This application claims priority to Japanese Patent Application No. 2004-309547 filed in the Japanese Patent Office on Oct. 25, 2004, the entire contents of each of which is herein incorporated by reference.
1. Field of the Invention
The present invention relates to a drive force transmitting mechanism including two gears that rotate while being engaged with each other, in which one of the gears that is movably supported is configured to contact and separate from the other gear. The present invention also relates to an image forming apparatus including the drive force transmitting mechanism.
2. Discussion of the Related Art
A drive force transmitting mechanism that rotates a drive gear and a driven gear while being engaged with each other to transmit a drive force from the drive gear to the driven gear has been widely used. For example, in an image forming apparatus such as a copying machine, a facsimile machine, a laser beam printer, or other similar image forming apparatus, in which a drive motor acting as a drive source is fixed to a case of the image forming apparatus, a driven unit including a photoreceptor and a developing device, for example, is slidably supported in the case such that the driven unit is detachably attached to the case. In this image forming apparatus, a driven gear provided in the driven unit contacts and separates from a drive gear provided to the case of the image forming apparatus by a sliding movement of the driven unit. In another image forming apparatus described in Published Japanese patent application No. 11-119583, a cover mounted with driven elements such as pairs of sheet conveyor rollers is configured to be opened and closed relative to a case of the image forming apparatus to which a motor is fixed. In this image forming apparatus, a driven gear provided to the cover contacts and separates from a drive gear provided to the case of the image forming apparatus by opening and closing the cover.
In these image forming apparatuses, the following forces are exerted on the movable driven gear at a position where the drive gear and the driven gear rotate while being engaged with other, in reaction to the rotations of the drive gear and the driven gear. For example, a force for further intruding the driven gear into the drive gear and a force for moving the driven gear away from the drive gear are exerted on the driven gear. If the driven gear excessively intrudes into the drive gear, the drive gear and the driven gear are locked. If the driven gear moves away from the drive gear, a distance between an axial center of the drive gear and an axial center of the driven gear increases, thereby making the rotational speed of the driven gear unstable.
To prevent an excessive intrusion of a driven gear into a drive gear, a drive force transmitting mechanism including a disk portion has been used. Specifically, the disk portion is provided to at least one of the drive gear and the driven gear such that the disk portion and a gear portion of the at least one of the drive gear and the driven gear are disposed side by side in the rotational axial direction of the at least one of the drive gear and the driven gear. The disk portion has a diameter greater than that of the gear portion. In this drive force transmitting mechanism, an excessive approach of one of the gears (first gear) to the other gear (second gear) is prevented by abutting the disk portion provided to the first gear against a shaft member that supports the second gear. However, in this drive force transmitting mechanism, if the disk portion provided to the first gear is abutted against the shaft member that supports the second gear, the rotation of the first gear may be hampered, thereby increasing a drive torque of a drive motor acting as a drive source.
Further, to prevent a movement of a driven gear away from a drive gear, a drive force transmitting mechanism, in which a movable support element that supports the driven gear and its shaft member is biased toward the drive gear with a spring, has been used. In this drive force transmitting mechanism, the movement of the driven gear away from the drive gear is hampered by the biasing force of the spring. By doing so, the driven gear may stably rotate in the vicinity of the drive gear. However, in this drive force transmitting mechanism, the movement of the driven gear away from the drive gear may not be securely prevented for the following reasons.
Generally, in a configuration in which the driven gear is configured to be movable with the support element that supports the driven gear, a loose movement of the support element is allowed to slide or open/close the support element smoothly. With the loose movement of the support element, the support element can move within a predetermined range in a direction (hereafter referred to as “a loosing direction”) different from a sliding direction or an opening/closing direction of the support element. In this loose movement of the support element, the support element that supports the driven gear which rotates while being engaged with the drive gear, typically moves away from the drive gear in the loosing direction as well as in the sliding direction or the opening/closing direction. Thus, even if the movement of the support element in the sliding direction or the opening/closing direction can be prevented with the biasing force of the spring, the movement of the support element in the loosing direction may not be hampered. Even if the movement of the support element in the loosing direction can be prevented with biasing forces of a plurality of springs, the movement of the support element may not be adequately prevented if the biasing forces of the springs get weakened due to the deterioration of the springs.
The above-described problems may similarly occur when a drive roller moves relative to a driven roller, that is, the drive roller contacts and separates from the driven roller.
Therefore, it is desirable to provide a drive force transmitting mechanism that prevents an excessive intrusion of a movable second gear into a first gear while controlling the increase of a drive torque of a drive source, and that prevents the movement of the second gear away from the first gear engaged with the second gear.
According to an aspect of the present invention, a drive force transmitting mechanism includes a first gear rotatably supported by a first shaft element, and a first holding unit configured to hold the first gear. The first holding unit includes the first shaft element, and a first support element configured to support the first shaft element. The first support element includes a curved surface that curves at a predetermined curvature relative to an axis line of the first shaft element. The drive force transmitting mechanism further includes a second gear rotatably supported by a second shaft element, and a second holding unit configured to hold the second gear. The second holding unit includes the second shaft element, and a second support element configured to support the second shaft element. The second holding unit is configured to move relative to the first holding unit, to thereby contact and separate the second gear with and from the first gear. A drive force is transmitted from the first gear to the second gear that is engaged with the first gear when the second holding unit moves to a predetermined position, and a movement of the second gear held by the second holding unit is regulated by abutting the second shaft element against the curved surface.
According to another aspect of the present invention, an image forming apparatus includes a visual image recording device configured to record a visual image on a recordings material, a conveyor device configured to convey the recording material to the visual image recording device, a drive source configured to produce a drive force, and the above-described drive force transmitting mechanism configured to transmit the drive force from the drive source to the conveyor device.
A more complete appreciation of the present invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description of non-limiting embodiments when considered in connection with the accompanying drawings, wherein:
Non-limiting embodiments of the present invention are now described with reference to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views. The present invention is applied to a tandem-type color laser printer (hereafter referred to as a “printer”) as a non-limiting example of an image forming apparatus, in which a plurality of image forming units (including drum-shaped photoreceptors) are arranged along an intermediate transfer belt as an intermediate transfer element in the direction of movement of the intermediate transfer belt.
The charging device 4Y uniformly charges the surface of the photoreceptor 2Y driven to rotate in a clockwise direction in
The developing device 5Y includes a first developer container section 8Y in which a first developer conveying screw 7Y is disposed. The developing device 5Y further includes a second developer container section 13Y in which a toner density sensor 9Y (hereafter referred to as a “T sensor”) formed from a magnetic permeability sensor, a second developer conveying screw 10Y, a developing roller 11Y, and a doctor blade 12Y are disposed. The first developer container section 8Y and the second developer container section 13Y include a two-component yellow developer (not shown) containing magnetic carrier and negatively charged yellow toner. The first developer conveying screw 7Y conveys the yellow developer in the first developer container section 8Y from a front side to a rear side in
The T sensor 9Y attached onto a bottom portion of the second developer container section 13Y is configured to detect a density of yellow toner in the yellow developer. A developing roller 11Y is disposed at an upper portion of the second developer conveying screw 10Y in
The T sensor 9Y outputs a voltage value corresponding to the magnetic permeability of the yellow developer conveyed by the second developer conveying screw 10Y. Because the magnetic permeability of the yellow developer is in correlation with the toner density of the developer, the T sensor 9Y outputs a voltage value corresponding to the density of yellow toner. The data of the voltage value output from the T sensor 9Y is transmitted to a control device (not shown). The control device includes a storage device, such as a random-access memory (RAM). The storage device stores data of respective target output voltage values (Vtref) of the T sensors provided in the process units 1Y, 1M, 1C, and 1K, respectively. In the case of using yellow toner, the control device compares the voltage value output from the T sensor 9Y with the target output voltage value (Vtref). Then, the control device drives a yellow toner cartridge 90Y (described below) for a predetermined period of time based on the comparison result. Thereby, the yellow toner accommodated in the yellow toner cartridge 90Y is supplied into the developing device 5Y. Thus, the density of yellow toner in the developer in the developing device 5Y is maintained within a predetermined range by supplying an adequate amount of yellow toner into the developer in which the yellow toner is consumed in a developing process. Such a toner supply control is similarly performed in each of developing devices 5M, 5C, and 5K other than the developing device 5Y in the process units 1M, 1C, and 1K.
The yellow toner image formed on the photoreceptor 2Y is transferred onto an intermediate transfer belt 41 (described below). After image transfer, the drum cleaning device 3Y removes residual toner remaining on the surface of the photoreceptor 2Y, and then the photoreceptor 2Y is uniformly discharged by the discharging device (not shown) to be prepared for a next image forming operation. Similarly to the process unit 1Y, a magenta toner image, a cyan toner image, and a black toner image are formed on the photoreceptors 2M, 2C, and 2K in the process units 1M, 1C, and 1K, respectively, and are sequentially transferred onto the intermediate transfer belt 41.
The laser writing unit 20 is disposed below the process units 1Y, 1M, 1C, and 1K and includes a laser light source (not shown), a polygon mirror 21, f-theta lenses, reflection mirrors, etc. The laser writing unit 20 irradiates the surface of each of the photoreceptors 2Y, 2M, 2C, and 2K with an optically modulated and deflected laser beam “L”, thereby forming an electrostatic latent image on the surface of each of the photoreceptors 2Y, 2M, 2C, and 2K. Instead of using the laser writing unit 20, laser writing may be performed by using light-emitting diode (LED) arrays.
The printer includes a first sheet feeding cassette 31 and a second sheet feeding cassette 32 below the laser writing unit 20. Each of the first and second sheet feeding cassettes 31 and 32 accommodates a stack of transfer sheets P as recording materials. Further, each of a first sheet feeding roller 31a and a second sheet feeding roller 32a presses against the uppermost transfer sheet P. When the first sheet feeding roller 31a or the second sheet feeding roller 32a is driven to rotate in the counter-clockwise direction in
A transfer unit 40 is disposed above the process units 1Y, 1M, 1C, and 1K, and includes the endless intermediate transfer belt 41. The intermediate transfer belt 41 contacts the photoreceptors 2Y, 2M, 2C, and 2K and forms four transfer nip parts between the intermediate transfer belt 41 and the photoreceptors 2Y, 2M, 2C, and 2K. The transfer unit 40 further includes a belt cleaning unit 42, a first bracket 43, a second bracket 44, four primary transfer rollers 45Y, 45M, 45C, and 45K, a secondary transfer back-up roller 46, a drive roller 47, an auxiliary roller 48, and a tension roller 49. The intermediate transfer belt 41 is spanned around these eight rollers, and is rotated in a counter-clockwise direction indicated by the arrow in
A yellow toner image formed on the photoreceptor 2Y is primarily transferred onto the intermediate transfer belt 41 under the influence of the primary transfer electric field and a nip pressure in a primary transfer region. Then, a magenta toner image formed on the photoreceptor 2M, a cyan toner image formed on the photoreceptor 2C, and a black toner image formed on the photoreceptor 2K are sequentially transferred onto the intermediate transfer belt 41 and are each superimposed on the yellow toner image. As a result, a superimposed four-color toner image is formed on the intermediate transfer belt 41.
The secondary transfer back-up roller 46 of the transfer unit 40 contacts a secondary transfer roller 50 via the intermediate transfer belt 41, thereby forming the secondary transfer nip part. A secondary transfer bias is applied to the secondary transfer roller 50 from a power supply (not shown). The superimposed four-color toner image formed on the intermediate transfer belt 41 enters the secondary transfer nip part by the movement of the intermediate transfer belt 41. The registration rollers 35 feed out the transfer sheet P toward the secondary transfer nip part at a timing such that the transfer sheet P contacts the superimposed four-color toner image on the intermediate transfer belt 41 at the secondary transfer nip part. Subsequently, the superimposed four-color toner image is secondarily transferred onto the transfer sheet P under the influence of the secondary transfer bias and a nip pressure in a secondary transfer region. As a result, a full-color image is formed on the transfer sheet P. The transfer sheet P having the full-color image is conveyed to a fixing device 60.
The belt cleaning unit 42 removes residual toner remaining on the surface of the intermediate transfer belt 41, which has passed through the secondary transfer nip part. The belt cleaning unit 42 contacts the intermediate transfer belt 41 while being backed up by the drive roller 47.
The fixing device 60 is disposed above the secondary transfer region, and includes a pressure roller 61 and a fixing belt unit 62. In the fixing belt unit 62, a fixing belt 64 spanning a heating roller 63, a tension roller 65, and a drive roller 66 rotates in the direction indicated by the arrow in
An open/close unit 100 is provided on a right side surface of the case of the main body of the printer in
In each of the first sheet feeding cassette 31 and the second sheet feeding cassette 32, the transfer sheet P is stacked such that the first-side surface of the transfer sheet P faces upward in the vertical direction. In the sheet conveying path 33 leading to the secondary transfer nip part, the transfer sheet P is conveyed such that its first-side surface faces leftward in
In the both-side printing mode, color images are formed on both sides of the transfer sheet P by a so-called switchback method. Specifically, the sheet discharging rollers 67 start to rotate in the reverse direction immediately before the trailing edge of the transfer sheet P having passed through the fixing device 60 enters the nip part between the sheet discharging rollers 67. By doing so, the transfer sheet P is conveyed downward such that the trailing edge of the transfer sheet P is switched to the leading edge of the transfer sheet P, and enters the reverse conveyor path 101 of the open/close unit 100. In the reverse conveyor path 101, there are provided the first reverse conveyor roller 102, the first reverse driven roller 103, the second reverse conveyor roller 104, the second reverse driven roller 105, the third reverse driven roller 106, and the dual-purpose roller 107. The transfer sheet P entered in the reverse conveyor path 101 is conveyed from the upper side to the lower side in the vertical direction. When the leading edge of the transfer sheet P reaches the end portion of the reverse conveyor path 101, the transfer sheet P proceeds along a curved portion of the path 101 and is conveyed upward in the vertical direction, that is, a sheet conveying direction is reversed. Then, the transfer sheet P is discharged from the reverse conveyor path 101, and is directed to the registration rollers 35 provided on the sheet conveying path 33 in the main body of the printer. The transfer sheet P conveyed again to the registration rollers 35 passes through the secondary transfer nip part such that the second-side surface of the transfer sheet P faces leftward in
The manual sheet feeding tray 109 that manually feeds the transfer sheet P is rotatably provided around a tray rotation shaft 109a which is provided in the open/close unit 100. By rotating the manual sheet feeding tray 109, the manual sheet feeding tray 109 is opened and closed relative to the open/close unit 100. The manual sheet feeding roller 110 press-contacts a top sheet of a stack of the transfer sheets P (not shown) set on the manual sheet feeding tray 109 that is in an opened position. By rotating the manual sheet feeding roller 110, the top sheet of the stack of the transfer sheets P on the manual sheet feeding tray 109 is fed out to the manual sheet feeding path 111. Subsequently, the top sheet is discharged from the open/close unit 100 through the manual sheet feeding path 111 and is conveyed to the registration rollers 35 provided on the sheet conveying path 33 in the main body of the printer.
In the open/close unit 100, the double-purpose roller 107 acts as a conveyor roller in the reverse conveyor path 101 in a reverse conveyance mode and acts as a conveyor roller in the manual sheet feeding path 111 in a manual sheet feeding mode. Specifically, when the double-purpose roller 107 acts as a conveyor roller in the reverse conveyor path 101, the double-purpose roller 107 is driven to rotate in the counter-clockwise direction in
In the above-described printer according to the embodiment of the present invention, a visual image recording device that records a visual image such as a toner image on the transfer sheet P as a recording material, is configured by the four process units 1Y, 1M, 1C, and 1K, the laser writing unit 20, the transfer unit 40, etc. Further, a conveyor device that conveys the transfer sheet P to the visual image recording device is configured by the plural pairs of the sheet conveying rollers 34, the registration rollers 35, the open/close unit 100, etc.
In the above-described embodiment of the present invention, the printer uses a two-component developer including toner and magnetic carrier for development. However, even if the printer uses a one-component developer including toner, similar effects may be obtained.
Next, a characteristic configuration of the printer according to the embodiment of the present invention will be described.
The relay rotary member 114 is formed from a cylindrical main body made of a plastic material including a shaft hole (not shown) at its shaft center portion. A relay stud 115 acting as a swing shaft is made of a metal material. The relay stud 115 is inserted through the shaft hole of the relay rotary member 114 to support the relay rotary member 114, and is fixed on the right side plate 112. The relay rotary member 114 slidably rotates on the circumferential surface of the relay stud 115. The relay rotary member 114 includes a gear portion 114a having a plurality of teeth and a pulley portion 114b with a V-shaped groove formed on the circumferential surface thereof. The gear portion 114a and the pulley portion 114b are disposed side by side in the rotational axial direction of the relay rotary member 114. The gear portion 114a engages the second gear 113. The V-shaped groove of the pulley portion 114b engages a relay belt 116 having a V-shaped cross section stretched around a part of the pulley portion 114b.
The relay stud 115 supports a swing bracket 117 as well as the relay rotary member 114. The swing bracket 117 is configured to swing around the relay stud 115 acting as the swing shaft. When any member does not contact the second gear 113, the swing bracket 117 is configured to be located at a predetermined position by being pulled by a coil spring 118 whose one end is attached to the swing bracket 117. As a non-limiting example, the diameter of one end portion of the relay stud 115 is made greater than that of other portions thereof in its longitudinal direction, thereby preventing the drop of the relay rotary member 114 from the relay stud 115.
The second gear 113 is configured to engage a first gear 74 (described below) provided in the main body of the printer, thereby receiving a drive force from a drive source (described below) in the main body of the printer. The second gear 113 transmits the drive force to various types of rotary members in the open/close unit 100. The second gear 113 is formed from a cylindrical main body made of a plastic material including a shaft hole (not shown) at its shaft center portion. A second stud 119 acting as a second shaft element is made of a metal material. The second stud 119 is inserted through the shaft hole of the second gear 113 to support the second gear 113 and is fixed on the swing bracket 117 in a protruding condition. The second stud 119 may be molded integral with the swing bracket 117 or may be attached onto the swing bracket 117 as a separate member. The second gear 113 slidably rotates on the circumferential surface of the second stud 119 while engaging the gear portion 114a of the relay rotary member 114. As similarly to the relay stud 115, the diameter of one end portion of the second stud 119 is made greater than that of other portions thereof in its longitudinal direction, thereby preventing the drop of the second gear 113 from the second stud 119.
A second reverse conveyor pulley 120 with a V-shaped groove formed on the circumferential surface thereof is fixed on one end portion of the shaft 104a of the second reverse conveyor roller 104 (shown in
As illustrated in
A dual-pulley 123 including a first pulley portion 123a and a second pulley portion 123b is fixed on the end portion of the shaft 104a of the second reverse conveyor roller 104 on the front side of the printer. A first relay belt 124 having a V-shaped cross section is stretched around a part of the first pulley portion 123a, and a second relay belt 125 having a V-shaped cross section is stretched around a part of the second pulley portion 123b.
A first reverse conveyor pulley 126 is fixed on the end portion of the shaft 102a of the first conveyor roller 102 on the front side of the printer. The first relay belt 124 is also stretched around a part of the first reverse conveyor pulley 126, thereby transmitting a drive force between the dual-pulley 123 and the first reverse conveyor pulley 126.
A dual-purpose roller pulley 127 is fixed on the end portion of the shaft 107a of the dual-purpose roller 107 on the front side of the printer. The second relay belt 125 is also stretched around a part of the dual-purpose roller pulley 127, thereby transmitting a drive force between the dual-pulley 123 and the dual-purpose roller pulley 127.
A dual-purpose roller gear 128 is fixed on the other end portion of the shaft 107a of the dual-purpose roller 107 on the rear side of the printer. A drive force is transmitted to the manual sheet feeding roller 110 (shown in
When the second gear 113 provided in the open/close unit 100 receives a drive force from the drive source in the main body of the printer by engaging the first gear 74 (described below) provided in the main body of the printer, the rotational drive force of the second gear 113 is sequentially transmitted to the relay rotary member 114 and the second reverse conveyor pulley 120, thereby rotating the second reverse conveyor roller 104. Further, the second reverse driven roller 105 is rotated by the second reverse conveyor roller 104.
When the second reverse conveyor roller 104 rotates, the dual-pulley 123, which is located on the front side of the printer, rotates, thereby moving the first relay belt 124 and the second relay belt 125. Then, a drive force is transmitted from the first relay belt 124 to the first reverse conveyor pulley 126, thereby rotating the first reverse conveyor roller 102. As a result, the first reverse driven roller 103 is rotated by the first reverse conveyor roller 102. Further, a drive force is transmitted from the second relay belt 125 to the dual-purpose roller pulley 127, thereby rotating the dual-purpose roller 107. As a result, the third reverse driven roller 106 and the manual conveyor roller 108 are rotated by the dual-purpose roller 107.
As described above, the drive force received by the second gear 113 from the main body side of the printer is sequentially transmitted to the rollers in the open/close unit 100. In the open/close unit 100, a second holding unit configured to hold the second gear 113 is configured by the second stud 119 acting as the second shaft element, and the swing bracket 117/the right side plate 112 acting as a second support element that supports the second stud 119.
The first gear 74 provided in the main body of the printer is formed from a cylindrical main body made of a plastic material including a shaft hole (not shown) at its shaft center portion. The first stud 73 is inserted through the shaft hole of the first gear 74 to support the first gear 74. The first gear 74 includes a gear portion having a plurality of teeth and a pulley portion with a V-shaped groove formed on the circumferential surface thereof. The gear portion and the pulley portion are disposed side by side in the rotational axial direction of the first gear 74. The drive belt 75 is stretched around a part of the V-shaped groove of the pulley portion of the first gear 74. When the drive pulley 72 rotates at the leading edge portion of the motor shaft 71a of the open/close unit motor 71, the drive force of the open/close unit motor 71 is transmitted from the drive pulley 72 to the first gear 74 via the drive belt 75. As a result, the first gear 74 slidably rotates on the first stud 73.
In the printer having the above-described configuration, a first holding unit that holds the first gear 74 is configured by the first stud 73 acting as the first shaft element and the right side plate 80 acting as a first support element that supports the first stud 73. The second gear 113 contacts and separates from the first gear 74 by moving the second gear 113 by opening and closing the open/close unit 100. Thus, in the printer according to the embodiment of the present invention, a drive force transmitting mechanism that causes the second gear 113 to contact and separate from the first gear 74 is configured by the first gear 74, the first stud 73, the right side plate 80 of the case of the main body of the printer, the second gear 113, the second stud 119, and the swing bracket 117/the right side plate 112 of the open/close unit 100.
As described above, the open/close unit 100 is opened and closed relative to the case of the main body of the printer by rotating the open/close unit 100 around the unit rotation shaft 100a (shown in
When the unit rotation shaft 100a of the open/close unit 100 is located below on the vertical of the first stud 73, the second gear 113 gradually approaches the first gear 74 by closing the open/close unit 100 as shown by the dotted lines in
To address this problem, in the printer of the present embodiment, as illustrated in
For a method of rotating the swing bracket 117 by the closing operation of the open/close unit 100, the abutment of the second gear 113 against the first gear 74 may be used. As described above, it is set that the second gear 113 abuts the first gear 74 by the closing operation of the open/close unit 100 before the open/close unit 100 is securely closed. When the second gear 113 abuts the first gear 74, the coil spring 118, which holds and halts the swing bracket 117 at a predetermined position by the stopper, is pulled downward in
The second gear 113 properly engages the first gear 74 as described above. However, the following problems, such as away-movement and intruding movement of the second gear 113 may arise. Specifically, the rotational direction of the open/close unit motor 71 (shown in
When the first gear 74 is rotated in the counter-clockwise direction in
When the first gear 74 is rotated in the clockwise direction in
For these reasons, in the printer of the present embodiment, the away-movement and intruding movement of the second gear 113 are regulated by a regulating guide member. Specifically, with reference to
The away-movement regulating guide portion 81b stands at a position where the intruding movement regulating guide portion 81a is interposed between the first gear 74 and the away-movement regulating guide portion 81b. The intruding movement regulating guide portion 81a includes a convex curved surface 81a1 that curves at a predetermined curvature relative to the axis line of the first stud 73. The convex curved surface 81a1 is located at around one end portion of the intruding movement regulating guide portion 81a facing the away-movement regulating guide portion 81b, that is, at a position immediately below the first gear 74. The convex curved surface 81a1 is in the shape of an arc concentric with the first stud 73. The convex curved surface 81a1 is curved outward in a direction away from the first stud 73. The away-movement regulating guide portion 81b includes a concave curved surface 81b1 that curves at a predetermined curvature relative to the axis line of the first stud 73. The concave curved surface 81b1 is located at around one end portion of the away-movement regulating guide portion 81b facing the intruding movement regulating guide portion 81a, that is, at a position immediately below the first gear 74. The concave curved surface 81b1 is also in the shape of an arc concentric with the first stud 73. The concave curved surface 81b1 is curved outward in a direction away from the first stud 73.
When the closing operation of the open/close unit 100 is almost completed and when the second gear 113 moves to a position where the second gear 113 may appropriately engage the first gear 74 by the closing operation of the open/close unit 100, the circumferential surface of the end portion of the second stud 119 abuts the convex curved surface 81a1 of the intruding movement regulating guide portion 81a. By this abutment, the additional intrusion of the second gear 113 into the first gear 74 is prevented. Subsequently, the swing bracket 117 gradually rotates in the clockwise direction in
When the open/close unit 100 is securely closed, the second stud 119 and the second gear 113 are located at the position immediately below the first stud 73. The upper side circumferential surface of the end portion of the second stud 119 located immediately below the first stud 73 abuts the convex curved surface 81a1 of the intruding movement regulating guide portion 81a with its end portion biased by the coil spring 118 (shown in
When the open/close unit 100 is securely closed, an engagement claw (not shown) of the open/close unit 100 engages a pin (not shown) of the case of the main body of the printer, and thereby the open/close unit 100 is locked. The movement of the second stud 119 in the opening/closing direction of the open/close unit 100 is regulated by this lock. However, the movement of the second stud 119 in a direction different from the opening/closing direction of the open/close unit 100, such as a loosing direction of the open/close unit 100, and the swing direction of the swing bracket 117, may not be regulated by this lock. In the printer of the present embodiment, the regulating guide member 81 regulates the movement of the second stud 119 and the second gear 113 in such a direction different from the opening/closing direction of the open/close unit 100.
When the open/close unit motor 71 is rotated in a forward direction under the condition that the open/close unit 100 is closed, the first gear 74 is driven to rotate in the clockwise direction in
When the open/close unit motor 71 is rotated in a reverse direction under the condition that the open/close unit 100 is closed, the first gear 74 is driven to rotate in the counter-clockwise direction in
As described above, the circumferential surface of the end portion of the second stud 119 abuts the convex curved surface 81a1 and the concave curved surface 81b1. The second stud 119 is unrotatably fixed on the swing bracket 117 in a protruding condition. Further, the second gear 113 rotates on the circumferential surface of the second stud 119 which cannot rotate. In this configuration, even if the second stud 119 strongly abuts the convex curved surface 81a1 and the concave curved surface 81b1, the rotation of the second gear 113 which rotates on the circumferential surface of the second stud 119 may not be hampered. Thus, it can prevent the increase of the drive torque of the open/close unit motor 71 caused by interference of the rotation of the second gear 113 due to the strong abutment of the second stud 119 which may rotate together with the second gear 113, against the convex curved surface 81a1 and the concave curved surface 81b1.
With reference to
With reference further to
As described above, the right side plate 80 of the case of the main body of the printer is made of a metallic material, such as iron, aluminum, etc. By using the metallic material, the right side plate 80 may have a high rigidity. In contrast, the regulating guide member 81 fixed on the right side plate 80 is made of polyacetal resin instead of a metallic material. In view of cost reduction, the regulating guide member 81 may be preferably formed from the same material as that of the right side plate 80 and may be molded integral with the right side plate 80. However, in the printer of the present embodiment, the regulating guide member 81 is made of a material such as polyacetal resin, different from that of the right side plate 80 for the following reasons. As described above, the end portion of the second stud 119 slidably contacts the convex curved surface 81a1 of the regulating guide member 81 by the opening and closing operations of the open/close unit 100. To smoothly opening and closing the open/close unit 100 even if the end portion of the second stud 119 slidably contacts the convex curved surface 81a1, a frictional force between the second stud 119 and the convex curved surface 81a1 may be preferably decreased. If the regulating guide member 81 is made of a metallic material having a relatively high coefficient of friction, a large frictional force is produced between the convex curved surface 81a1 and the second stud 119. Accordingly, a lubricant may be preferably applied to the convex curved surface 81a1 at regular intervals to reduce the frictional force. Such an application of lubricant typically degrades the maintenance of the printer. For these reasons, the regulating guide member 81 is made of polyacetal resin in the printer of the present embodiment. By forming the regulating guide member 81 from the material having a low coefficient of friction, the second stud 119 can slidably contact the convex curved surface 81a1 smoothly without applying a lubricant to the convex curved surface 81a1.
When forming the regulating guide member 81 from a material different from that of the right side plate 80, the regulating guide member 81, which has been manufactured by a process different from that of the right side plate 80, needs to be fixed on the right side plate 80. For fixing the regulating guide member 81 on the right side plate 80, attachment reference positions of the regulating guide member 81 relative to the right side plate 80 are set for the right side plate 80 and the regulating guide member 81, respectively. For example, if the regulating guide member 81 is fixed on the right side plate 80 with a plurality of screws, through-holes corresponding to the screws are provided in the regulating guide member 81, and screw holes corresponding to the screws are provided in the right side plate 80. However, position displacements inevitably occur among the through-holes of the regulating guide member 81 and the screw holes of the right side plate 80 due to the limit of the accuracy of manufacturing. For these reasons, if the inside diameter of each of the through-holes of the regulating guide member 81 is set to almost the outside diameter of the screw, some of the screws passing through the through-holes cannot fit to the positions of the screw holes in the right side plate 80. Therefore, generally, each inside diameter of one or a small number of the through-holes is set to be equal to the outside diameter of the screw, and each of the other through-holes is set to have an inside diameter greater than the outside diameter of the screw. In this configuration, the position of the screw can be adjusted in the hole. Further, in this configuration, each position of one or a small number of the through-holes becomes an attachment reference position in the regulating guide member 81 (hereafter referred to as a “reference through-hole”). Further, each position of the screw holes corresponding to the reference through-hole becomes an attachment reference position in the right side plate 80 (hereafter referred to as a “reference screw hole”).
However, the above-described setting of the attachment reference positions is not preferable for the following reasons. In the configuration shown in
In the printer of the present embodiment, each of the attachment reference positions of the regulating guide member 81 and the right side plate 80 is set to the axis line of the first stud 73. Specifically, as illustrated in
In the above-described printer, the second stud 119 is swingably supported around the relay stud 115. Alternatively, the second stud 119 may be moved along the rotation locus indicated by the alternate long and short dashed lines in
The above-described drive force transmitting mechanism may be used for transmitting a drive force of a motor provided in the main body of the printer to any unit including a drive force transmitting system having a gear that receives the drive force of the motor, such as the process units 1Y, 1M, 1C, and 1K which are detachably attached to the main body of the printer.
As an alternative example, the drive force transmitting system may be provided to a side case of one of the process units 1Y, 1M, 1C, and 1K, and the drive force of the motor 171 received by the drive force transmitting system of the one of the process units 1Y, 1M, 1C, and 1K may be transmitted to the other process units by using a drive force transferring mechanism including a gear train, for example.
Further, instead of accommodating the photoreceptor, the drum-cleaning device, the discharging device, the charging device, and the developing device in the process unit, the photoreceptor and the developing device may be independently attached to and detached from the main body of the printer. In this case, as illustrated in
The present invention has been described with respect to the exemplary embodiments illustrated in the figures. However, the present invention is not limited to these embodiments and may be practiced otherwise.
In the above-described embodiment, the regulating guide member 81 including the convex curved surface 81a1 and the concave curved surface 81b1 is fixed on the right side plate 80 as a separate member. Alternatively, as illustrated in
The present invention has been described with respect to a printer as an example of an image forming apparatus that forms images by an electrophotographic method. However, the present invention may be applied to an image forming apparatus that forms images by other methods, such as an imaging method using toner jet, an inkjet method, a thermal method, etc.
The present invention has been described with respect to a printer as an example of an image forming apparatus. However, the present invention may be applied to other image forming apparatuses, such as a copying machine, a facsimile machine, a multi-functional image forming apparatus, etc.
Further, in place of the full-color printer, a mono-color printer may also be used.
Moreover, in place of a tandem-type image forming apparatus including a plurality of photoreceptors, the present invention may be applied to an image forming apparatus including one photoreceptor on which toner images of different colors are sequentially formed.
Numerous additional modifications and variations of the present invention are possible in light of the above teachings. It is therefore understood that within the scope of the appended claims, the present invention may be practiced other than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2004-309547 | Oct 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5484140 | Hirose et al. | Jan 1996 | A |
5689764 | Fukuchi et al. | Nov 1997 | A |
5771433 | Kimijima et al. | Jun 1998 | A |
5848334 | Kamola | Dec 1998 | A |
6801737 | Yanagida | Oct 2004 | B2 |
Number | Date | Country |
---|---|---|
11-119583 | Apr 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20060088340 A1 | Apr 2006 | US |