BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram of the structure of the drive mechanism for a lock of the present invention.
FIG. 2 is a sectional view of the drive mechanism for a lock of FIG. 1 along line A-A.
FIG. 3 is a sectional view of the drive mechanism for a lock of FIG. 1 along line B-B.
FIG. 4 is a structural diagram for the linear-moving sleeve when it moves to the left position.
FIG. 5 is a structural diagram for the linear-moving sleeve when it moves to the right position.
DETAILED DESCRIPTION OF THE INVENTION
With reference to the drawings and operation examples, the present invention is further described in detail as follows. The present invention provides a drive mechanism for a lock comprising a linear-moving sleeve (1), a conversion spring (2) and a rotating component (3). The rotating component (3) is inserted into the linear-moving sleeve (1) that moves along the rotating component (3) in an axial direction. The conversion spring (2) is fitted onto the rotating component (3). The linear-moving sleeve (1) has symmetric protrusions (11).
The rotating component (3) can be of an integrated or a split structure. One embodiment of the present invention adopts the split structure for the rotating component (3) that comprises a clipping end (4) and a rotating bolt (5) with the rotating bolt (5) partially plugged into the clipping end (4). The clipping end (4) rotates together with the rotating bolt (5).
Curved ends (21) of the conversion spring (2) are inserted into a groove (51) of the rotating bolt (5) to enable the conversion spring (2) to rotate together with the rotating bolt (5).
As shown in FIG. 5, when the rotating bolt (5) rotates the conversion spring (2) clockwise, the symmetric protrusions (11) of the linear-moving sleeve (1) rotate in the same direction into the spiral coil/helix of the conversion spring (2). The continuous rotation of the rotating bolt (5) causes the symmetric protrusions (11) to move along the spiral coil/helix of the conversion spring (2) in a spiral thread fashion so that the conversion spring (2) is moved to the right, driving the protrusions (11) to the left simultaneously. The conversion spring (2) moves until it reaches and is constrained by an edge (52) of the rotating bolt (5). The left end of the conversion spring (2) slides on the protrusions (11) of the linear-moving sleeve (1). Under the pressure of the conversion spring (2), the linear-moving sleeve (1) retains its left-end position, as shown in FIG. 4.
As shown in FIG. 4, when the rotating bolt (5) rotates the conversion spring (2) counter-clockwise, the symmetric protrusions (11) of the linear-moving sleeve (1) rotate in the same direction into the spiral coil/helix of the conversion spring (2). The continuous rotation of the rotating bolt (5) causes the symmetric protrusions (11) to move along the spiral coil/helix of the conversion spring (2) in a spiral thread fashion so that the conversion spring (2) is moved to the left, driving the protrusions (11) to the right simultaneously. The conversion spring (2) moves until it reaches and is constrained by an edge (41) of the clipping end (4). The right end of the conversion spring (2) slides on the protrusions (11) of the linear-moving sleeve (1). Under the pressure of the conversion spring (2), the linear-moving sleeve (1) retains its right-end position, as shown in FIG. 5.