.htm.
Hydraulic Fracturing: Gas turbine proves successful in shale gasfield operations, Vericor (2017), https://www.vericor.com/wp-content/ uploads/2020/02/7.-Fracing-4500hp-Pump-China-En.pdf (“Vericor Case Study”).
Jereh Apollo Turbine Fracturing Pumper Featured on China Central Television, Jereh Group (Mar. 9, 2018), https://wwwjereh.com/en/ news/press-release/news-detail-7267.htm.
Jereh Unveiled New Electric Fracturing Solution at OTC 2019, Jereh Group (May 7, 2019), as available on May 28, 2019, https://web.archive.org/web/20190528183906/https://www.prnewswire .com/news-releases/jereh-unveiled-new-electric-fracturing-solution-at-otc-2019-300845028.html.
Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015), https://www.youtube.com/watch?v=PIkDbU5dE0o.
Transcript of Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015).
Jereh Group, Jereh Fracturing Equipment. YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q.
Transcript of Jereh Group, Jereh Fracturing Equipment, YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q.
Ferdinand P. Beer et al., Mechanics of Materials (6th ed. 2012).
Weir Oil & Gas Introduces Industry's First Continuous Duty 5000-Horsepower Pump, Weir Group (Jul. 25, 2019), https://www.global. weir/newsroom/news-articles/weir-oil-and-gas-introduces-industrys-first-continuous-duty-5000-horsepower-pump/.
2012 High Horsepower Summit Agenda, Natural Gas for High Horsepower Applications (Sep. 5, 2012).
Review of HHP Summit 2012, Gladstein, Neandross & Associates https://www.gladstein.org/gna-conferences/high-horsepower-summit-2012/.
Green Field Energy Services Deploys Third New Hydraulic Fracturing System, Green Field Energy Services, Inc. (Jul. 11, 2012), https://www.prnewswire.com/news-releases/green-field-energy-services-deploys-third-new-hydraulic-fracturing-spread-162113425.
Karen Boman, Turbine Technology Powers Green Field Multi-Fuel Frack Pump, Rigzone (Mar. 7, 2015), as available on Mar. 14, 2015, https://web.archive.org/web/20150314203227/https://www.rigzone.co m/news/oil-gas/a/124883/Turbine_Technology_Powers_Green_Field_ MultiFuel_Frack_Pump.
“Turbine Frac Units,” WMD Squared (2012), https://wmdsquared.com/ work/gfes-turbine-frac-units/.
Leslie Turj, Green Field asset sale called ‘largest disposition industry has seen,’ The INDsider Media (Mar. 19, 2014), http://theind.com/ article-16497-green-field-asset-sale-called-%E2%80%98largest-disposition-industry-has-seen%60.html.
Final written decision of PGR2021-00102 dated Feb. 6, 2023.
Final written decision of PGR2021-00103 dated Feb. 6, 2023.
Rigmaster Machinery Ltd., Model: 2000 RMP-6-PLEX, brochure, downloaded at https://www.rigmastermachinery.com/_files/ugd/431e62_eaecd77c9fe54af8b13d08396072da67.pdf.
Related Publications (1)
Number Date Country
20210388707 A1 Dec 2021 US
Provisional Applications (1)
Number Date Country
62705055 Jun 2020 US
Divisions (2)
Number Date Country
Parent 17377884 Jul 2021 US
Child 17460788 US
Parent 17301305 Mar 2021 US
Child 17377884 US