This disclosure generally relates to integrating a dampener with a drive hub that engages a shade tube and/or a brake hub.
With reference to
The hub 110 may engage a shade tube 105. When a user pulls a shade too quickly and it reaches an end limit, a bead stop on the chain hits the bracket 125 housing and stops suddenly, which occasionally leads to the chain snapping. In particular, the chain sometimes breaks because the clutch does not close immediately, so the momentum of the shade tube 105 and fabric back-drives from the shade tube 105, through the drive hub 110, through the brake (which has not closed yet), into the sprocket 130, and causes excessive forces on the chain. In addition to chain breakage, the system may experience damage to the clutch, sprocket 130, chain, bead-stop, and/or housing of a drive bracket 125 due to excessive rotational speed of a shade being raised or lowered.
Systems and methods are disclosed for an improved roller shade system that provides increased support, additional adjustments and/or increased safety. In various embodiments, the system may include a window shade system may comprise a slip plate engaged with a drive mechanism, wherein the drive mechanism rotates forward in response to the slip plate disengaging from the drive mechanism. The slip plate may re-engage with the drive mechanism after a predetermined rotation of the drive mechanism. The slip plate may include one or more protrusions (e.g., knuckles) that engage with one or more slots in the drive mechanism. The slip plate may include one or more protrusions that disengage from one or more slots in the drive mechanism, and wherein the drive mechanism rotates forward in response to the one or more protrusions disengaging from the one or more slots in the drive mechanism. The drive mechanism may comprise an actuator (or brake hub).
In various embodiments, a window shade system may comprise a drive hub having a dampener (e.g., tube adapter) comprised of dampening material, wherein the drive hub engages with at least one of a shade tube and/or a brake hub. The dampener may include one or more tabs that engage the brake hub. The dampener may be configured to dampen the torque from a spinning of the shade tube. The dampener may be comprised of urethane. The dampener may be incorporated onto an outside surface of the drive hub. The dampener may be located within the drive hub. The drive hub may be at least partially hollow. The drive hub may be in the form of a cap that fits over the dampener. The drive hub may include rounded corners. The dampener may be configured in the form of a cylindrical rod. The dampener may comprise four rods. The dampener may be located around a shaft that may be received by the drive hub. A first end of the dampener interfaces with an actuator. A spacer may be located next to the dampener. A spacer may be located next to the dampener, and wherein the spacer includes a slit. A spacer may be located between two dampeners. The drive hub may be in the form of a cap that fits over the dampener and one or more spacers.
A sprocket may have a back wall that engages with an element that is concentric with a sun gear. The concentric element may be a flange comprising a non-tooth portion of the sun gear.
In various embodiments, a window shade system may comprise a shade band and a lock, wherein the lock is configured to restrict the shade band from unrolling. The unrolling may be in response to a clutch system being removed in a multi-banded shade system. The lock may be a slide lock that includes a first opening that allows rotation of the shade band and a second opening that restricts rotation of the shade band.
In various embodiments, a window shade system may comprise a multi-banded shade system having a support connector between each shade band, wherein the support connector is configured to retract to allow removal of the shade band. The support connector may comprise a first portion and a second portion, wherein the first portion retracts into the second portion. The support connector may be between a first shade tube and a second shade tube, wherein the support connector retracts by sliding into the first shade tube and out of the second tube.
In various embodiments, a window shade system may comprise a bracket having a first side and a second side; a drive shaft having a first portion that extends from the first side of the bracket and a second portion that extends from the second side of the bracket; a sprocket received by the drive shaft; a chain around the sprocket; a first shade tube engaged with the first portion of the drive shaft; and a second shade tube engaged with the second portion of the drive shaft.
In various embodiments, a window shade system may comprise a support connector; an adjustment arm having a first end, a middle portion and a second end, wherein the middle portion of the adjustment arm engages the support connector; and an adjustment screw engaging a first end of the adjustment arm, wherein in response to turning the adjustment screw, the adjustment arm rotates and adjusts the support connector. The adjustment screw may comprise a head with flat cuts, wherein upon rotation of the adjustment screw, the flat cuts provide tactile and audible feedback. The adjustment screw may comprise a head with flat cuts, wherein the flat cuts prevent back-rotation of the adjustment screw.
In various embodiments, a window shade system may comprise shade fabric with a first end and a second end; a rod that includes the second end of the shade fabric rolled around the rod; and a hembar engaging the rod within the hembar, wherein turning the rod adjusts a position of the hembar relative to the fabric.
The accompanying drawings, wherein like numerals depict like elements, illustrate exemplary embodiments of the present disclosure, and together with the description, serve to explain the principles of the disclosure. In the drawings:
In various embodiments, and as set forth in
In proper operation, as initially set forth in
To help solve this problem, the system may include a slip plate 170 to avoid or minimize damage. In particular, with respect to
As mentioned above, when a user pulls a shade too quickly and it reaches an end limit, a bead stop on the chain hits the bracket 125 (or the bottom of the bracket housing) and stops suddenly, which occasionally leads to the chain snapping. In particular, the chain sometimes breaks because the clutch does not close immediately, so the momentum of the shade tube 105 and fabric back-drives from the shade tube 105 through any dampener, through the drive hub 110, through the brake (which has not closed yet), into the sprocket 130, and causes excessive forces on the chain. Such back-drive may occur in the milliseconds before the clutch can close the brake and stop the system. The back-drive is what causes the sprocket 130 to continue pulling on the chain after the chain stops on the bead stop, thereby breaking the chain. In other words, the shade tube 105 may still spin due to momentum and because the clutch may stay open for a fraction of a second, even after the bead on the chain hits the stop point. The spinning of the shade tube 105 (while the bead chain is stopped and before the clutch can lock) causes the sprocket to continue turning, imparting the rotational momentum of the tube system into the chain after it hits the bead stop, causing a shock that can break the chain. Other systems may include a bumper on the bead stop to act as a shock absorber, but such bumper placement typically is unsightly and/or the bumper placement gets in the way of various forms of chain guides.
As such, with respect to
In various embodiments, the dampener 160 may be incorporated inside the clutch mechanism to further dampen and prevent chain breakage. The dampeners 160 may be any dampening or soft material such as, for example, rubber or urethane. The dampener 160 may be any shape or size. The dampener 160 may be located anywhere on or around the bracket or clutch. In various embodiments, the dampener 160 may be sized and shaped to engage with different tube sizes and shapes. For example, the drive hub 110 is typically rigid (e.g., comprised of plastic), so the dampener 160 may be incorporated onto the outside of the drive hub 110 such that the dampener 160 provides a semi-rigid surface around the outside of the drive hub 110, which may result in improved dampening. The tube 105 fits over dampener 160. The dampener 160 may include a semi-rigid element that has a limited amount of flexibility. The dampener 160 may serve as a semi-rigid element of the drive hub 110 that may have a certain amount of shock absorption built into the element. When the clutch stops and the tube stops spinning, the dampener 160 may deform and dampen the sudden stop. However, including the dampener 160 on the outside of drive hub 110, while the tube 105 fits over the dampener 160, may cause the tube 105 to impact the dampener 160. In particular, the tube 105 is often a cut metal piece with sharp edges and corners. As such, tube 105 may scratch or deform dampener 160.
In various embodiments, with respect to
Dampener 160 may comprise any portion or all of the inside of the drive hub 110. Dampener 160 may be formed in any shape. One end of the dampener 160 may interface with the actuator. Dampener 160 may include any number of components or sub-parts. In various embodiments, dampener is in the form of one or more rods (cylinders or pegs). For example, dampener 160 may include 4 rods and the drive hub 110 in the form of a hub cap fits over the 4 rods. A first end of each of the rods may interface with the actuator and a second end of each of the rods may extend from the actuator. The 4 rods may be located on the actuator such that, when the hub cap is placed over the rods, each of the rods respectively interface with the hub cap at or near each of the inside corners of the hub cap. The shaft 115 may be located inside a hole 155 in the drive hub 110. The shaft 115 may also extend through the drive hub 110. As such, dampener 160 may be located on or near the outside of the shaft.
In various embodiments, spacers 162 may be placed between each of the rods. Spacers may be placed around the center opening. Dampener 160 may deform, but the spacers limit the maximum deflection of the dampener 160. If dampener 160 was allowed to deform too much, drive hub 110 could rotate beyond the drive hub 110 intended rotation. Spacers 162 also prevent drive hub 110 from slipping around dampener 160. Any portion of spacers 162 may be molded to brake hub 135 (or actuator). A first end of each of the spacers 162 may interface with (e.g., molded to) the actuator and a second end of each of the spacers 162 may extend away from the actuator. Each of the spacers 162 may be configured between each pair of rods such that the drive hub 110 fits over both the rods and spacers 162. Spacers 162 also help to center the cap of the drive hub 110 with respect to the actuator. Such spacers 162 may provide stability and maintain separation between each of the dampener 160 rods, while providing a cradle for dampener 160 rod to rest in. The spacers 162 may be comprised of any material such as, for example, plastic. Such spacers 162 may include a groove or slit, such that the spacers 162 may retract or expand, in response to rotation of drive hub 110. The top and bottom spacers 162 may be a lower height since the flat portions of drive hub 110 expand across the top and bottom spacers 162. Moreover, the spacers may be configured to avoid the drive hub 110 from rubbing against the spacers.
Shafts (drive shaft 115 and/or bearing shaft 135) and hubs (drive hub 110 and/or brake hub 135) may be composed of any material with frictional characteristics such that when the material is engaged with the spring, an increase in the inner diameter of the spring may allow the spring to rotate smoothly around drive hub 110. The shafts and/or hubs may, therefore, be composed of any suitable metal alloy or plastic. For example, in various embodiments, shafts and/or hubs may be composed of a self-lubricating metal, such as, sinterized steel with an oil impregnation. In various embodiments, shafts and/or hubs may be composed of a self-lubricating plastic material with sufficiently low coefficient of friction to allow smooth rotation of the spring, the plastic material being of sufficient hardness to resist the “grooving effect” that may be caused by the rotation of the spring. The “grooving effect” is the effect caused by the rotation of a spring around drive hub 110, wherein the spring cuts or wears tracks into the surface of drive hub 110. For example, a suitable plastic for drive hub 110 and/or brake hub 135 may be composed of a 5-10% Teflon in delryn, or a like plastic material. One of ordinary skill in the art will appreciate that the material chosen for drive hub 110 may impact the coefficient of friction between drive hub 110 and the spring, thereby effecting the level of drag friction which results from the rotation of the spring about drive hub 110. The clutch may include a wrap spring and the hubs and/or shafts may be oil impregnated, such as disclosed in U.S. Pat. No. 6,164,428 for “Wrap Spring Shade Operator”, which is hereby incorporated by reference in its entirety for all purposes.
As shown in
When multiple shades (e.g., 2-6 shade bands) are installed next to each other across a large window, each shade would typically need its own drive bracket 125 (with its own sprocket 130, chain, etc.) that controls the movement of the single shade. A shading system may also include a multi-banded system in which a multitude of individual shadebands are driven by a single manual drive chain or motor that interfaces with a first shade. A shade band may consist of a shade tube 105, dampeners 160, and a fabric band. The fabric band may comprise a spline (which may be welded to the top of the fabric) and the hembar 245 (which may be attached to the bottom of the fabric). In various embodiments, the system drives multiple shade bands through a single chain by using a support connector 210 (e.g., multi-band coupler between two shade bands). The support connector 210 fits within an accompanying bracket 125 between each shadeband. A single drive bracket 125 may be configured at one end of the group of shadebands being controlled. Pulling on the chain drives a first shadeband attached to the drive bracket 125, which is coupled to two or more shadebands, wherein each band is driven via a support connector 210 in a serial fashion from the first shadeband.
At times, one shade in the multi-banded system may need to be removed due to service or maintenance. However, if the shade band attached to the drive bracket (the bracket with the sprocket and clutch/brake mechanism) is removed, then all the shades may unroll because the clutch system at the drive bracket 125 is no longer restricting the shade tube 105 rotation. Moreover, if a second shade in a multi-banded system is removed, then the third shade, fourth shade, etc. may also unroll because, while the clutch system may still restrict the first shade, the clutch system is no longer restricting the shade tube 105 rotation in the subsequent shades. To prevent the shades from unrolling, some service people would tape the hembar 245 onto the rest of the window shade roll. However, the use of tape is often unreliable and requires additional time and effort to tape each individual shade. In various embodiments, the present system may allow an individual shade band in a multi-banded system to be removed without disturbing the rest of the bands in the system. Prior to a shade band being removed, any subsequent bands would be locked into place. The system may include a lock to prevent the shade tube 105 from unrolling when other shades in a multi-banded system are removed. The lock may be any device that restricts the rotation of the shade band and/or support connector 210. For example, a slide lock 240, a fork, pin or pawl that interfaces with the shade tube 105 and/or support connector 210. A slide lock 240 is shown in
Moreover, the center-support brackets 125 in a multi-banded system typically include a support connector 210 that goes through the center-support bracket 125, such that a first shade tube 105 interfaces with the support connector 210 on the first side of the bracket 125 and a second shade tube 105 interfaces with the same support connector 210 on the second side of the bracket 125. This arrangement may repeat for subsequent shades in a multi-banded system. Because of this arrangement, when service personnel needs to remove, for example, a third shade band, they first need to remove the first shade band and the second shade band in order to be able to remove the third. In various embodiments, the present system provides a support connector 210 configured to be removed or moved out of the way, such that any shade band can be removed, without needing to remove the other shade bands. For example, the center-support connector 210 may be comprised of two shafts that interface with each other at the middle of the center-support bracket 125. These halves can individually be retracted into its respective shade tube 105, thereby allowing the shade band to be removed independently. In another example, the system may have the support connector 210 be a single shaft that can slide into either the first shade tube 105 or the second shade tube 105 in their respective shade bands on either side of the center-support bracket 125.
There are times when obstacles in the room (e.g., couches, tables, desks, etc.) could be obstructing access to the chain used to operate the group of shades in a multi-band arrangement. The chain may be hidden behind a column or recess preventing easy access to the chain in order to operate the shade. As such, with respect to
In the past, installers would use a shim with the bracket 125 to try to align the brackets 125 when mounting the brackets 125, for example, on an uneven ceiling. The installers would place one or more shims of various thicknesses between the ceiling and the top mounting flange of the bracket to lower all brackets to the same level as the lowest bracket in a group. However, the installers would need to create and/or carry different shims. To try to minimize or avoid the use of shims, the installers may adjust a set screw that engages with a support connector 210 (e.g., at a center support in a multi-banded arrangement, as shown in
As such, with respect to
In various embodiments, and as shown in
Adjacent shade bands may not always be aligned vertically with each other, so the present system allows for adjustment of one or more hembars 245 to maintain visual consistency. In various embodiments, the system may also include mechanisms that allow the hembar 245 to be variably attached to the fabric. In various embodiments, as shown in
The roller shade system may be controlled by a shade control system. As such, this application incorporates by reference for all purposes and in their entirety: U.S. Ser. No. 14/692,868 filed on Apr. 22, 2015 and entitled “Automated Shade Control System Interaction With Building Management System”; PCT Application No. PCT/US2013/066316 filed on Oct. 23, 2013 and entitled “Automated Shade Control System Utilizing Brightness Modeling”; PCT Application No. PCT/US2013/066316; U.S. Ser. No. 13/671,018 filed on Nov. 7, 2012, now U.S. Pat. No. 8,890,456 entitled “Automated Shade Control System Utilizing Brightness Modeling”; U.S. Ser. No. 13/556,388 filed on Jul. 24, 2012, now U.S. Pat. No. 8,432,117 entitled “Automated Shade Control System”; U.S. Ser. No. 13/343,912 filed on Jan. 5, 2012, now U.S. Pat. No. 8,248,014 entitled “Automated Shade Control System”; U.S. Ser. No. 12/475,312 filed on May 29, 2009, now U.S. Pat. No. 8,120,292 entitled “Automated Shade Control Reflectance Module”; U.S. Ser. No. 12/421,410 filed on Apr. 9, 2009, now U.S. Pat. No. 8,125,172 entitled “Automated Shade Control Method and System”; U.S. Ser. No. 12/197,863 filed on Aug. 25, 2008, now U.S. Pat. No. 7,977,904 entitled “Automated Shade Control Method and System”; U.S. Ser. No. 11/162,377 filed on Sep. 8, 2005, now U.S. Pat. No. 7,417,397 entitled “Automated Shade Control Method and System”; U.S. Ser. No. 10/906,817 filed on Mar. 8, 2005, and entitled “Automated Shade Control Method and System”; and U.S. Provisional No. 60/521,497 filed on May 6, 2004, and entitled “Automated Shade Control Method and System.”
The detailed description of various embodiments herein makes reference to the accompanying drawings, which show various embodiments by way of illustration. While these various embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosure, it should be understood that other embodiments may be realized and that logical and mechanical changes may be made without departing from the spirit and scope of the disclosure. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation. For example, the steps recited in any of the method or process descriptions may be executed in any order and are not limited to the order presented. Moreover, any of the functions or steps may be outsourced to or performed by one or more third parties. Modifications, additions, or omissions may be made to the systems, apparatuses, and methods described herein without departing from the scope of the disclosure. For example, the components of the systems and apparatuses may be integrated or separated. Moreover, the operations of the systems and apparatuses disclosed herein may be performed by more, fewer, or other components and the methods described may include more, fewer, or other steps. Additionally, steps may be performed in any suitable order. As used in this document, “each” refers to each member of a set or each member of a subset of a set. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component may include a singular embodiment. Although specific advantages have been enumerated herein, various embodiments may include some, none, or all of the enumerated advantages.
In the detailed description herein, references to “various embodiments,” “one embodiment,” “an embodiment,” “an example embodiment,” etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the disclosure. The scope of the disclosure is accordingly limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” Moreover, where a phrase similar to ‘at least one of A, B, and C’ or ‘at least one of A, B, or C’ is used in the claims or specification, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C. Although the disclosure includes a method, it is contemplated that it may be embodied as computer program instructions on a tangible computer-readable carrier, such as a magnetic or optical memory or a magnetic or optical disk. All structural, chemical, and functional equivalents to the elements of the above-described various embodiments that are known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the present claims. Moreover, it is not necessary for a device or method to address each and every problem sought to be solved by the present disclosure, for it to be encompassed by the present claims. Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element is intended to invoke 35 U.S.C. § 112(f) unless the element is expressly recited using the phrase “means for” or “step for”. As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
This application is a continuation-in-part of, and claims priority to, U.S. Ser. No. 16/654,895 filed on Oct. 16, 2019 and entitled “Roller Shade System.” The '895 application claims the benefit of, and priority to, U.S. Provisional Application Ser. No. 62/746,332 filed on Oct. 16, 2018 and entitled “Roller Shade System.” All of which are hereby incorporated by reference in their entireties for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2519638 | Marzo | Aug 1950 | A |
3730469 | Shields | May 1973 | A |
4393915 | Olson | Jul 1983 | A |
4475580 | Hennequin | Oct 1984 | A |
4487244 | Olson | Dec 1984 | A |
4565078 | Solomon | Jan 1986 | A |
4779662 | Wilk | Oct 1988 | A |
4921033 | Finch et al. | May 1990 | A |
4932456 | Buxbaum | Jun 1990 | A |
5232038 | Buxbaum | Aug 1993 | A |
6164428 | Berman | Dec 2000 | A |
6196508 | Nijs | Mar 2001 | B1 |
6685592 | Fraczek | Feb 2004 | B2 |
7047774 | Gogel | May 2006 | B1 |
7051782 | Nichols, Jr. | May 2006 | B2 |
7195052 | Nien | Mar 2007 | B2 |
7240716 | Nichols, Jr. | Jul 2007 | B2 |
7740047 | Koop et al. | Jun 2010 | B2 |
7854419 | Ng et al. | Dec 2010 | B2 |
7891399 | Rasmussen | Feb 2011 | B2 |
8070660 | Seidel | Dec 2011 | B2 |
8122932 | Cannaverde | Feb 2012 | B2 |
8210227 | Hoffmann et al. | Jul 2012 | B2 |
8267234 | Koop | Sep 2012 | B2 |
8347666 | Stendal | Jan 2013 | B2 |
8403020 | Rasmussen | Mar 2013 | B2 |
8556059 | Ng | Oct 2013 | B2 |
8579004 | Cannaverde | Nov 2013 | B2 |
8695681 | Daniels | Apr 2014 | B2 |
8875348 | Kossett | Nov 2014 | B2 |
8967568 | Wills | Mar 2015 | B2 |
9206641 | Feldstein et al. | Dec 2015 | B2 |
9279286 | Higgins | Mar 2016 | B2 |
9303707 | Fraczek | Apr 2016 | B2 |
9322214 | Bohlen | Apr 2016 | B2 |
9347261 | Blair et al. | May 2016 | B2 |
9410599 | Yen | Aug 2016 | B2 |
9506290 | Lin | Nov 2016 | B2 |
9810019 | Barnes | Nov 2017 | B2 |
9850704 | Jang | Dec 2017 | B2 |
9926740 | Pham | Mar 2018 | B2 |
9976346 | Ng | May 2018 | B2 |
10323793 | Daniels et al. | Jun 2019 | B2 |
10472887 | Hebeisen | Nov 2019 | B2 |
10590699 | Chen | Mar 2020 | B2 |
10612301 | Derk et al. | Apr 2020 | B2 |
10745966 | Chen et al. | Aug 2020 | B2 |
10895106 | Goldberg | Jan 2021 | B2 |
11085235 | Mccreadie | Aug 2021 | B2 |
11215007 | Schorling | Jan 2022 | B2 |
11332974 | Chiquin | May 2022 | B2 |
11352835 | Tao | Jun 2022 | B2 |
20080135191 | Zakowski | Jun 2008 | A1 |
20090108245 | Daus et al. | Apr 2009 | A1 |
20090152422 | Ng et al. | Jun 2009 | A1 |
20090242145 | Sheu | Oct 2009 | A1 |
20120043029 | Gaskill et al. | Feb 2012 | A1 |
20120097346 | Ng | Apr 2012 | A1 |
20130068904 | Wills et al. | Mar 2013 | A1 |
20130098561 | Mullet et al. | Apr 2013 | A1 |
20140084122 | Shevick | Mar 2014 | A1 |
20140158314 | Anderson | Jun 2014 | A1 |
20140190642 | Chou | Jul 2014 | A1 |
20150014501 | Wills | Jan 2015 | A1 |
20150059992 | Liu | Mar 2015 | A1 |
20150176330 | Lin | Jun 2015 | A1 |
20150322715 | Chou | Nov 2015 | A1 |
20160130869 | Cheng | May 2016 | A1 |
20160298388 | Tao | Oct 2016 | A1 |
20170009519 | Marocco | Jan 2017 | A1 |
20170058600 | Mocanu | Mar 2017 | A1 |
20170218703 | Wei | Aug 2017 | A1 |
20180112461 | Holt et al. | Apr 2018 | A1 |
20180320439 | Mccreadie | Nov 2018 | A1 |
20200032583 | Hebeisen | Jan 2020 | A1 |
20200115958 | Miroshnichenko | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
101357736 | Feb 2014 | KR |
101357737 | Feb 2014 | KR |
Entry |
---|
USPTO; Restriction Requirement dated Aug. 4, 2021 in U.S. Appl. No. 16/654,895. |
USPTO; Non-Final Office Action dated Oct. 1, 2021 in U.S. Appl. No. 16/654,895. |
USPTO; Notice of Allowance dated Dec. 15, 2021 in U.S. Appl. No. 16/654,895. |
U.S. Pat. No. 644,758, Beck, R.H., issued Mar. 6, 1900. |
USPTO, Non-Final Office Action dated Oct. 4, 2022 in U.S. Appl. No. 17/473,502. |
USPTO, Non-Final Office Action dated Oct. 4, 2022 in U.S. Appl. No. 17/473,400. |
USPTO, Notice of Allowance dated Dec. 21, 2022 in U.S. Appl. No. 17/473,400. |
USPTO, Non-Final Office Action dated Oct. 5, 2022 in U.S. Appl. No. 17/473,599. |
USPTO, Notice of Allowance dated Dec. 22, 2022 in U.S. Appl. No. 17/473,599. |
USPTO, Non-Final Office Action dated Oct. 5, 2022 in U.S. Appl. No. 17/473,682. |
USPTO, Final Office Action dated Jan. 17, 2023 in U.S. Appl. No. 17/473,682. |
USPTO, Notice of Allowance dated Feb. 23, 2023 in U.S. Appl. No. 17/473,682. |
USPTO, Notice of Allowance dated Jan. 26, 2023 in U.S. Appl. No. 17/473,502. |
Number | Date | Country | |
---|---|---|---|
20210301592 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
62746332 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16654895 | Oct 2019 | US |
Child | 17336046 | US |