This application claims priority to and the benefit of Great Britain patent application numbers GB0809966.5, filed Jun. 2, 2008, the entirety of which application is hereby incorporated by reference.
This invention relates to drive means, particularly drive means for progressive cavity pumps.
A progressive cavity pump usually comprises a helical rotor disposed in a double helical bore. Sealed cavities exist between the surfaces of the rotor and stator, and as the rotor turns, these sealed cavities progress along the length of the pump. Thus fluid entering a forming cavity at one end of the pump is transported the length of the pump until the cavity reaches the other end of the pump. The rotor rotates about a central axis, however no part of the rotor lies on this axis, rather each part of the rotor is spaced from the central axis it orbits. Since a drive means usually generates a rotating output that is coincident with the axis of rotation, a jointed or flexible shaft is used to connect the drive output to the rotor.
Jointed or flexible shafts may suffer from wear. An object of the present invention is to provide an alternative means of driving the rotor.
According to the invention there is provided a drive means for downhole use, comprising an input shaft and an output shaft, the input shaft being coupled to a means of rotation, the input shaft and the output shaft being torsionally coupled, the output shaft being coupled to the rotor of the progressive cavity pump, wherein the input shaft lies in a first axis and the output shaft lies in a second axis, the second axis being parallel to the first axis but spaced from it so that the output shaft rotates about its axis while describing a circular path.
The invention is described, by way of example and not intended to be limiting, by the following embodiments, of which
Referring to
The input drive shaft 10 is coupled to some conventional drive means, that rotates the input drive shaft 10 about its central axis. The input drive shaft includes a head 20 having a female outer rotor 201 of a gerotor, ideally this is a three-lobed 200 shape. The input drive head 20 is supported on an eccentric element 21. The output drive has a corresponding output drive shaft head 22, which features a male inner rotor 101 of a gerotor, ideally having a two-lobed 100 shape, which engages with the female outer rotor of the input drive head 20. The output drive shaft head 22 is similarly supported on an eccentric bearing 23.
Referring to
After the input and output drive shaft heads 20, 22 have been positioned in the housing 30 with their respective eccentric bearings 21, 23, so that the male inner rotor of the output drive shaft head 22 engages with the female outer rotor of the input drive shaft head 20, the input and output drive shafts 10 and 12 are secured together by input end cap 14 and output end cap 16 to the housing 30, with the input shaft 10 protruding through the central bore 15 of the input end cap 14, and the output shaft 12 protruding from the eccentric bore 17 of the output end cap 16. The input end cap can be secured for example by pins placed in corresponding holes 34, 35 in the input end cap and the housing. The output end cap is rotationally constrained to the housing pins 25 which pass through output end cap holes 24 and engage in corresponding holes in the housing. Connector member 18 is then fitted over the output end cap.
In use, the input shaft 10 is rotated about its central axis. As the input shaft head 20 rotates, the engagement of the female outer rotor causes the male inner rotor of the output shaft head 22, and therefore also the output shaft 12 itself, to also rotate. However, the male inner rotor is offset from the axis of rotation of the input shaft, always engaging the female outer rotor at a radially spaced position, the radial spacing being constrained by the eccentric bearing 23.
Although the radial spacing of the output shaft 12 is constrained by the eccentric bearing, the output shaft and housing are free to rotate relative to the outer housing upon which it is conveyed into the well and relative to the stator of a progressive cavity pump suspended beneath the drive means. The output shaft 12 is connected to the rotor 300R of a progressive cavity pump 300 having a stator 300S. As seen in
Thus it will be seen that the progressive cavity pump rotor 300R may be driven in the required manner without the use of a flexible or jointer member.
It will be noted that since the outer rotor of the input shaft 10 is a three-lobed gerotor shape and the inner rotor of the output shaft 12 is a two-lobed gerotor shape, a single revolution of the input shaft causes the output shaft to turn by approximately 1.5 revolutions (it will not be exactly 1.5 because of the circular movement of the output shaft itself). It will be realized that other gear ratios may be chosen, and also that the input shaft could feature a male shape and the output shaft could feature a female shape. Also, the bore of the housing could be shaped so that separate bearing elements are not required.
Alternative embodiments using the principles disclosed will suggest themselves to those skilled in the art upon studying the foregoing description and the drawings. It is intended that such alternatives are included within the scope of the invention, which is limited only by the claims.
Number | Date | Country | Kind |
---|---|---|---|
0809966.5 | Jun 2008 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
1892217 | Moineau | Dec 1932 | A |
2841037 | Randall | Jul 1958 | A |
3280453 | Clark | Oct 1966 | A |
4080115 | Sims et al. | Mar 1978 | A |
4599056 | Crase | Jul 1986 | A |
5139400 | Ide | Aug 1992 | A |
5501580 | Barrus et al. | Mar 1996 | A |
5820504 | Geralde | Oct 1998 | A |
Number | Date | Country | |
---|---|---|---|
20090297255 A1 | Dec 2009 | US |