Not Applicable.
This application relates to drive-on watercraft lifts, and, in particular, to a watercraft lift having adjustable/replaceable bunks or slide members.
Drive-on watercraft lifts are often provided with rollers or elongate slide members upon which watercraft rest when positioned on the lift. An example of such rollers/glides is shown in U.S. Pat. No. 7,069,872, which is incorporated herein by reference. The rollers/glides disclosed therein are mounted on brackets which allow for the rollers/glides to pivot relative to the watercraft lift, to thereby accommodate watercraft hulls of different sizes or shapes. However, in many watercraft lifts, the rollers/glides are not pivotal, and thus, on many types of watercraft lifts, the rollers/glides or bunks cannot be adjusted or altered to accept watercraft of different sizes.
Briefly stated, removable bunks are provided for a drive-on watercraft lift. The watercraft lift comprises a body having an upper surface, side walls, a front wall, and a back wall. A watercraft hull receiving channel is formed in the upper surface which defines an entrance onto the lift. To accommodate the bunks, a bunk receiving slot is formed in the upper surface on either side of the hull receiving channel (such that there are two bunk receiving slots). The bunk receiving slots extend forwardly from the back wall of the watercraft lift.
A bunk is secured in each of the bunk receiving slots. The bunks each comprise a bottom surface, a first side wall, a second side wall opposite the first side wall, and an upper surface. The upper surface of the bunk defines at least one rail upon which the hull of a watercraft will rest when the watercraft is positioned on the lift.
The bunk receiving slots of the lift body and the bunks are configured to enable the bunks to be removably secured in the bunk receiving slots. According to one aspect, the bunks are frictionally received in the bunk receiving slots. In one embodiment, the bunks include at least one side flange extending outwardly from the bottom of least one of the side walls of the bunk; the side flange giving the bunk an overall width approximately equal to the width of the bunk receiving slot. The side flange can be comprised of discrete sections, such that the flange is not continuous. The overall width of the bunk, including the width of the bunk body and the bunk flange(s) is sized such that the bunk is frictionally received in the bunk receiving slot of the watercraft lift. To further secure the bunk in the bunk receiving slot, the bunks can be formed with fastener receiving holes which align with fastener receiving holes in the bunk receiving slot when the bunk is placed in the bunk receiving slot. Fasteners extend through the fastener receiving holes of the bunks into the fastener receiving holes of the body to secure the bunks in the bunk receiving slots. The fastener receiving slots for the bunks can be formed in tabs extending from opposite ends of the bunk (where the bunk is shorter than the bunk receiving slot), or can extend through the body of the bunk.
According to one aspect of the bunks, the bunk top surface is generally concave such that the bunk defines a first rail associated with the first side wall and a second rail associated with the second side wall. In one embodiment of the bunk, the first side wall is taller than the second side wall, such that the first rail is vertically above the second side rail. In this instance, the bunk can be positioned in the bunk receiving slot with either the first or second side wall facing inwardly. In another embodiment, the bunk is generally symmetrical about a vertical plane extending the length of the bunk and extending through the center of the bunk, and the two side walls of the bunk are of generally the same height.
In accordance with another aspect of the bunks, the bunks can extend beyond the back edge of the watercraft lift and can include a ramp portion positioned at a rear end of the bunk. This ramp portion comprises a sloping ramp surface, opposed side walls and a front wall. The ramp portion front wall can have a height at least equal to a height of the rear wall of the lift body.
Corresponding reference numerals will be used throughout the several figures of the drawings.
The following detailed description illustrates the invention by way of example and not by way of claimed limitation. This description will clearly enable one skilled in the art to make and use the claimed invention, and describes several embodiments, adaptations, variations, alternatives and uses of the claimed invention, including what I presently believe is the best mode of carrying out the claimed invention. Additionally, it is to be understood that the claimed invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. The claimed invention is capable of other embodiments and of being practiced or being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
A watercraft receiving section 22 extends rearwardly from the upper deck section 10. The watercraft receiving section 22 includes an upper surface 24, side walls 26 and a rear edge 28. The watercraft receiving section 22 slopes downwardly and rearwardly, such that the side walls 26 are shorter at the rear edge 28 then at the front of the watercraft receiving area. As can be seen, the side walls 26 are a continuation of the side walls 18 of the upper deck section 12. Narrow grooves 27 are formed in the upper surfaces 14 and 24 of the upper deck section 22 and the watercraft receiving section 24. As is known, the grooves 27 facilitate removal of water from the upper surfaces of the watercraft lift.
A first channel 30 forms an entrance 32 to the lift 10, and extends forwardly from the rear edge 28 of the watercraft receiving section 22, and is generally centered between the side walls 26 of the watercraft receiving section 22. The first channel 30 has a steeper slope than the upper surface 24 of the watercraft receiving section 22, and is defined by sloping side walls 34. Rollers 36 are spaced along the first channel 30, with a first roller 36 being positioned at entrance to the channel 30. A second channel 38 extends forwardly from the first channel 30 substantially to the front wall 16 of the lift deck section 12. As seen, the second channel 38 is not as wide as the first channel 30.
A bunk receiving slot 38 is formed on either side of the first channel 30. The slots 38 are parallel to each other and to the first channel 30. The bunk receiving slots 38 extend forwardly from the rear edge 28 of the watercraft receiving area 22, such that the slots are open at the rear edge 28. The slots 38 have a length approximately equal to the length of the first channel 30. Fastener receiving holes 40 are formed in the bottom surface 42 of the channels 38. The fastener receiving holes 40 are shown to be formed in pairs, and are spaced along the channels 38.
The short bunk 50 is shown in more detail in
The bunks 50 are secured to the watercraft lift 10 by positioning a bunk 50 in each slot 38 of the lift. The holes 58 of the attachment flanges 56 are aligned with the openings 40 in the slots 50, and a faster (such as a bolt or screw) is driven through the aligned openings to secure the bunk 50 in place. Although the flanges 70 provide, in essence, a friction fit of the bunk in the slot 38, the use of the fasteners is still preferred, so that the position of the bunk in the slot will not be altered, for example, by repeated mounting and dismounting of a watercraft on the boat lift. As noted above, the two bunks are preferably aligned with each other. The bunks 50 can be secured in the slots with the first (taller) wall 60 facing inward or with the second (shorter) wall 62 facing inward. Again, preferably, both the bunks are positioned in the same way (i.e., either both bunks have the second shorter wall facing inwardly or both bunks have the first taller wall facing inwardly). For demonstrative purposes,
When a watercraft is driven onto the watercraft lift, the center (or keel) of the watercraft will be received in the channel 30 of the lift and the hull of the watercraft will rest on the rollers 36. If the bunks 50 are positioned with the first (taller) wall 60 facing inwardly, the hull will rest on the edge or rail 64. If the bunks 50 are positioned with the second (shorter) wall 62 facing inwardly, the hull can rest on one or both of the edges or rails 66 and 64, depending on the slope and width of the hull. Thus, as can be appreciated, the watercraft lift 10 can be configured to accept differently shaped or sized hulls by positioning the bunks with the first or second side wall facing inwardly. Further, the bunks 50 are replaceable. As the lift is used, the bunks 50 will be worn. When the bunks 50 are worn to the point that they are no longer effective, the bunks can simply be replaced with new bunks, thereby extending the useful life of the watercraft lift 10.
The rail portion 82 of the long bunks 80 include side walls 86, a concave upper surface 88, a bottom surface 90, and a front wall 92. The transition from the side walls 86 to the concave upper surface 88 is rounded, such that the rail portion 82 defines two opposed rounded generally parallel rails 94a,b, which are spaced apart from each other. Holes 96 are positioned at discrete locations along the rail upper surface 88 to be aligned with the fastener receiving openings 40 of the lift slots 38. Fasteners (such as screws or bolts, for example) pass through the openings 96 into the openings 40 to secure the bunk 80 in the slot 38. As seen, the rails 94a,b are vertically above the holes 96. Hence, the top surface of the fasteners will be below the top of the rails 94a,b, and thus, the fasteners will be effectively “hidden” from a watercraft positioned on a lift fitted with the bunks 80. This will reduce the possibility of the fasteners marring the watercraft hull. Lastly, the rail portion 82 includes flanges 98 which extend outwardly from the bottom of the side walls 86. The flanges 98, like the flanges 70 of the short bunk 50 give the bunk 80 an overall width substantially equal to the width of the bunk receiving slot 38 of the float 10, such that the bunk 80 is frictionally received in the slot 38.
The ramp portion 84 of the long bunk 80 includes a sloped ramp surface 100, a generally vertical forward wall 102, a bottom 104, and a side wall 106. The side wall 106 has a first portion 106a which is generally parallel to the side wall 86 of the rail portion 82, and a portion 106b that slopes inwardly and downwardly. Thus, the forward wall 102, as best seen in
Unlike the bunk 50, the bunk 80 provides a ramp surface, which a watercraft will contact prior to contacting the lift 10 providing for a soft (less abrupt) ride onto the lift 10. Thus, the initial impact of the watercraft against the rear edge 28 of the lift will not be as harsh as it might be when the lift is fitted with the short bunks 50. The bunk 80 (and in particular, the ramp surface 100) can be considered sacrificial. Because the bunk 80 will bear the initial impact from the watercraft, the rear edge of the lift 10 will not be degraded as quickly as it might be if the bunks 80 did not provide a ramp surface. When the ramp surface 100 is no longer useful, the bunks 80 can be replaced. Hence, the bunks 80 can extend the useful life of the lift 10. Unlike the short bunks 50, the long bunks 80 are symmetrical about a vertical plane extending through the length of, and through the center of the bunks. Thus, unlike the bunks 50, the bunks 80 cannot be mounted in different positions to accept different sized watercraft.
In practice, the lift 10 may be fitted with the short bunks 50 when smaller watercraft, such as PWC's and boats having a length less than 20′ for example, are docked on the lift 10. However, the lift 10 may be fitted with the long bunks 80 when larger (and heavier) watercraft are docked on the lift 10, for it is with the larger and heavier watercraft that the life-extending properties of the long bunk (i.e., the benefits of the ramp surface 100) become more pronounced.
As various changes could be made in the above constructions without departing from the scope of the claimed invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
This application is the US National Stage of International App. No. PCT/US2011/060093 filed Nov. 10, 2011, and which claims priority to U.S. App. No. 61/545,395 filed Oct. 10, 2011, both of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/060093 | 11/10/2011 | WO | 00 | 4/7/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/055378 | 4/18/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5695331 | Nutter et al. | Dec 1997 | A |
5875727 | Elson et al. | Mar 1999 | A |
6422167 | Bridges | Jul 2002 | B1 |
7063033 | Jackson | Jun 2006 | B1 |
7069872 | Ostreng et al. | Jul 2006 | B2 |
7117809 | Lamoureux et al. | Oct 2006 | B2 |
7293522 | Elson | Nov 2007 | B1 |
7552495 | Rogerson | Jun 2009 | B1 |
7856936 | Nemethy | Dec 2010 | B2 |
20050166822 | Brown | Aug 2005 | A1 |
20090044740 | Imel et al. | Feb 2009 | A1 |
Entry |
---|
International Search Report corresponding to International Application No. PCT/US2011/060093 mailed Aug. 27, 2012. |
International Written Opinion corresponding to International Application No. PCT/US2011/060093 mailed Aug. 27, 2012. |
Number | Date | Country | |
---|---|---|---|
20140248083 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61545395 | Oct 2011 | US |