The invention and its wide variety of potential embodiments will be readily understood via the following detailed description of certain exemplary embodiments, with reference to the accompanying drawings in which:
Certain embodiments of the present invention can include a removable drive-in housing assembly for securing a latch assembly in a door. The removable drive-in housing assembly can include a cylindrical casing having a longitudinal axis, the casing adapted to at least partially surround the latch assembly. The removable drive-in housing assembly also can include a unitary cylindrical inner collar removably receivable around an outer circumference of the cylindrical casing. Further, the removable drive-in housing assembly can include a unitary cylindrical outer collar removably receivable around an outer circumference of the inner collar.
Inner collar 1400 can resemble an axially-extended annulus. That is, inner collar 1400 can be generally cylindrical, hollow, and of a one-piece, unitary construction, having a generally circular longitudinal cross-section that defines an inner generally-circumferential surface and/or wall and an outer generally-circumferential surface and/or wall. Alternatively, inner collar 1400 can comprise at least one removable component. In another alternative embodiment, inner collar 1400 can have a generally polygonal longitudinal cross-section that defines an inner perimeter and an outer perimeter. Any portion of inner collar 1400 can be fabricated of metal, polymer, and/or the like, such as an injection molded plastic (e.g., polyethylene, LDPE, HDPE, and/or nylon, etc.).
Outer collar 1500 also can resemble an axially-extended annulus. That is, outer collar 1500 can be generally cylindrical, hollow, and of a one-piece, unitary construction, having a generally circular longitudinal cross-section that defines an inner generally circumferential surface and an outer generally circumferential surface. Alternatively, outer collar 1500 can comprise at least one removable component. In another alternative embodiment, outer collar 1500 can have a generally polygonal longitudinal cross-section that defines an inner perimeter and an outer perimeter. Any portion of outer collar 1500 can be fabricated of metal, polymer, or the like, such as a drawn metal (e.g., steel, brass, etc.).
Prior to installation, outer collar 1500 can be slid over inner collar 1400, which can be slid over casing 1200 to form removable drive-in housing assembly 1050. In certain embodiments, either of these sliding actions can performed manually, without the aid of any tools. In some embodiments, either of these sliding actions can performed with the assistance of tools and/or automatically. In certain embodiments, either of these sliding actions can be performed non-destructively.
Likewise, prior to installation, either collar assembly 1300 or inner collar 1400 can be removed from casing 1200, and outer collar 1500 can be removed from inner collar 1400. In certain embodiments, either of these removals can be performed non-destructively. In some embodiments, either of these removals can be performed manually, without the aid of any tool. In certain embodiments, a general purpose and/or special purpose tool can be employed.
During installation, removable drive-in housing assembly 1050 can be driven into a bore of the door until a flange of outer collar 1500 contacts the door, thereby at least partially securing casing 1200 longitudinally in door. Then, latch assembly 1100 can be inserted into removable drive-in housing assembly 1050.
Once installed, the engagement mechanism(s) of inner collar 1400 can releasably fix inner collar, both rotationally and longitudinally, with respect to the door. Casing 1200 and outer collar 1500 can be a least partially free to rotate and/or can be partially rotationally adjustable, with respect to inner collar 1400 and the door, to compensate for some misalignments, such as misalignment of latch assembly 1100 relative to the door. Outer collar 1500 can be releasably fixed in rotation relative to casing 1200. Collar assembly 1300, inner collar 1400, and/or outer collar 1500 can be releasably fixed longitudinally with respect to casing 1200.
Once installed, collar assembly 1300 can hold latch assembly securely inside the door. Assuming that outer collar 1500 is fabricated of a strong and/or attractive metal, collar assembly 1300 can show mostly metal to optimize strength and/or aesthetics. If desired, drive-in housing assembly 1050 and/or latch assembly 1100 can be relatively easily and non-destructively removed from the door. Moreover, once drive-in housing assembly 1050 has been removed from the door, the door can be relatively easily converted from a drive-in latch design to a mortised screwed-on faceplate design.
Collar assembly 1300 can be slid over casing 1200 by aligning groove 1450 (shown in
Once collar assembly 1300 is in place around casing 1200, the inner circumferential surface of inner collar 1400 can frictionally engage with the outer circumferential surface of casing 1200, providing at least slight resistance to relative movement between inner collar 1400 and casing 1200. Considering rotation, if sufficient differential torque is applied to inner collar 1400 with respect to casing 1200 to overcome the frictional engagement of inner collar 1400 and casing 1200, inner collar 1400 can only rotate with respect to casing 1200 until protrusion 1230 encounters the limit of groove 1460.
As shown, inner collar 1400 can include a front engagement mechanism 1430 and a rear engagement mechanism 1440. In certain embodiments, these engagement mechanisms 1430, 1440 can differ. In certain embodiments, engagement mechanisms 1430, 1440 can have similar or identical features. For example, engagement mechanism 1440 can include a tooth 1442 residing on the end of a springboard 1444. Tooth 1442 can be deflected radially inward toward a longitudinal axis of inner collar 1400 to allow inner collar 1400 to slide within outer collar 1500.
Once tooth 1442 encounters an appropriately sized open space in outer collar 1500, such as an engagement groove 1540, tooth 1442 is biased radially outward to return to its original position with respect to inner collar 1400. Thus, depending on the geometries of tooth 1442 and groove 1540, tooth 1442 can lock, and/or partially lock outer collar 1500 to inner collar 1400. In certain embodiments, this locking action can be releasable, manually and/or via the assistance of one or more tools.
Moreover, the inner surface of outer collar 1500 can frictionally engage with the outer surface of inner collar 1400. Thus, outer collar 1500 can at least slightly resist movement with respect to inner collar 1400. Considering rotation, if sufficient differential torque is applied to overcome the frictional engagement of outer collar 1500 and inner collar 1400, outer collar 1500 can only rotate with respect to inner collar 1400 until engagement mechanism 1440 encounters the limit of groove 1540.
When inner collar 1400 and outer collar 1500 are assembled into collar assembly 1300, a front engagement mechanism 1430 can interact with front engagement groove 1530, and a rear engagement mechanism 1440 can interact with rear engagement groove 1540. The interaction of engagement mechanisms 1430, 1440 and engagement grooves 1530, 1540 can prevent and/or resist longitudinal movement of inner collar 1400 with respect to outer collar 1500, and/or can limit rotational movement of inner collar 1400 with respect to outer collar 1500.
Outer collar 1500 can be rotationally linked to casing 1200 due to the shape of faceplate opening 1560 matching that of the front portion 1120 (sometimes called the latch bolt) of the latch assembly 1100.
Other means are possible for providing engagement mechanisms 1430, 1440. For example, springboard 1444 can be replaced with a Belville spring. As another example, if inner collar 1400 is of sufficient wall thickness, springboard 1444 can be replaced with a tooth attached to a coil spring recessed within the wall of inner collar 1400. Springboard 1444 can obtain its spring properties from any material possessing a shape memory, such as a thermoplastic, niconel, steel, etc. Tooth 1442 can be a single tooth, a ridge of teeth, a roughened surface, or any other means for securing inner collar 1400 within outer collar 1500 and/or for providing an interference fit with the door.
Moreover, the securing function can be provided separately from the interference function. For example, a rearward extending springboard 1444 could have a means for securing inner collar 1400 to outer collar 1500 (such as an engagement ridge, bump, or hemisphere located at some point along the length of springboard 1444). Alternatively, the securing function can be provided on outer collar 1500 and can engage with a feature in inner collar 1400.
Springboard 1444 (or a separate springboard, or other means as described previously) could have an interference-generating tooth located at its end, that end potentially extending beyond the overlap of inner collar 1400 and outer collar 1500. With this approach, the interference tooth could be replaced by an interference semi-ring that partially surrounds casing 1200 (possibly as an extension of inner collar 1400).
Front engagement mechanism 1430 and/or rear engagement mechanism 1440 can protrude beyond outer circumferential surface 1512 of body 1510 of outer collar 1500. The protrusion of the engagement mechanisms is apparent in
Although the invention has been described with reference to specific exemplary embodiments thereof, it will be understood that numerous variations, modifications and additional embodiments are possible, and accordingly, all such variations, modifications, and embodiments are to be regarded as being within the spirit and scope of the invention. Also, references specifically identified and discussed herein are incorporated by reference as if fully set forth herein. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature, and not as restrictive.
Number | Name | Date | Kind |
---|---|---|---|
4671549 | Marotto | Jun 1987 | A |
4687239 | Lin | Aug 1987 | A |
4759576 | Ching | Jul 1988 | A |
5039146 | Lin | Aug 1991 | A |
5211432 | Lin | May 1993 | A |
5364138 | Dietrich | Nov 1994 | A |
5489128 | Florian | Feb 1996 | A |
5562314 | Wheatland | Oct 1996 | A |
5769472 | Small | Jun 1998 | A |
Number | Date | Country | |
---|---|---|---|
20040046402 A1 | Mar 2004 | US |