None.
None.
None.
1. Field of the Invention
The present invention relates generally to drive system configuration and operation in electrophotographic (EP) printing machines, and, more particularly, to a drive system with multiple motor-and-gear-train configurations for reduction of jitter and noise and shutoff of color developer drive assemblies during black only mode operation for preservation of color developer useful life in the EP printing machine.
2. Description of the Related Art
Through a variety of mechanisms, engaged or meshed mechanical gears, or gears and pinions, generate vibration, or jitter, and noise while running. While gears meshing under load will generate some noise, the level of noise is exacerbated when the gears are subjected to unsteady and/or unbalanced forces. Tooth-to-tooth spacing errors, gear teeth elasticity, and intentional and unintentional deviations of tooth running surfaces from ideal configurations, generate unsteady forces and motion that results in vibration and noise. Such noise and vibration sources may be found in a wide variety of gear types, including spur, helical, worm and bevel type gears. By way of definition, gear mesh frequencies come from the individual impacts of gear teeth against each other, and the gear mesh frequency is equal to the number of teeth on the gear times the gear (or rotor) speeds, in revolutions per minute (rpm). In other words, mesh frequency is the rate at which gear teeth pairs contact as they pass through mesh, expressed in Hz.
The vibration (and noise) spectra generated by meshed and running gears is primarily tonal in nature. There are strong tones corresponding to the gear mesh frequency and harmonics thereof. In addition, there are tones corresponding to the rotation rate of each gear, and harmonics thereof. Gear mesh tonal noise is different from and in addition to tonal noise that appears at frequencies related to the passage of armature slots within the motors, or related to harmonics of line frequency if an SCR drive is used. Furthermore, gear mesh noise is present regardless of the type of prime mover or drive mechanism.
Vibration, or jitter, and noise normally accompany satisfactory operation of many machines utilizing motors and gear trains for transmitting motion. Electrophotographic (EP) printing machines are no exception. It is a characteristic of EP printing machines that they typically involve repetitive starts and stops in the normal course of their operations such that engaging and meshing of gears over the operating life of the EP machine gradually and inevitably contribute to a normal expected level of gear wear, vibration or jitter and noise.
Unfortunately a further characteristic of EP printing machines also contributes to gear wear, vibration or jitter and noise over and above this expected level. This characteristic is that it is the inherent nature of EP printing machines that many of their major functional components are consumables and thus must be replaced by new ones after differing periods of usage over the operating lifetimes of the machines. These consumable components include toner cartridges, developer units, photoconductive (PC) drum units, fuser units and the like. (The PC drum unit and toner cartridge are typically a two-piece consumable component where the toner cartridge fits into the PC drum unit; then they slide together into the machine. These two consumables typically have different periods of usage with the PC drum being the longer of the two.) Each consumable component has gear(s) which mesh with corresponding gears of the drive train in the machine. The drive train components, however, are usually not part of the consumable items and so remain with the machine while the consumable components are replaced, some many times during the operating life of the machine. These non-replaced drive train components will inherently undergo wear over time and so each time a new consumable component is installed in the machine an old, worn gear of the drive train must interact and mesh with a new, non-worn gear of the replacement components. Sub-optimal gear engagements will frequently result due to even small losses of control over gear center distances and imposition of unbalancing forces as a result of these interactions and also from the repeated separating and re-engaging of gears in the recurring making and breaking of the drive train couplings with the consumable components. Thus, further increased vibration, or jitter, and noise may occur above the normal expected levels.
One approach to addressing the problem of gear mesh vibration and noise is disclosed in U.S. Pat. No. 5,809,843 to Barger et al. This patent proposes to cancel gear vibration and noise at gear meshing frequencies by imposing a canceling drive torque or force on a driven gear set. To accomplish this, sensors are located proximate to meshing gears to receive information representative of vibration and noise generated at the meshing gears. The noise information received is provided to a control mechanism that processes the noise information to generate a corresponding drive torque. The drive torque so generated corresponding to the noise information is applied to a drive shaft to reduce vibration and noise of the gear assembly at gear meshing frequencies. The drive torque applied to the drive shaft is thought to constitute an appropriate corrective torque and/or linear force to impose on a gear/shaft combination to effect a displacement at the gear tooth meshing interface so as to cancel the effects of imperfections including those attributable to gear tooth spacing, tooth shape, or the like. The corrective torque or force is imposed with an appropriate frequency content, amplitude and phase that result in desired noise and/or vibration reduction at points of interest. Thus, the approach of Barger et al. is primarily one of gear mesh vibration and noise generated feedback and cancellation at gear meshing frequencies.
While the approach of Barger et al. may be satisfactory in use for the specific applications for which it was designed, for example, electric motors, gas turbine systems, diesel generators, internal combustion engines or the like, it does not seem to be an appropriate approach calculated to provide a practical solution to the problem of vibration, or jitter, and noise as generated in EP printing machines. It would likely cost too much to try to implement and be highly unlikely to function satisfactorily in the start and stop operational environment of an EP printing machine. It appears to constitute a solution that is intended to operate at a level of precision that is not likely to be achievable or necessary in the EP printing machine operating environment.
Thus, there is still a need for an innovation that will overcome the above mentioned problem of machine gear mesh vibration, or jitter, and noise in a cost-effective manner.
The present invention meets this need by providing an innovation that is tailored in its practicality and cost to the particular mechanical operating environment of the EP printing machine. The approach underlying this innovation is to address the problem of vibration, or jitter, and noise by separating or spreading the torque across more motor power sources, particularly across three motors rather than two, instead of attempting to cancel vibration, or jitter, and noise by production and application of a corrective torque. This approach is a more cost-effective one in that its implementation has been accomplished in a way that has many added benefits besides just reducing the original problem of jitter and noise. Most of these benefits are realized in more cost effective maintenance in terms of promotion of longer life for developers, reduction in the number of replaceable components, and lower cost to provide thermal cooling ducts and run wire harnesses to all drive motors confined to one location.
Accordingly, in one aspect of the present invention, an EP printing machine drive system is provided having first, second and third motor-and-gear-train configurations respectively drivingly coupled to first, second and third combinations of developer drive assemblies and photoconductive drum drive assemblies s so as to operate the same and in which the first motor-and-gear-train configuration is operable at a first motor gear mesh frequency whereas the second motor-and-gear-train configuration is operable at a second motor gear mesh frequency different from the first gear mesh frequency such that the frequency peaks are lower than heretofore and are not additive and thus the problem of vibration, or jitter, and noise are reduced and the print quality is enhanced.
In another aspect of the present invention, the first, second and third motor-and-gear-train configurations of the drive system, in their respective drivingly coupled relationships with the first, second and third combinations, separate operation of color developer drive assemblies from operation of color photoconductive drum drive assemblies such that the first combination is multiple color developer drive assemblies, the second combination is multiple color photoconductive drum drive assemblies and the third combination is one color photoconductive drum drive assembly together with the black developer drive assemblies and black photoconductive drum assemblies such that prolongation of the useful life of color developer drive assemblies is promoted.
In a further aspect of the present invention, the first, second and third motor-and-gear-train configurations of the drive system are mounted on a frame at a common location with drive motors for other functional components of the machine which facilitates initial installation on the frame and maintenance thereafter at lower cost due to separation of the drive motors from replaceable consumable components of the machine.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numerals refer to like, corresponding, or similar, elements throughout the views.
Referring now to
At a second image transfer station 34, the composite toner image, i.e., the yellow (Y), cyan (C), magenta (M) and black (K) toner images combined, is transferred from the ITM belt 28 to a substrate 36. The second image transfer station 34 includes a backup roller 38, on the inside of the ITM belt 28, and a transfer roller 40, positioned opposite the backup roller 38 and on the opposite or outside of the ITM belt 28. Substrates 36, such as paper, cardstock, labels, envelopes or transparencies, are fed from a substrate supply 42 to the second image transfer station 34 so as to be in registration with the composite toner image on the ITM belt 28. Structure for conveying substrates from the supply 42 to the second image transfer station 34 may comprise a pick mechanism 44 that draws a top sheet from the supply 42 and a speed compensation assembly 46. The composite image is then transferred from the ITM belt 28 to the substrate 36. Thereafter, the toned substrate 36 passes through a fuser assembly 48, where the toner image is fused to the substrate 36. The substrate 36 including the fused toner image continues along a paper path 50 until it exits the printing machine 10 into an exit tray 52.
In certain prior art EP printing machines, their gear trains have been configured to drive the developer drive assemblies and PC drum off of the same motor. This often leads to the motor gear mesh frequency being offensive from the standpoint of vibration, or jitter, and noise. If developer torque and drum torque go through the same gear mesh frequency, the noise level and potential for jitter are higher. This occurs most at the motor gear mesh frequency as it is generally at the highest frequency and most offensive to the human ear in the A weighting scale of noise.
Referring now to
The drive system 60 of the EP printing machine 62 basically includes a frame, which takes the form of a frame subassembly 72, and multiple (and more particularly, three), first, second and third, motor-and-gear-train configurations, generally designated 74, 76, 78. As seen in
Referring to
The second motor-and-gear-train configuration 76 includes a second drive motor 132, operatively mounted to the outer mounting plate 72A of the frame subassembly 72 and having a rotary output drive shaft 134, and a second gear train 136 drivingly coupling the drive shaft 134 of the second drive motor 132 to a second combination of the color drum drives so as to operate them by supplying rotational motion at a preset rpm level to turn them. The second combination specifically includes two of the three color drum drives, the Y, C color drum drive assemblies 86, 88, which are the yellow and cyan photoconductive drum drive assemblies. The second gear train 136 includes a plurality of intermeshing gears of which one gear 138 is attached to the rotary output shaft 134 of the second drive motor 132 and other gears 140, 142 and 148 are respectively attached to the rotary drive couplings 144, 146 of Y, C drum drive assemblies 86, 88. The second gear train 136 further includes a double-level idler gear 148 rotatably mounted on the outer mounting plate 72 B and interposed between, meshed with, and thus transferring rotary driving motion from the gear 138 on the output shaft 134 of the second drive motor 132 to the gears 140, 142 and 148 on the drive couplings 144, 146 of the two color drum drive assemblies 86, 88.
The third motor-and-gear-train configuration 78 includes a third drive motor 150, operatively mounted to the outer mounting plate 72A of the frame subassembly 72 and having a rotary output drive shaft 152, and a third gear train 154 drivingly coupling the drive shaft 152 of the third drive motor 150 to a third combination, namely, the one M color drum drive assembly 90 with K developer drive assembly 92 and K drum drive assembly 94 so as to operate them by supplying rotational motion at a present rpm level to turn them. Thus, the third combination specifically includes only the magenta color photoconductive drum drive assembly 90 with the black developer drive assembly 92 and black drum drive assembly 94. The third gear train 154 includes a plurality of intermeshing gears of which one gear is attached to the rotary output shaft 152 of the third drive motor 150 and other gears 158, 160, 162 are respectively attached to rotary drive couplings 164, 166, 168 of the M drum drive assembly 90, the K developer drive assembly 92 and the K drum drive assembly 94. The third gear train 154 further includes a pair of double-level idler gears 170, 172 rotatably mounted to the outer mounting plate 72A and respectively interposed between, meshed with and thus transferring rotary driving motion from the one gear 156 on the output shaft 152 of the third drive motor 150 to the gear 158 on the drive coupling 164 of the M drum drive assembly 90 and to the gears 160, 162 on the drive couplings 166, 168 of the K developer drive assembly 92 and K drum drive assembly 94.
Thus, as mentioned previously, the first, second and third motor-and-gear-train configurations 74, 76, 78 of the drive system 60 supply rotary drive motion to turn the Y, C and M color developer drive assemblies 80, 82, 84 separate from the rotary drive motion supplied to turn the Y, C and M color drum drive assemblies 86, 88, 90 in view that each of the configurations 74, 76, 78 has its own drive motor 102, 132, 150. The drive system 60 of the present invention furthermore separates the rotary drive motion supplied to turn the color developer drive assemblies 80, 82, 84 from that supplied to turn the color drum drive assemblies 86, 88, 90 of the machine 62 in such a way the jitter and noise are reduced to a substantially lower level. This is because the first motor-and-gear-train configuration/Y, C & M color developer motor gear mesh and second motor-and-gear-train configuration/Y & C color drum motor gear mesh are preset to operate at different frequencies. For example, without being limited thereto, the second motor-and-gear-train configuration/Y & C color drum motor gear mesh frequency (as well as the third motor-and-gear-train configuration/M drum and K developer and K drum motor gear mesh (frequency) are preset to operate at about 498 hz, whereas the first motor-and-gear-train configuration/Y, C & M color developer motor gear mesh frequency is preset to operate at about 451 hz. Changing the preset motor gear mesh frequency is brought about by changing either the number of teeth on a gear or the rotational speed of the motor driving the gear. By presetting gear mesh frequencies different for the first and second motor-and-gear-train configurations the frequencies are then not mutually reinforcing and additive and instead function to spread the sound energy over a larger area of the machine 62 thereby reducing overall noise peaks. This brought about a significant reduction of overall noise from 57 dbA for a prior art two-motor system machine to 53 dbA for an EP printing machine in which the drive system 60 of the present invention was implemented.
To summarize, as described above, the drive system 60 of the present invention has abandoned the two-motor approach of a prior art drive system which had elevated jitter and noise due to the two motors of the system which concurrently operated the developer drive assemblies and drum drive assemblies also operate at substantially the same motor gear mesh frequency. In its place, the drive system 60 of the present invention has adopted a three-motor approach which operates with significantly lower jitter and noise due to at least two of three motors operating at different gear mesh frequencies and with more cost-effectiveness by being setup to operate, that is, to drive or turn, one or the other but not both of the color developer drive assemblies and color drum drive assemblies This leads to the ability to shut off the drive motor to the color developer drive assemblies when operating in the black only mode. If the color developer drive assemblies were to continue to operate and turn during black only developer operation, this churning of the color developers drive assemblies decreases their useful life as they rotate but are not being used. These innovations lead to higher print quality as well as a quieter machine compared to prior art two-motor color machines.
Additional cost savings are realized in terms of wire harnessing, thermal ducting, field replaceable subsystems and gear layouts. The drive system 60 is a cost effective maintenance solution to replacing worn out parts. The cartridges, developers, fuser and belt transport can all be replaced without replacing expensive motors. All motors are located on one frame subassembly or at a common location, which will last the life of the machine. The drum drive assemblies, developer drive assemblies, belt transport and fuser all have a life span less than the machine. With the drive motors for developer drive assemblies and drum drive assemblies, fuser, belt transport and retraction located together on the frame subassembly away from and outside of the location of the replaceable (consumable) components, the cost of maintenance as well as the cost to run wire harnesses and add thermal cooling duct are reduced.
The foregoing description of several embodiments of the invention has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
4796050 | Furuta et al. | Jan 1989 | A |
5319418 | Fujimoto et al. | Jun 1994 | A |
6473580 | Inomata | Oct 2002 | B1 |
7366445 | Hoashi et al. | Apr 2008 | B2 |
7672614 | Kang et al. | Mar 2010 | B2 |
20030170048 | Ahn | Sep 2003 | A1 |
20050025523 | Iwasaki et al. | Feb 2005 | A1 |
20050141921 | Baek | Jun 2005 | A1 |
20050286932 | Kim et al. | Dec 2005 | A1 |
20050286933 | Kim et al. | Dec 2005 | A1 |
20060153592 | Shimura et al. | Jul 2006 | A1 |
20070201902 | Murayama | Aug 2007 | A1 |
20070231007 | Arakawa | Oct 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20090190956 A1 | Jul 2009 | US |