The invention relates to a drive for a rotatable wing comprising an electric motor that is coupled via a gear to an output shaft which is coupleable to the wing.
Drives of this type are used, for example, to automatically move a wing in the form of a door or a window between a closed position and an open position; see, for example, DE 010 2006 002 751 A1, WO 2013/160087 A2, DE 10 2007 002 650 A1, and DE 103 36 075 B4. The drives described in these documents have an energy store that causes a wing that is in the open position to be moved into the closed position in the event of a power failure. The drive has quite a large volume due to providing this type of energy store.
It is an aim of the present invention to provide a more compact drive for a rotatable wing.
The invention achieves this aim with the subject matter of patent claim 1 or 2. The dependent claims define preferred embodiments of the drive.
In the drive according to claim 1, a force device is provided by means of which a closed wing is held in the closed position in the currentless state of the electric motor. The force device thus takes on a holding-closed function. In contrast, in the open position of the wing the force device has no effect, unlike the known drives, in which an open wing is moved into the closed position in the currentless state. The drive according to claim 1 may thus have a more compact design.
A compact design of the drive is also achievable in that according to claim 2 the force device has a spring that is situated transversely to the axis of the drive shaft of the electric motor and transversely to the axis of the output shaft.
Additional specific design features and their advantages are apparent from the following description and drawings of exemplary embodiments, in which
The drive shown in
The housing 2 includes a first housing part 2e made up of a housing base and a housing wall which protrudes therefrom and which is preferably molded on in one piece, and a second housing part 2f which is used as a housing cover and which is fastened to the first housing part 2e by screwing, for example. The housing 2 is provided with fastening means 2a in order to fasten the drive indirectly by means of a plate, for example, or directly to a casing, a frame, a lintel, or the like. Extensions 2a which are situated on one side of the housing 2 and which in each case have a through opening 2b for a screw are used here as fastening means. The respective extension 2a is preferably designed in one piece with the housing part 2e or 2f. The housing 2 has a window 2c that is used as access for allowing connection of a cable for a switch 15 (see
The output shaft 3 is coupleable to the wing to be moved. This coupling takes place indirectly, for example by means of a linkage mechanism (for example, a slide linkage, toggle lever linkage, or scissor linkage, etc.), or also directly. The wing may be, for example, a door, in particular a door for a room or a French window, a window, or some other flat, rotatably supported part. The wing is movable back and forth between a closed position in which a passage is closed by means of the wing, and an open position in which the wing is maximally rotated. The wing may have a design that opens to the left, opens to the right, or swings. In the latter case, the open position is understood to mean a position in which the swinging wing is maximally rotated in the clockwise or the counterclockwise direction.
In the present exemplary embodiment, the drive is designed in such a way that the output shaft 3 protrudes from both sides of the housing 2, and each end of the output shaft 3 is thus coupleable to a wing. In this way, a wing that opens to the left or to the right may be selectively moved using one and the same drive. For example, the drive is mounted in the orientation as shown in
An angle sensor 4 that is used for detecting the position of the coupled wing is mounted on the housing 2. The angle sensor 4 is designed as a Hall sensor, for example, and includes a magnet that is coupled to the rotating part, and whose field is detected by a stationary element. However, sensors that do not operate contactlessly, for example sensors with a rotatable slider that contacts a resistive track, are also usable as angle sensors 4.
As shown in
The gear 5, of which only the effective radii of the individual gear parts 5a-5e are indicated by dashed lines in
The gearwheel 5e is rotatably fixedly connected to the output shaft 3. The housing 2 has suitable bearings (not illustrated in
Of course, depending on the design, a different configuration of the gear 5 is possible for converting the movement of the drive shaft 1b into a desired movement of the output shaft 3.
The drive is further provided with a force device 10-13 that acts on the output shaft 3. The force device, which is also illustrated in
On one end 12a the pivot lever 12 has a bearing location about which the pivot lever is pivotable, and which in the present case is situated adjoining the drive shaft 1b. The axis 12f about which the pivot lever 12 is pivotable is in parallel to the axis 3b of the output shaft 3 (see
The other end 12c of the pivot lever 12 is used as a stop for the spring 13. A bearing location 12d for rotatably supporting the pressure roller 11 on the pivot lever 12 is situated between the two ends 12a, 12c. The pressure roller 11 has, on the end-face side, a circular cylindrical surface, which contacts the cam disk 10.
The pivot lever 12 has a course with an S shape in the present case, and passes through the space in which the gear 5 is situated. The pivot lever 12 is situated in such a way that, in the top view according to
In the present exemplary embodiment, the pivot lever 12 includes an actuating element 12e for actuating a switch 15 as a function of the position of the pivot lever 12. The switch 15 is used as an information transmitter that delivers a signal when the wing is in an end position (closed position or open position). The switch 15 in the present case is situated at the spring 13 and is fastened to the housing 2. The actuating element 12e is designed, for example, in the form of an extension that acts on a lever 15a when the pivot lever 12 pivots, thus activating the switch 15 (see
As explained above, an angle sensor 4 is provided for detecting the position of the wing. In the present exemplary embodiment, the angle sensor 4 is integrated into the worm wheel 5a. However, it is also possible to couple the angle sensor 4 to some other gear element in order to detect its angular position. Since the gear ratios of the gear 5 are known, the angular position of the output shaft 3 may be deduced from the angular position of the gear element. Depending on the design of the angle sensor 4, the exact position of a wing that is coupled to the drive may be unknown. By use of the switch 15, at least one additional reference value is available for calibrating the values of the angle sensor 4 to allow detection of the exact position of the wing, for example in the closed position. The switch 15 may also be omitted when using an absolute encoder, for example, as the angle sensor 4.
The spring 13 is situated transversely to the axis 1d of the drive shaft 1b of the electric motor 1 and transversely to the axis 3b of the output shaft 3, which allows a particularly compact design of the drive. The output shaft 3 is situated between the spring 13 and the drive shaft 1b of the electric motor 1, viewed in the direction of the axis 3b of the output shaft 3. The spring 13, as illustrated here in the figures, is designed as a compression spring, for example. Other types of springs, such as disk springs, are also usable. The spring 13 is situated between the end 12c of the pivot lever 12 and a stop plate 2g that is mounted in a window of the housing 2, for example by screwing (also see
The components 10-12 form a cam gear that is configured for converting the force generated by the spring 13 into a desired torque on the output shaft 3.
The spring 13 preferably has a linear characteristic curve in the working range, so that the force generated by the spring 13 is proportional to its spring excursion.
The cam disk 10 is rotatable about the center of rotation defined by the axis 3b of the output shaft 3, and has a rolling surface on the end-face side with a specific profile, resulting in a nonuniform edge.
The profile in the present case has a mirror-symmetrical design about the center axis, which passes through the positions 10a and 10e. The cam gear 10-12 accordingly has the same action on a wing which opens to the left or to the right and which is coupled via one end or the other of the output shaft 3. It is also conceivable to provide the drive at the intended rotational direction of the wing, and thus, to configure only one side of the profile corresponding to the sections 10b and 10d or the sections 10b′ and 10d′, while the other side of the profile may have any shape.
By providing the cam disk 10 with an indentation that is defined by section 10b or 10b′, a holding-closed torque having a threshold value is exertable on the wing, while the circular section 10d or 10d′ generates no torque on the wing. This, in addition to use of the drive, is explained in greater detail below:
The drive is situated, for example, on the side of the wing on which the hinges are present. The hinges are situated on the left, for example, so that the wing opens to the left. The drive is mounted in the orientation according to
In the closed position of the wing 20 (α=0 degrees), the pressure roller 11 contacts a neutral position, which is situated in section 10b of the cam disk 10 and which may be close to position 10a. The location of the neutral position is adjustable by coupling the output shaft 3 to the wing in a certain angular position during installation of the drive. At this neutral position, the cam disk 10 is shaped such that the force exerted by the pressure roller 11 results in no, or reduced, torque M on the output shaft 3. If an external force now acts that is caused by a draft, for example, and an external torque Mo thus acts on the wing 20, the wing begins to rotate. The pressure roller 11 then moves along section 10b of the cam disk 10, while at the same time the pivot lever 12 pivots and the spring 13 is compressed. The spring acts on the pressure roller 11, via the pivot lever 12, with a force F1 that is directed not toward the output shaft axis 3b, but to the side of this axis (see
The force device 10-13 thus fulfills a holding-closed function by keeping the wing in the closed position without electrical power, in particular without operation of the electric motor 1, when external influences act on the wing. The force device 10-13 is thus usable, for example, as a replacement for a door catch, which likewise fulfills a holding-closed function.
The force device 10-13 is configured in such a way that the holding-closed function is active in a limited angular range of the wing. If the wing has reached an intermediate position with a sufficiently large angle, the pressure roller is no longer located at section 10b or 10b′, but, rather, at circular section 10d or 10d′. At that location the pressure roller 11 exerts a force on the cam disk 10 which is directed toward the output shaft axis 3b, and which thus generates no torque M (see, for example, the force vector F2 depicted in
The diagram in
The drive also has an opening and closing function in addition to the holding-closed function. For automatically opening a wing, the electric motor 1 is set into operation by a trigger signal generated by a sensor, for example a motion detector or the like. The rotation of the drive shaft 1b is transferred to the output shaft 3 via the gear 5, with the pressure roller 11 rolling along the cam disk 10. The electric motor 1 and the gear 5 are designed in such a way that the threshold value Ms is overcome and the wing is brought beyond the intermediate position and into the open position. The open position is at an angle α, for example, having an absolute magnitude greater than 80 degrees. A further trigger signal once again sets the electric motor 1 into operation in order to automatically close the wing. After the intermediate position of the wing is reached, the force device acts to assist in the closing motion, since the torque M generated by the force device 10-13 and the torque generated by the electric motor 1 and the gear 5 are now oriented in the same direction.
The drive in the present case is designed in such a way that in the event of a power failure the wing remains in position when it is between the intermediate position and the open position, i.e., |α|>α1, since at that position the holding-closed torque M vanishes and the electric motor 1 is not active.
In another embodiment of the drive, it may be provided that the force device may result in an opening movement.
In contrast to the cam disk 10, in the profile of the cam disk 10′ the indentation 10b does not directly merge into a circular section, but instead has a transition area 10f therebetween that does not lie on a circle having the axis 3b as the center. The distance from the center of rotation 3b of the cam disk 10, viewed in the direction from position 10c to position 10g, decreases along the transition area 10f. When the pressure roller 11 is in the transition area 10f, it exerts a force F1′ on the cam disk 10′ that is directed not toward the output shaft axis 3b, but to the side of this axis. However, on the other side of the output shaft axis 3b this force passes by as force F1, which is generated in area 10b, so that the algebraic sign of the generated torque M is changed here (see the vector of the force F1′ in the example according to
The resulting curve of the torque M as a function of the angle α is apparent from the diagram in
In addition to this movement specification for the wing, providing the transition area 10f has the advantage that the area 10h may be situated on a circle having a smaller radius, and therefore the cam disk 10′ is more compact than the cam disk 10 (see
Based on the preceding description, numerous modifications are available to those skilled in the art without departing from the scope of protection defined by the claims.
In the example according to
Number | Date | Country | Kind |
---|---|---|---|
1076/15 | Jul 2015 | CH | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/067247 | 7/20/2016 | WO | 00 |