The invention relates to a drive for a switching device, which has a contact system made up of a fixed contact and a moving contact, having a force initiation element for initiating a drive force and an actuator for actuating the moving contact to close or open the contact system as well as transmission means disposed between the force initiation element and the actuator.
Such a drive is known from the generally accepted prior art and has as its force initiation element for example a spring storage system and as its actuator a drive rod coupled to the moving contact, a mechanical rocker system with a rotatably supported rocker being provided as the transmission means, the rocker transmitting the drive force of the force initiation element to the drive rod to open or close the contact system of the switching device.
It is the object of the present invention to develop a drive of the type mentioned in the introduction, which is economical and compact in structure.
According to the invention this is achieved with a drive of the type mentioned in the introduction in that the transmission means are configured in such a manner that both the transferring of the contact system from the closed to the open state and the transferring of the contact system from the open to the closed state can be triggered by a drive force in the same direction.
Such a drive is both economical and compact because with transmission means configured in this manner, with which the transferring of the compact system from the closed state to the open state and the transferring of the contact system from the open to the closed state can be triggered by a drive force in the same direction, complex mechanisms for reversing movement can simply be avoided.
In one advantageous embodiment of the invention the transmission means have a rotatable rod which has a staged profile on its end facing the actuator for transmitting force to the actuator. Such a staged profile on a rotatable rod for transmitting force to the actuator to actuate the moving contact of the switching device is particularly advantageous because by initiating the drive force of the force initiation element and executing a rotation of the rotatable rod, the actuator can be transferred both by the staged profile from a lower first level of the staged profile with the contact system of the switching device open along an incline by way of a latching stage to an upper second level of the staged profile with the contact system of the switching device closed, and can also be transferred from the upper second level and closed contact system by way of a latching stage to the lower first level of the staged profile to open the contact system with the initiated drive force in the same direction.
The force initiation element here can be configured in different ways. It is particularly preferable for a solenoid drive coupled to a deactivation spring to be provided as the force initiation element, said solenoid drive being provided to initiate a drive force in the transmission means in just one direction, with the force of the solenoid drive bringing about the transferring of the staged profile of the rotatable rod from its lower to its upper level to activate or close the contact system of the switching device and during deactivation the force in the same direction of the solenoid drive causing the staged profile to be transferred from the upper to the lower level in conjunction with the deactivation spring.
The invention is described in more detail below based on the drawing and an exemplary embodiment with reference to the accompanying figures, in which:
The drive 1 comprises a force initiation element 11 and an actuator 12, as well as transmission means 13 disposed therebetween. The force initiation element 11 serves to initiate a drive force to close or open the contact system 3 of the switching device 2 and in the exemplary embodiment has an electromagnet 14 with a coil 15, said coil 15 being connected by way of connectors 16 and 17 to a voltage source (not shown in the figure) to energize the coil 15. An armature 18 of the electromagnet 14 here is configured in such a manner that when the coil 15 is energized, the armature 18 is subject to a drive force upward in the direction of the arrow in
The actuator 12 comprises an actuation rod 24, which is configured by the staged profile 23 of the rotatably supported rod 22, also a contact pressure spring 25 for applying a contact pressure force when the contact system 3 of the switching device 2 is in the closed state, as well as an isolating segment 26 for the electrical isolation of drive 1 in relation to switching device 2 and a coupling segment 27 for the mechanical coupling of the actuator 12 to the moving contact connector pin 8.
To transfer the contact system 3 of the switching device 2 from the opened state illustrated in
To reverse this process, starting from the state in
In other words it is possible with the drive 1 to trigger both the transferring of the contact system 3 from the open to the closed state and also the transferring of the contact system 3 from the closed to the open state by a drive force of the electromagnet 14 that is always in the same direction, in the exemplary embodiment upward.
1 Drive
2 Switching device
3 Contact system
4 Fixed contact
5 Moving contact
6 Fixed contact connector pin
7 First connector
8 Moving contact connector pin
9 Second connector
10 Flexible segment
11 Force initiation element
12 Actuator
13 Transmission means
14 Electromagnet
15 Coil
16, 17 Connectors
18 Armature
19 Deactivation spring
20 First bearing
21 Counter bearing
22 Rotatably supported rod
23 Staged profile
24 Actuation rod
25 Contact pressure spring
26 Isolating segment
27 Coupling segment
28 Lower level
29 Upper level
30 Latching stage
31 Latching stage
32 Intermediate level
Number | Date | Country | Kind |
---|---|---|---|
102011078659.7 | Jul 2011 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/061340 | 6/14/2012 | WO | 00 | 2/21/2014 |