The invention relates to a drive system having an internal combustion engine for a motor vehicle, and to a method for operation of a drive system having an internal combustion engine for a motor vehicle.
In the case of motor vehicles with a vehicle power supply system voltage of 14V, starters are used in order to start the internal combustion engine. In addition, generators are provided in the vehicle, and are used, inter alia and in particular, for so-called recuperation of, for example, braking energy. Both the starter and the generator are electrical machines. The introduction of the so-called start/stop mode and the use of the recuperated energy can lead to sustained fuel savings. However, the start/stop mode in particular cannot be carried out with present-day mass-produced starters and their mechanical links to a drive train, owing to convenience and life problems. The mechanical link to a drive train is provided by engagement or by means of a dry transmission. The starter and generator, as components, can each be optimized for their particular function.
If it is intended to use only one electrical machine both for starter operation and for generator operation in a vehicle power supply system, then difficulties arise in that, on the one hand, the necessary starting torque must be provided for the internal combustion engine while, on the other hand, sufficient generator power shall be produced, with high efficiency, over the entire rotation speed range of the internal combustion engine. Since, in consequence, this electrical machine must be connected to the crankshaft or to the drive shaft all the time, the choice of a high mechanical step-up ratio in its design in order to produce the starting torque is limited to a very much lower value, as a result of increased speed, than is the case with present-day mass-produced starters which can be disengaged. These difficulties are further exacerbated in that the electrical machine which is operated as a starter/generator and the architecture of the vehicle power supply system are intended to be used, preferably without any changes, in all types of engine in a range, in order to avoid different build standards. This problem is a result of the vehicle power supply system battery or vehicle power supply system energy store which is normally used, and which supplies the electrical machine with electrical energy and whose terminal power is often too low for starting by means of a starter/generator, in particular in 14V vehicle power supply systems.
EP 0 876 554 B1 discloses a starter/generator for an internal combustion engine for a motor vehicle, which has an inverter and an electrical rotating-field machine, with the latter carrying out the starter and generator function. The inverter is provided with an intermediate circuit whose voltage level is higher than that of a vehicle power supply system. The intermediate circuit is equipped with an energy store in order to store energy for starter operation. The energy is taken from the intermediate circuit when the electrical machine is being used for starting, and the energy is fed into the intermediate circuit at a higher voltage level when being used as a generator. The increased voltage level is preferably 350V.
One object of the invention is to provide a drive system for a motor vehicle having an internal combustion engine and an electrical machine. A further object of the invention is to provide a method for operation of a drive system such as this.
According to the invention, the object is achieved by the features of the independent patent claims.
The invention is characterized in that a first energy store and a second energy store, which preferably corresponds to a vehicle power supply system battery, are connected to one another in such a way that an electrical voltage which is higher than the vehicle power supply system voltage is produced when the electrical machine is being used for starting.
The first energy store may be in the form of a high-power store with a low energy content, which produces a higher current on its own or together with the second energy store than the second energy store on its own.
The invention has the advantage that the required starting power, in particular the required cold starting power, and the electrical voltage which is provided for the electrical machine during the starting process, as well as the available electric current, can be scaled as required. This scalability of the starting power allows the use of the drive system according to the invention with different engine types in a range of vehicles.
The use of two energy stores or power stores results in a high recuperation potential. Furthermore, the use of two energy stores results in the cycle load on the individual energy stores, in particular on the vehicle power supply system energy store or the vehicle power supply system battery, being low. The use of the invention leads to the required driving convenience for the start/stop mode, and to the components involved having a longer life. A stabilized vehicle power supply system can be provided for the start/stop mode and for recuperation.
Particularly in comparison to a combination of a starter/generator system with a two-voltage vehicle power supply system whose rated voltages are 14V and 42V, with a vehicle power supply system with a rated voltage of 14V, the invention is characterized by considerably lower implementation costs.
Further advantageous refinements of the invention will become evident from the dependent claims and from the exemplary embodiments which are described in the following text with reference to the drawing, in which:
A so-called super capacitor, also referred to as a super cap or ultra cap, is preferably used as the first energy store 3. Alternatively, a battery or a combination of a super capacitor and a battery may also be used. A battery, in particular a vehicle battery, is preferably used as the second energy store 4. Alternatively, a super capacitor or a combination of a battery and a super capacitor may be used. The rated voltage of the vehicle power supply system is preferably 14V and the rated voltage of the second energy store 4 is preferably 12V.
The second pole, which is not annotated in any more detail, of the first energy store 3 is connected to ground 9. The inverter 2 is connected via a line 6 to a first pole, which is not annotated in any more detail, of the second energy store 4. The second pole, which is not annotated in any more detail, of the second energy store 4 is connected to ground 9. The first pole of the first energy store 3 is connected via a line 8 to the first pole, which is not annotated in any more detail, of the second energy store 4. A preferably bidirectional DC/DC converter 12 is arranged in the line 8. The first energy store 3 and the second energy store 4 are connected in parallel. A vehicle power supply system 5 is connected via a line which is not annotated in any more detail to the line 6 and/or to the first pole of the second energy store 4. Electrical loads such as fans, windshield wiper motors, controllers, lights and incandescent bulbs are arranged, for example, in the vehicle power supply system 5.
A switching unit 10 is provided in the line 6 between the inverter 2 and the second energy store 4. A switching unit 10 is likewise provided in the line 7 between the inverter 2 and the first energy store 3. The switching units 10 are preferably in the form of two switching elements, which are not annotated in any more detail and which may, if required, have so-called associated reverse diodes, which are not annotated in any more detail. The switching elements of the switching unit 10 can be driven via a control unit 11. This drive is provided via lines which are not annotated in any more detail.
During the starting process and while providing drive assistance for the internal combustion engine, the power supply for the electrical machine 1 may be provided either only by the first energy store 3 or only by the second energy store 4, or by both energy stores 3 and 4. The open-loop and/or closed-loop control which is used by the energy stores 3, 4 to supply the electrical machine 1 is provided by the control unit 11 and the switching units 10. The recuperation or recovering and storage of electrical energy from, by way of example, the braking energy of a motor vehicle are provided by storage of the energy in the first energy store 3 or by storage of the energy in the second energy store 4, or by storage of the energy in both energy stores 3 and 4. The electrical energy which is recovered can also be fed directly to the vehicle power supply system 5 via the line 6. This direct feed to the vehicle power supply system 5 can be provided in parallel with the charging of the second energy store 4. The vehicle power supply system 5 may also be supplied from the first energy store 3 and/or from the second energy store 4, provided that they or it have an appropriate amount of charge. Particularly after the vehicle has been stationary for a relatively long time, it may be necessary to charge the first energy store 3, which is preferably a super capacitor or a super cap/ultra cap. This charging process can be carried out by means of the second battery 4, or by means of recuperation from recovered energy.
The first pole of the first energy store 3 is preferably at a potential which is between 8 and 20 V. The first energy store 3 preferably has a rated voltage of 20 V. The first pole of the second energy store 4 is preferably at a potential of 14 V. The second energy store 4 preferably has a rated voltage of 12 V.
A switching unit 13 is arranged between the inverter 2 and the energy stores 3, 4. This switching unit preferably contains two switching elements, which are not annotated in any more detail, for example semiconductor switches, which may be associated with reverse diodes, which are not annotated in any more detail. The switching elements in the switching unit 13 are driven via a control unit 11, which is not illustrated. One switching element in the switching unit 13 is arranged in the line 7 between the inverter 2 and the first energy store 3. The second switching element in the switching unit 13 is arranged in the line 6 between the inverter 2 and the second energy store 4. The switching elements in the switching unit 13 are used to control the current flows via the energy stores 3, 4.
During starting, in particular cold starting, and when providing drive assistance for the internal combustion engine, so-called boost, the current preferably flows from the vehicle power supply system and the second energy store 4 via the first energy store 3 to the electrical machine 1. During hot starting, on the other hand, it may be sufficient to draw the electrical energy only from the second energy store 4. Recovered energy, for example from braking processes of a motor vehicle, can be fed into the vehicle power supply system via the line 7 and the first energy store 3, for recuperation and for supplying the vehicle power supply system. The recovered energy may also be fed directly into the vehicle power supply system via the line 6, for example if the first energy store 3 is fully charged. The recovered energy may also be used to charge the second energy store 4.
If the first energy store 3 has been charged with a certain amount of charge, for example by recuperation, then the vehicle power supply system can be supplied with electrical energy from the first energy store 3. The vehicle power supply system can likewise be supplied with electrical energy by means of the second energy store 4. In order to prepare for a starting process, in particular a cold start, the first energy store 3 may be charged with electrical energy from the second energy store 4.
The second pole of the first energy store 3 and the first pole of the second energy store 4 are preferably at a potential of 14 V. The first pole of the first energy store 3 is preferably at a potential of 14 V+a voltage with the value x V. This additional, additive voltage x is obtained from the voltage across the first energy store 3. The voltage with which the electrical machine can be supplied is thus obtained from addition of the voltage across the first energy store 3 to the potential at the first pole of the second energy store 4 and at the second pole of the first energy store 3.
The value of the additional voltage x may be matched to the specific requirements of the engine type or the vehicle within a range. Voltage x which can be scaled particularly easily can be produced by using two or more super caps or super capacitors connected to one another as the first energy store 3, designed, for example, in steps of about 2.5 V. The individual super caps are preferably connected in series with one another. Only a minimum amount of additional storage volume is thus advantageously required for the second energy store 4, in the form of the first energy store 3, in order to achieve the increase of x in the voltage potential.
In this embodiment, starting processes and assistance to the drive (boost) can advantageously be provided solely by the first energy store 3. Recuperation and storage of recovered energy can likewise be carried out solely in the first energy store 3. Starting processes, assistance to the drive and recuperation need no longer necessarily be passed via the second energy store 4. This leads to a reduction in the cycle load and thus to lengthening of the life of the second energy store 4. This also leads to stabilization of the vehicle power supply system, and to a stabilized vehicle power supply system. The second energy store 4 is preferably used for assistance during cold starting.
In the exemplary embodiments shown in
In
The switching unit 13 has two switching elements which are not annotated in any more detail and which may have associated reverse diodes, which are not annotated in any more detail. The junction point between the inverter 2 and the switching unit 13, via a line which is not annotated in any more detail, is located between the two switching elements. The pole at the lower potential of the switching unit 13 is preferably connected via a line 7 to a second pole, which is not annotated in any more detail, of a first energy store 3. The pole of the switching unit 13 which is at a higher potential than the other is preferably connected to ground 9. A second pole, which is not annotated in any more detail, of the first energy store 3 is likewise preferably connected to ground 9.
The second pole of the first energy store 3 is connected via a line 8 to the line 6 and to the first pole of the second energy store 4. A DC/DC converter 12 is arranged in the line 8 and is connected to ground 9 via a line which is not annotated in any more detail. The vehicle bodywork preferably forms the ground 9.
The first pole of the second energy store 4 is preferably at a potential of 14 V. The second pole of the first energy store 3 is preferably at a potential of −x V. Thus, overall, the electrical machine 1 can be supplied with a maximum of 14 V−(−x) V=14 V+x V from the first and from the second energy stores 3 and 4. The voltage with which the electrical machine can be supplied is thus obtained from subtraction of the potential at the second pole of the first energy store 3 from the potential at the first pole of the second energy store 4, or from addition of the magnitude of the potential at the second pole of the first energy store 3 to the potential at the first pole of the second energy store 4.
In the embodiments illustrated in
The electronic units which are illustrated in the embodiments shown in
The described embodiments may be used not only for 14 V vehicle power supply systems, but are also suitable for combination with vehicle power supply systems with other rated voltages, such as a 42 V vehicle power supply system. A corresponding vehicle power supply system battery or a corresponding energy store 4 must be provided. The second energy store 4 for a 42 V vehicle power supply system should preferably have a rated voltage of 36 V.
The voltage which is provided by the invention of 14+x V, and the rated voltage of the vehicle power supply system of +x V may be used as the rated voltage for a further vehicle power supply system, which may be integrated in a vehicle.
It should also be noted that a different potential may also be used rather than the ground 9 that is used in the exemplary embodiments and whose potential is 0 V.
Number | Date | Country | Kind |
---|---|---|---|
102 23 320 | May 2002 | DE | national |
102 31 379 | Jul 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP03/04021 | 4/17/2003 | WO | 00 | 8/24/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/099605 | 12/4/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3816805 | Terry | Jun 1974 | A |
4156171 | Kofink | May 1979 | A |
4210856 | Taylor | Jul 1980 | A |
4672294 | Norton | Jun 1987 | A |
4845465 | Kruse et al. | Jul 1989 | A |
5175439 | Harer et al. | Dec 1992 | A |
5373196 | Faley | Dec 1994 | A |
5513718 | Suzuki et al. | May 1996 | A |
5710699 | King et al. | Jan 1998 | A |
5717310 | Sakai et al. | Feb 1998 | A |
5952813 | Ochiai | Sep 1999 | A |
5977652 | Frey et al. | Nov 1999 | A |
5977657 | Van Lerberghe | Nov 1999 | A |
6134875 | Massey | Oct 2000 | A |
6151234 | Oldenkamp | Nov 2000 | A |
6202615 | Pels et al. | Mar 2001 | B1 |
6218643 | Iwata et al. | Apr 2001 | B1 |
6275004 | Tamai et al. | Aug 2001 | B1 |
6323608 | Ozawa | Nov 2001 | B1 |
6384489 | Bluemel et al. | May 2002 | B1 |
6420793 | Gale et al. | Jul 2002 | B1 |
6426608 | Amano et al. | Jul 2002 | B2 |
6507506 | Pinas et al. | Jan 2003 | B1 |
6515455 | Hidaka | Feb 2003 | B2 |
6583519 | Aberle et al. | Jun 2003 | B2 |
6861767 | Amano et al. | Mar 2005 | B2 |
6876556 | Zhu et al. | Apr 2005 | B2 |
6962135 | Kahlon et al. | Nov 2005 | B2 |
6979977 | Amano et al. | Dec 2005 | B2 |
6982499 | Kachi et al. | Jan 2006 | B1 |
7096985 | Charaudeau et al. | Aug 2006 | B2 |
7489093 | King et al. | Feb 2009 | B2 |
7513323 | Gronbach | Apr 2009 | B2 |
20020167291 | Imai et al. | Nov 2002 | A1 |
Number | Date | Country |
---|---|---|
3717716 | Oct 1987 | DE |
4135025 | Apr 1992 | DE |
19903427 | Aug 2000 | DE |
19910330 | Sep 2000 | DE |
0410559 | Jan 1991 | EP |
0876554 | Nov 2000 | EP |
1 465 693 | Feb 1977 | GB |
2-245446 | Oct 1990 | JP |
11-82253 | Mar 1999 | JP |
11-107892 | Apr 1999 | JP |
2000-291983 | Oct 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20080220932 A1 | Sep 2008 | US |