Information
-
Patent Grant
-
6623320
-
Patent Number
6,623,320
-
Date Filed
Thursday, March 14, 200222 years ago
-
Date Issued
Tuesday, September 23, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Morano; S. Joseph
- Olson; Lars A.
Agents
-
CPC
-
US Classifications
Field of Search
-
International Classifications
-
Abstract
Boat propeller drive with an underwater housing which is connected in a fixed manner to a boat hull and has tractor propellers arranged on that side of the housing facing ahead. Arranged in that end portion of the underwater housing facing astern is an exhaust discharge outlet for discharging exhaust gases from an internal combustion engine connected to the propeller drive.
Description
The present invention relates to a drive assembly in a boat, comprising a propeller drive which is arranged in a fixed manner on the outside of a boat hull and has an at least essentially vertical drive shaft which, via an angle gear enclosed in an underwater housing, drives in a counter-rotating manner a pair of at least essentially horizontal propeller shafts each with their own propeller, and a drive unit which is arranged on the inside of the hull and to which the vertical drive shaft is drivably connected.
It is a known fact, that in fast motor boats, it is possible to achieve considerably higher overall efficiency with an outboard drive with twin counter-rotating propellers coupled to an inboard engine than with an inboard engine coupled to a straight shaft with a single propeller. Until now, outboard drives in fast boats have with few exceptions been of the type which is suspended steerably as well as trimmably and tiltably in eh transom stern of the boat. Such an exception is disclosed and described in SE 8305066-6, where a special embodiment of a drive with a pusher propeller and a tractor propeller is installed in a fixed manner and projects down from the bottom of the hull. The advantage of being able to trim the drive at different angles in relation to the transom stern of the boat is that the drive angle can be adapted to the position of the boat in the water, which depends on loading, speed and weather conditions, so that optimum propulsion can be achieved under different operating conditions. The advantages of being able to trim the drive are most apparent in smaller and medium-sized fast-moving boats up to about 40 feet. The larger and heavier the boat is, the less its position in the water is affected by said factors and the smaller the need to be able to trim the drive. At the same time, the cost of the drive increases considerably, the greater the power that it is to transmit. For these reasons inter alia, outboard drives are seldom used in boats in the size class over 40 feet, but in this case the engines drive straight propeller shafts with a single propeller via inboard-mounted reversing gears.
The object of the present invention is generally to provide a drive assembly of the type referred to in the introduction, which is primarily but not exclusively intended to replace a conventional inboard installation with reversing gear and a straight shaft in larger boats, and in this connection, compared with the inboard installation, to bring about not only higher overall efficiency and better performance but also simplified installation and lower installation weight.
According to the invention, this is achieved primarily by virtue of the fact that the propellers are tractor propellers which are arranged on that side of the underwater housing facing ahead, and that the underwater housing has, in its end portion facing astern, an exhaust discharge outlet for discharging exhaust gases from an internal combustion engine connected to the propeller drive.
An advantage of tractor propellers instead of pusher propellers on an outboard drive is inter alia that the propellers work in undisturbed water because the underwater housing lies behind the propellers. This then also creates space for an exhaust discharge outlet in the aft side of the underwater housing, which means that it is possible inter alia to utilize the ejector effect which the water flowing past exerts on the exhaust gases streaming out in the same manner as when the exhaust gases are conveyed out through the propeller hubs on pusher propellers. When the exhaust gases are conveyed out in the rear edge of the underwater housing instead of through the hubs, the hub diameter and thus the overall propeller diameter can be reduced, which is advantageous in a number of respects. On the one hand, the mass and the mass forces are reduced and, on the other hand, the space requirement under the bottom of the hull is reduced, which means that the underwater housing can be designed so as to be shorter in the vertical direction and consequently lighter than if pusher propellers with an exhaust discharge outlet in the hubs were to be used.
It is previously known to use a propeller combination of a fore and an aft propeller together with steerable outboard drives, in which combination, at least at higher speeds, the aft propeller works in a cavity-generating manner whereas the fore propeller works in a non-cavity-generating manner. In this way, it is possible to reduce the grip of the propellers in the water slightly during turning, so that a certain sideways sliding occurs, which is essential in smaller boats in order to prevent the hull tilting outwards. It has, however, proved hydrodynamically advantageous to arrange a twin-propeller combination with a cavity-generating aft propeller together with a fixed outboard drive with pusher propellers in larger boats also, which are not susceptible to tilting during turning.
The invention is described in greater detail with reference to exemplary embodiments shown in the appended drawings, in which
FIG. 1
shows a diagrammatic partly cut-away side view of an embodiment of a drive assembly according to the invention,
FIG. 2
shows a plain side view of the drive assembly in
FIG. 1
,
FIG. 3
shows a perspective view of a drive installation comprising two drive assemblies according to
FIGS. 1 and 2
,
FIG. 4
shows a side view of a second embodiment of a drive assembly according to the invention,
FIG. 5
shows a perspective view of a drive installation comprising two drive assemblies according to
FIG. 4
,
FIG. 6
shows a diagram of the overall efficiency of a drive assembly according to the invention compared with a conventional inboard installation, and
FIG. 7
shows a diagram illustrating the increase in speed of a boat with a drive assembly according to the invention in relation to a boat with a conventional inboard installation.
In
FIG. 1
, reference number
1
designates generally a drive unit consisting of an engine
1
a
and a reversing gear mechanism
1
b
which are fixed to an inner surface
2
on the bottom
4
of a boat hull. An underwater housing
5
has a fastening plate
7
which is fastened to an outer surface
8
on the bottom
4
. The engine
1
a
drives, via an angle gear in the reversing gear
1
b,
an output shaft
9
which in turn drives, via an angle gear comprising conical gearwheels
10
,
11
and
12
, a pair of propeller shafts
13
and
14
, of which the shaft
14
is a hollow shaft, through which the shaft
13
extends. The shaft
13
bears a propeller
15
with a hub
15
a
and blades
15
b,
and the shaft
14
bears a propeller
16
with a hub
16
a
and blades
16
b.
The propeller shafts
13
and
14
are mounted in a torpedo-like part
20
of the underwater housing
5
. The housing part
21
between the torpedo
20
and the fastening plate
7
has a wing-like profile with slightly domed side surfaces on both sides of a vertical plane of symmetry. On the aft side of the housing part
21
, a rudder flap
22
is mounted for pivoting about a vertical pivoting axis. The front end portion
23
of the rudder flap
22
has a semi-circular cross section and projects into a semi-circular channel
24
, as shown most clearly in
FIG. 3
, where the starboard drive assembly is shown with the under blade removed. The side surfaces of the rudder flap lie, at the front edge, in the same plane as the rear edge of the side surfaces of the housing part
21
, so that a smooth transition is obtained between the housing part
21
and the rudder flap
22
. Together, these two extend over the entire length of the torpedo
20
. At its aft end, the torpedo
20
has a discharge opening
25
, in which an exhaust pipe
26
opens, which runs from the engine
1
a
and through the underwater housing
5
. As a result, the propellers will work in completely undisturbed water, on the one hand on account of their being positioned in front of the underwater housing and on the other hand on account of the positioning of the exhaust discharge outlet, which moreover, on account of the ejector effect which arises during motion, contributes to minimum exhaust back-pressure. As can be seen from the figures, the torpedo is at its rear edge designed with a screen
27
towards the rudder flap
22
in order to screen the rudder blade from the exhaust gas flow. By virtue of the fact that the exhaust gases are conveyed out through the underwater housing and not through the propeller hubs
15
a
and
16
a,
the diameter of the hubs and thus the diameter of the propeller as a whole can be reduced. In steerable outboard drives with pusher propellers, the maximum diameter of the hubs is normally the same as the maximum diameter of the adjacent part of the underwater housing, whereas the maximum hub diameter of the propellers
15
and
16
shown in
FIGS. 2-5
is roughly 60-65% of the maximum diameter of the torpedo
20
in the portion adjacent to the propellers. As the propellers require a certain minimum distance from the surface of the bottom of the boat above, the length of the underwater housing in the vertical direction is also affected by the propeller diameter, which means that the smaller the propeller diameter is, the shorter the underwater housing needs to be in the vertical direction.
FIG. 2
shows a propeller drive of the type descried in connection with
FIG. 1
, that is to say a drive with an underwater housing
5
which is fixed directly to the bottom surface of the boat hull by its fastening plate
7
. The drive has two propellers
15
and
16
, of which the fore propeller has three glades whereas the aft propeller has four blades, which is known per se in steerable outboard drives. In a preferred embodiment, moreover, the blade areas of the propellers are adapted to one another in such a manner that, within a predetermined upper speed range, the aft propeller works in a cavity-generating manner whereas the fore propeller works in a non-cavity-generating manner.
The propeller drive in
FIG. 2
is mounted on one side of and at a distance from the centre line
30
of the bottom. A corresponding propeller drive is mounted on the other side of the centre line, as shown in greater detail in FIG.
3
. As mentioned above, the rudder flap of the right-hand drive has been removed in order to illustrate the design of the wing-like part
21
of the underwater housing
5
. With twin-mounted drives, means (not shown) can advantageously be arranged, which make it possible to disconnect the normal synchronous operation of the rudder blades and instead steer the rudder blades in a mirror-inverted manner, that is to say in such a manner that a given deflection of one rudder to, for example, port leads to a corresponding deflection of the other to starboard. In this way, the steering deflections cancel each other out and the rudders instead function as brake flaps without any steering effect.
FIG. 4
shows an embodiment of a propeller drive according to the invention, which differs from that descried above in that the underwater housing
5
is connected to a housing
32
which is mounted against the transom stern
31
of the hull and contains an angle gear and a reversing gear mechanism with an output shaft connected to the shaft
9
(FIG.
1
). In the transition between the housing
32
and the underwater housing
5
, the latter is designed with a cavitation plate
33
which extends up to the transom stern
31
. The front edge of the cavitation plate
33
is sealed against the surface of the transom stern, so that the cavitation plate
33
forms an extension of the bottom of the boat. Like the drive in
FIGS. 1-3
, the drive in
FIG. 4
has a three-bladed fore propeller and a four-bladed aft propeller which is preferably, within a given upper speed range, a cavity-generating propeller.
FIG. 5
shows a boat hull with two drives of the type shown in
FIG. 4
mounted on the transom stern at an equal distance from the centre line
30
.
The diagram in
FIG. 6
illustrates the overall efficiency as a function of the speed of the boat for one and the same boat type with on the one hand a conventional inboard installation, that is to say straight shafts and a single propeller (broken line), and on the other hand the drive assemblies according to the invention described above (solid line). As can be seen from the diagram, the difference at, for example, 38 knots is as much as 20 percentage units, in other words an increase in overall efficiency of no less than roughly 40% is obtained with the installation according to the invention compared with a conventional inboard installation. The diagram of
FIG. 7
illustrates in a corresponding manner the increase in speed of a boat with a drive assembly according to the invention in relation to the same boat with a conventional inboard installation. It can be seen from the diagram, for example, that if the top speed of a boat with a drive assembly according to the invention is 40 knots when equipped with a given engine, the top speed of the same boat and engine with a conventional inboard installation is roughly 35 knots.
Claims
- 1. Drive assembly in a boat, comprising a propeller drive which is arranged in a fixed manner on the outside of a boat hull and has an at least essentially vertical drive shaft which, via an angle gear enclosed in an underwater housing, drives in a counter-rotating manner a pair of at least essentially horizontal propeller shafts each with their own propeller, and a drive unit which is arranged on the inside of the hull and to which the vertical drive shaft is drivably connected, characterized in thatthe propellers are tractor propellers which are arranged on that side of the underwater housing facing ahead, and in that the underwater housing has, in its end portion facing astern, an exhaust discharge outlet for discharging exhaust gases from an internal combustion engine connected to the propeller drive, the underwater housing has a lower portion, in which the propeller shafts are mounted and in the end of which facing astern the exhaust discharge outlet is arranged, the underwater housing has an upper portion with a wing profile, which is connected to the lower portion and bears in its aft side a rudder blade which is pivotable about a vertical axis and forms a wing-flap-like extension astern of the portion with the wing profile, the length of the lower portion is at least approximately equal to the sum of the lengths of the portion with the wing profile and the rudder blade, and that end portion of the lower portion facing astern is designed in such a manner that a screen is formed between the aft lower end portion of the rudder blade and an exhaust discharge opening.
- 2. Drive assembly according to claim 1, characterized in that the propellers are designed with hubs, the maximum diameter of which is smaller than the maximum diameter of the lower portion.
- 3. Drive assembly according to claim 2, characterized in that the maximum hub diameter of the propellers is roughly 20% of the propeller diameter.
- 4. Drive assembly according to claim 1, characterized in that the portion of the underwater housing with the wing profile has means for fixing the portion to the underside of the bottom of the hull.
- 5. Drive installation in a boat, comprising two drive assemblies according to claim 1 arranged next to one another, characterized in that the rudder blades are individually steerable in order to allow rudder deflection in opposite directions.
- 6. Drive assembly in a boat, comprising a propeller drive which is arranged in a fixed manner on the outside of a boat hull and has an at least essentially vertical drive shaft which, via an angle gear enclosed in an underwater housing, drives in a counter-rotating manner a pair of at least essentially horizontal propeller shafts each with their own propellers, and a drive unit which is arranged on the inside of the hull and to which the vertical drive shaft is drivably connected, characterized in thatthe propellers are tractor propellers which are arranged on that side of the underwater housing facing ahead, and in that the underwater housing has, in its end portion facing astern, an exhaust discharge outlet for discharging exhaust gases from an internal combustion engine connected to the propeller drive, and in that the underwater housing is connected to a drive housing which is fixed to a transom stern of the hull, and in that a cavitation plate is arranged in the transition between the underwater housing and the drive housing, which cavitation plate has a front end edge which bears against a surface on the transom stern.
- 7. Drive assembly in a boat, comprising a propeller drive which is arranged in a fixed manner on the outside of a boat hull and has an at least essentially vertical drive shaft which, via an angle gear enclosed in an underwater housing, drives in a counter-rotating manner a pair of at least essentially horizontal propeller shafts each with their own propeller, and a drive unit which is arranged on the inside of the hull and to which the vertical drive shaft is drivably connected, characterized in thatthe propellers are tractor propellers which are arranged on that side of the underwater housing facing ahead, and in that the underwater housing has, in its end portion facing astern, an exhaust discharge outlet for discharging exhaust gases from an internal combustion engine connected to the propeller drive, and in that the blade areas of the propellers are adapted to one another in such a manner that, within a predetermined upper speed range, the aft propeller works in a cavity-generating manner whereas the fore propeller works in a cavitation-free manner.
Priority Claims (1)
Number |
Date |
Country |
Kind |
9900938 |
Mar 1999 |
SE |
|
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
PCT/SE00/00517 |
|
WO |
00 |
Publishing Document |
Publishing Date |
Country |
Kind |
WO00/58149 |
10/5/2000 |
WO |
A |
US Referenced Citations (5)
Foreign Referenced Citations (4)
Number |
Date |
Country |
35 19 599 |
Jan 1986 |
DE |
196 40 481 |
May 1998 |
DE |
0 215 758 |
Mar 1987 |
EP |
0 269 272 |
Jun 1988 |
EP |