Half-bridge circuits can be used to drive inductive loads such as electric motors, with each half-bridge circuit being connected between a terminal for a positive and a negative supply potential, and each having an output terminal for connecting the load. For driving a DC motor, two such half-bridge circuits are connected up into a bridge circuit, and for driving a 3-phase motor, three such half-bridge circuits are connected up into a bridge circuit. In such circuit arrangements, a current consumption of the load is controlled by pulse-width modulated driving of the half-bridge circuit, i.e. by pulse-width modulated driving of semiconductor switching elements that form the half-bridge circuits. Two semiconductor switching elements forming a half-bridge circuit can here be driven with respect to each other in a complementary fashion such that while one of the semiconductor switching elements is being driven in the OFF state, the other semiconductor switching element conducts, and vice versa. In order to avoid cross currents in the half-bridge circuit, dead times can be provided between switching off the one semiconductor switching element and switching on the other semiconductor switching element.
This description relates to a method for driving a half-bridge circuit comprising two semiconductor switching elements, each having a load path and a drive terminal, and two freewheeling elements, each of which is connected in parallel with the load path of one of the semiconductor switching elements, where the method comprises: preventing at least one of the two semiconductor switching elements from being driven in the ON state at least during a time interval when its freewheeling element is forward biased.
Examples are explained below with reference to figures. The figures are used to explain the basic principle, and only show those aspects needed to explain this basic principle. Unless stated otherwise, in the figures, the same references denote identical signals and circuit components having the same relevance.
The semiconductor switching elements 1, 2 are implemented as an IGBT in the example shown (Insulated Gate Bipolar Transistor). These IGBTs each have a gate terminal G as the drive terminal, a collector terminal K as the first load-path terminal, an emitter terminal E as the second load-path terminal and load paths running between the collector and emitter terminals K, E. The two IGBTs can be of the same type, and are n-channel IGBTs in the example shown. The two IGBTs are here connected up so that their respective collector terminal lies closer to the positive supply potential V+ in the circuit formed between the positive and the negative supply potential V+, V−. It should be pointed out in this context that the use of IGBTs as semiconductor switching elements is merely to be considered as an example. Obviously there is also the option to implement the half-bridge 10 using other semiconductor switching elements, in particular MOSFETs (Metal Oxide Semiconductor Field Effect Transistor). MOSFETs have a gate terminal as the drive terminal and drain and source terminals as the load-path terminals.
Moreover, the two semiconductor switching elements 1, 2 need be neither of the same component type nor of the same channel type. For example, one of the two semiconductor switching elements can be implemented as an IGBT and the other of the two semiconductor switching elements as a MOSFET. If the semiconductor switching elements are of the same component type, i.e. either IGBTs or MOSFETs, for example, then different channel types can be provided for the two semiconductor switching elements, i.e. one of the two semiconductor switching elements can be a component having an n-channel, for example, while the other is a component having a p-channel.
A freewheeling element is connected in parallel with each of the load paths of the semiconductor switching elements 1, 2, namely a first freewheeling element 3 in parallel with the load path of the first semiconductor switching element 1 and a second freewheeling element 4 in parallel with the load path of the second semiconductor switching element 2. The two freewheeling elements 3, 4 are rectifier elements such as diodes, which are connected in the same polarity direction and in such a way that they do not conduct when a supply voltage lies between the supply potential terminals, i.e. when a positive supply potential V+ lies at the first supply potential terminal and a negative supply potential V− at the second supply potential terminal, and when the output 5 of the half-bridge circuit 10 is open.
The half-bridge 10 can be used alone or, as shown dotted in
A chopped drive of the high-side switch 1 of the half-bridge 10 is represented in
In a pulse-width modulated drive of the high-side switch, a current continues to flow in the direction I shown in
The low-side switch 2 of the half-bridge 10 is used to generate a current through the load Z that flows in the opposite direction to the current direction shown in
The 3-phase power converter shown in
In order to drive such a three-phase inductive load Z, the 3-phase power converter generates a rotating field or in other words three output currents I1, I2, I3 that ideally have a mutual phase offset of 120°. In the example shown, I1 denotes the output current at the output 51 of the first half-bridge 101, I2 denotes the output current at the output 52 of the second half-bridge 102 and I3 denotes the output current at the output 53 of the third half-bridge 103.
Drive signals for the semiconductor switching elements of the three half-bridges can be generated so that a reference signal is provided for each of the half-bridges whose time waveform matches the required time waveform of the output current of the respective half-bridge, and so that drive signals for the two semiconductor switching elements of a half-bridge are generated using a comparison between this reference signal and another reference signal having a higher frequency than this reference signal, with the drive signals of the two semiconductor switching elements each being generated so that the two semiconductor switching elements are driven with respect to each other in a complementary fashion. Such a method, however, in which the two semiconductor switching elements of a half-bridge are each driven with respect to each other in a complementary fashion, results in relatively high drive losses. These drive losses are those losses associated with driving a semiconductor switching element in the ON state and OFF state. When IGBTs or MOSFETs are used as the semiconductor switching elements, these drive losses arise mainly from charging and discharging currents of the gate electrodes of these components.
In order to reduce the drive losses, in one example of a method for driving the semiconductor switching elements 11, 21, 12, 22, 13, 23 of the individual half-bridges 101, 102, 103, it is provided to prevent driving in the ON state that semiconductor switching element of the two semiconductor switching elements of a half-bridge during those time intervals when the freewheeling element associated with the semiconductor switching element is forward biased.
The frequency of the first reference signals, i.e. the required frequency of the output currents, lies between 50 Hz and 500 Hz, for example, depending on the application. The frequency of the second reference signal equals between 5 kHz and 20 kHz, for example. In general, the frequency ratio between the frequency of the second reference signal and the frequencies of the first reference signal lies between 10:1 and 400:1. In the example shown, the second reference signal FR is a triangular signal, although a trapezoidal or saw-tooth signal could also be used correspondingly. Each of the three first reference signals REF1, REF2, REF3 is used together with the second reference signal FR to generate the respective drive signals for one of the three half-bridges. In the example shown, the drive signals S11, S22 for the semiconductor switching elements 11, 21 of the first half-bridge 101 are obtained by comparing the first reference signal REF1 with the second reference signal FR, the drive signals S1, S22 for the semiconductor switching elements 12, 22 of the second half-bridge 102 are obtained by comparing the second reference signal REF2 of the first reference signals with the second reference signal FR, and the drive signals S13, S23 for the semiconductor switching elements 13, 23 of the third half-bridge 103 are obtained by comparing the third reference signal REF3 of the first reference signals with the second reference signal FR. In the description below, REF denotes generally one of the first reference signals, S1 denotes generally one of the drive signals of the high-side switches 11, 12, 13 of the half-bridge circuits 101, 102, 103, and S2 denotes generally one of the drive signals of the low-side switches 21, 22, 23 of the half-bridge circuits 101, 102, 103.
In the example shown, an ON level of the drive signal S1 of the high-side switch of a half-bridge circuit is generated whenever the first reference signal REF of this half-bridge circuit is greater than the second reference signal FR, and an ON level of the drive signal of the low-side switch of a half-bridge circuit is generated whenever the first reference signal REF of the respective half-bridge is smaller than the second reference signal FR.
During those time intervals when the freewheeling element of one of the semiconductor switching elements of a half-bridge 101, 102, 103 is forward biased, which is precisely when the other semiconductor switching element of this half-bridge is in the OFF state, it is also provided in the method shown in
A pulse-width modulated drive of any of the semiconductor switching elements comprises a plurality of successive drive cycles, each having an ON time interval during which the driven semiconductor switching element is in the ON state, and an OFF time interval during which the driven semiconductor switching element is in the OFF state. In the context of the present description, a pulse-width modulated drive is taken to mean only such a drive for which a plurality of drive cycles succeed each other whose period lies in the region of one period length of the second reference signal, or is shorter than half a period length of the first reference signal.
During the OFF time interval of the pulse-width modulated drive of the high-side switch 11 of the first half-bridge 101, the freewheeling element 41 of the low-side switch 21 is forward biased. The time interval during which the freewheeling element 41 of the low-side switch 21 is forward biased on every occasion that the high-side switch 11 is driven in the OFF state hence equals the time interval of a positive half-wave of the first reference signal REF1 in the example shown. In this method it is hence provided to prevent the low-side switch 21 being driven in the ON state during the positive half-wave of the first reference signal REF1. In a corresponding manner, the freewheeling element 31 of the high-side switch 11 is forward biased during a negative half-wave of the first reference signal when the low-side switch 21 is in the OFF state. Hence in the method shown in
It is generally true for the method shown in
The drive circuit also comprises a reference signal generator 7 for providing the second reference signal FR and, optionally, an offset unit 8, which adds a defined offset to the second reference signal FR. A signal provided at the output of this offset unit 8 is denoted by FR′ in
The first drive unit 61 comprises a first reference signal generator 611, which provides the first reference signal REF1. This first reference signal REF1 is compared with the second reference signal FR by means of a first comparator 621. The first drive signal S11 is provided at the output of an AND Gate 641, to which are input the output signal from the first comparator 621 and the output signal from a second comparator 631. The second comparator 631 compares the first reference signal REF1 with a defined threshold value, which is zero in the example shown in
To generate the second drive signal S21, the drive unit 61 comprises a second comparator 651, which compares the first reference signal REF1 with the second reference signal FR or, optionally, with the offset-added second reference signal FR′. The second drive signal S21 is provided at the output of a second AND gate 681, to which are input the output signal from the comparator 651 and the output signal from the second comparator 631, which has been inverted by an inverter 671. At the output of the third comparator 651 is provided continuously a chopped drive signal, which depends on a comparison of the first reference signal REF1 with the second reference signal FR, or with the offset-added second reference signal FR′, and which, in the example shown, assumes an ON level when the first reference signal REF1 is smaller than the second reference signal FR or the offset-added second reference signal FR′. The AND gate 681, however, blanks out this chopped drive signal, controlled by the inverted output signal from the second comparator 631 during those timing intervals when the first reference signal REF1 lies below the defined threshold value, i.e. in the example shown in
Comparing the first reference signal REF1 with the second reference signal FR for generating the first drive signal S11, and comparing the first reference signal REF1 with the offset-added second reference signal FR′ for generating the second drive signal S2′ guarantees that there is a dead time between an ON level of the first drive signal and a subsequent ON level of the second drive signal, so that cross currents of the half-bridge are avoided. In the example shown, the offset produced by the offset circuit is greater than zero.
To drive the load Z, at least the high-side switch of one of the half-bridges 101, 102, 103, and at least the low-side switch of another of the half-bridges must be in the ON state during one point in time. In the example shown in
Information about the time intervals during which the freewheeling element of a semiconductor switching element of a half-bridge is forward biased, when the other semiconductor switching element, driven by a pulse-width modulated drive, of the half-bridge is in the OFF state, is derived directly from the reference signals in the methods explained with reference to
In this method, a blanking circuit 8 is used, to which are supplied the drive signals S1′, S2′ for the high-side switch 1 and the low-side switch 2, and which is designed to modify or intermittently blank out these drive signals S1′, S2′ and hence to generate drive signals S1, S2, which are applied to the semiconductor switching elements. The drive signals S1′, S2′ supplied to the blanking circuit 8 can, for example, be drive signals that are generated directly by comparing a first reference signal with a second reference signal, i.e. those drive signals provided at the outputs of the first comparator 62 and the second comparator 65 as shown in the drive circuit in
In a manner corresponding to generation of the first drive signal S1, the second drive signal S2 is generated by blanking out the supplied drive signal S2′ during those time intervals when the current I is flowing in the current direction shown in
In the example shown, the current-direction detector 81, 82 comprises a current-measurement arrangement 81, which generates a current-measurement signal S81, which is input to a comparator 82. This comparator 82 compares the current-measurement signal S81 with a defined threshold value, e.g. zero, and provides the current-direction signal S82 at its output. In the example shown, the current-direction signal S82 has a high level when the current is flowing in the direction shown in
It should be mentioned that driver circuits (not shown) can be connected before the drive terminals of the semiconductor switching elements, these driver circuits being used for converting signal levels of the signals provided at the output of the blanking circuit into signal levels suitable for driving the semiconductor switching elements.
Instead of measuring the current directly, it is provided in another method to compute the current direction. The first and second reference signals, for example, are provided by a microcontroller (not shown), which uses these signals to drive the individual semiconductor switching elements. A mathematical model of the load switched by the half-bridge can be stored in this microcontroller, which enables the microcontroller to compute for each phase of each reference signal the direction of the currents at the outputs of each half-bridge, and hence to generate enable signals that enable or inhibit driving of each of the semiconductor switching elements.
Instead of determining the direction of the current I flowing at the output 5 of the half-bridge 10, in order to detect those time intervals during which the freewheeling element of a semiconductor switching element is forward biased at those moments in time when, with a pulse-width modulated drive, the other semiconductor switching element is in the OFF state, there is also the option, referring to
The evaluation circuits 86, 87 are designed to generate an enable level of the enable signals S86, S87 when the freewheeling elements are not forward biased, or rather to generate a non-enable level when the freewheeling elements are forward biased. The enable level is a high-level in the example. In this case, the drive signals S1′, S2′ can pass through the AND gates 83, 84 to drive the semiconductor switches 1, 2.
The drive methods described above, in particular the drive method described with reference to
Separate freewheeling elements can be provided as the freewheeling elements of the MOSFETs, but it is also possible to use the integral MOSFET body diode as the freewheeling element.
The described method allows a significant reduction in the drive losses of the switching elements compared with conventional methods in which the switching elements are also driven in the ON state when the switching element is unable to conduct the load current, i.e. for an IGBT when a voltage lies in the reverse direction. Unlike MOSFETS, IGBTs are unable to conduct a current under such a reverse voltage even when they are driven in the ON state. The method, however, is also suitable in conjunction with components such as MOSFETS that are suitable for conducting a current in the reverse direction when driven in the ON state.
The method is also suitable in conjunction with RCIGBTs (Reverse Conducting IGBT). These are IGBTs that include an integral freewheeling function, but which have high ON-state losses when they are additionally driven in the ON state in the reverse conducting direction for which there is no need to drive the gate electrode.
It is true generally for the present method that semiconductor switching elements having a forward direction and a reverse direction are not driven in the ON state when they are reverse biased. For n-channel components, a reverse bias means applying a positive voltage between emitter and collector (for an IGBT) or between source and drain (for a MOSFET). For p-channel components, a reverse bias means applying a negative voltage between emitter and collector (for an IGBT) or between source and drain (for a MOSFET).
The methods described above by way of example, in which the first reference signals, an output current of the half-bridge or currents through, or voltages across, freewheeling elements are evaluated, can be used to determine whether such a reverse bias exists or whether the half-bridge circuit is in an operating state in which such a reverse bias of a semiconductor switching element can occur.