The present invention relates to surgical instruments and, in various embodiments, to surgical cutting and stapling instruments and staple cartridges therefor that are designed to cut and staple tissue.
The features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate certain embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Applicant of the present application owns the following patent applications that were filed on Mar. 1, 2013 and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application also owns the following patent applications that were filed on Mar. 14, 2013 even date herewith and which are each herein incorporated by reference in their respective entireties:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the various embodiments of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment”, or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation. Such modifications and variations are intended to be included within the scope of the present invention.
The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” referring to the portion closest to the clinician and the term “distal” referring to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the person of ordinary skill in the art will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, those of ordinary skill in the art will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongated shaft of a surgical instrument can be advanced.
It should be appreciated that spatial terms such as vertical, horizontal, right, left etc., are given herein with reference to the figures assuming that the longitudinal axis of the surgical instrument 100 is co-axial to the central axis of the shaft 104, with the triggers 114, 116 extending downwardly at an acute angle from the bottom of the handle 103. In actual practice, however, the surgical instrument 100 may be oriented at various angles and as such these spatial terms are used relative to the surgical instrument 100 itself. Further, proximal is used to denote a perspective of a clinician who is behind the handle 103 who places the end effector 102 distal, or away from him or herself. As used herein, the phrase, “substantially transverse to the longitudinal axis” where the “longitudinal axis” is the axis of the shaft, refers to a direction that is nearly perpendicular to the longitudinal axis. It will be appreciated, however, that directions that deviate some from perpendicular to the longitudinal axis are also substantially transverse to the longitudinal axis.
Various embodiments disclosed herein are directed to instruments having an articulation joint driven by bending cables or bands.
Further to the above, band portions 202, 204 may extend from the boss 206, through the articulation joint 110 and along the shaft 104 to the articulation control 112, shown in
Referring again to
A distally projecting end of the firing bar 172 can be attached to an E-beam 178 that can, among other things, assist in spacing the anvil 120 from a staple cartridge 118 positioned in the elongate channel 198 when the anvil 120 is in a closed position. The E-beam 178 can also include a sharpened cutting edge 182 which can be used to sever tissue as the E-beam 178 is advanced distally by the firing bar 172. In operation, the E-beam 178 can also actuate, or fire, the staple cartridge 118. The staple cartridge 118 can include a molded cartridge body 194 that holds a plurality of staples 191 resting upon staple drivers 192 within respective upwardly open staple cavities 195. A wedge sled 190 is driven distally by the E-beam 178, sliding upon a cartridge tray 196 that holds together the various components of the replaceable staple cartridge 118. The wedge sled 190 upwardly cams the staple drivers 192 to force out the staples 191 into deforming contact with the anvil 120 while a cutting surface 182 of the E-beam 178 severs clamped tissue.
Further to the above, the E-beam 178 can include upper pins 180 which engage the anvil 120 during firing. The E-beam 178 can further include middle pins 184 and a bottom foot 186 which can engage various portions of the cartridge body 194, cartridge tray 196 and elongate channel 198. When a staple cartridge 118 is positioned within the elongate channel 198, a slot 193 defined in the cartridge body 194 can be aligned with a slot 197 defined in the cartridge tray 196 and a slot 189 defined in the elongate channel 198. In use, the E-beam 178 can slide through the aligned slots 193, 197, and 189 wherein, as indicated in
In use, the closure sleeve assembly 121 is translated distally to close the anvil 120, for example, in response to the actuation of the closure trigger 114. The anvil 120 is closed by distally translating the closure tube section 126, and thus the sleeve assembly 121, causing it to strike a proximal surface on the anvil 120 located in
In operation, the clinician may articulate the end effector 102 of the instrument 100 relative to the shaft 104 about pivot 110 by pushing the control 112 laterally. From the neutral position, the clinician may articulate the end effector 102 to the left relative to the shaft 104 by providing a lateral force to the left side of the control 112. In response to force, the articulation slide 208 may be pushed at least partially into the frame 212. As the slide 208 is pushed into the frame 212, the slot 210 as well as band portion 204 may be translated across the elongate shaft 104 in a transverse direction, for example, a direction substantially transverse, or perpendicular, to the longitudinal axis of the shaft 104. Accordingly, a force is applied to band portion 204, causing it to resiliently bend and/or displace from its initial pre-bent position toward the opposite side of the shaft 104. Concurrently, band portion 202 is relaxed from its initial pre-bent position. Such movement of the band portion 204, coupled with the straightening of band portion 202, can apply a counter-clockwise rotational force at boss 206 which in turn causes the boss 206 and end effector 102 to pivot to the left about the articulation pivot 110 to a desired angle relative to the axis of the shaft 104 as shown in
It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping the handle 306 of the instrument 310. Thus, the end effector 312 is distal with respect to the more proximal handle 306. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical” and “horizontal” are used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
The end effector 312 can include, among other things, a staple channel 322 and a pivotally translatable clamping member, such as an anvil 324, for example. The handle 306 of the instrument 310 may include a closure trigger 318 and a firing trigger 320 for actuating the end effector 312. It will be appreciated that instruments having end effectors directed to different surgical tasks may have different numbers or types of triggers or other suitable controls for operating the end effector 312. The handle 306 can include a downwardly extending pistol grip 326 toward which the closure trigger 318 is pivotally drawn by the clinician to cause clamping or closing of the anvil 324 toward the staple channel 322 of the end effector 312 to thereby clamp tissue positioned between the anvil 324 and channel 322. In other embodiments, different types of clamping members in addition to or lieu of the anvil 324 could be used. The handle 306 can further include a lock which can be configured to releasably hold the closure trigger 318 in its closed position. More details regarding embodiments of an exemplary closure system for closing (or clamping) the anvil 324 of the end effector 312 by retracting the closure trigger 318 are provided in U.S. Pat. No. 7,000,818, entitled SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS, which issued on Feb. 21, 2006, U.S. Pat. No. 7,422,139, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK, which issued on Sep. 9, 2008, and U.S. Pat. No. 7,464,849, entitled ELECTRO-MECHANICAL SURGICAL INSTRUMENT WITH CLOSURE SYSTEM AND ANVIL ALIGNMENT COMPONENTS, which issued on Dec. 16, 2008, the entire disclosures of which are incorporated by reference herein.
Once the clinician is satisfied with the positioning of the end effector 312, the clinician may draw back the closure trigger 318 to its fully closed, locked position proximate to the pistol grip 326. The firing trigger 320 may then be actuated, or fired. In at least one such embodiment, the firing trigger 320 can be farther outboard of the closure trigger 318 wherein the closure of the closure trigger 318 can move, or rotate, the firing trigger 320 toward the pistol grip 326 so that the firing trigger 320 can be reached by the operator using one hand. in various circumstances. Thereafter, the operator may pivotally draw the firing trigger 320 toward the pistol grip 312 to cause the stapling and severing of clamped tissue in the end effector 312. Thereafter, the firing trigger 320 can be returned to its unactuated, or unfired, position (shown in
Further to the above, the end effector 312 may include a cutting instrument, such as knife, for example, for cutting tissue clamped in the end effector 312 when the firing trigger 320 is retracted by a user. Also further to the above, the end effector 312 may also comprise means for fastening the tissue severed by the cutting instrument, such as staples, RF electrodes, and/or adhesives, for example. A longitudinally movable drive shaft located within the shaft 308 of the instrument 310 may drive/actuate the cutting instrument and the fastening means in the end effector 312. An electric motor, located in the handle 306 of the instrument 310 may be used to drive the drive shaft, as described further herein. In various embodiments, the motor may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM, for example. In other embodiments, the motor may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. A battery (or “power source” or “power pack”), such as a Li ion battery, for example, may be provided in the pistol grip portion 26 of the handle 6 adjacent to the motor wherein the battery can supply electric power to the motor via a motor control circuit. According to various embodiments, a number of battery cells connected in series may be used as the power source to power the motor. In addition, the power source may be replaceable and/or rechargeable.
As outlined above, the electric motor in the handle 306 of the instrument 310 can be operably engaged with the longitudinally-movable drive member positioned within the shaft 308. Referring now to
As indicated above, the surgical instrument 310 can include an articulation joint 314 about which the end effector 312 can be articulated. The instrument 310 can further include an articulation lock which can be configured and operated to selectively lock the end effector 312 in position. In at least one such embodiment, the articulation lock can extend from the proximal end of the shaft 308 to the distal end of the shaft 308 wherein a distal end of the articulation lock can engage the end effector 312 to lock the end effector 312 in position. Referring again to
As outlined above, the surgical instrument 310 can include an articulation lock configured to hold the end effector 312 in position relative to the shaft 308. As also outlined above, the end effector 312 can be rotated, or articulated, relative to the shaft 308 when the articulation lock is in its unlocked state. In such an unlocked state, the end effector 312 can be positioned and pushed against soft tissue and/or bone, for example, surrounding the surgical site within the patient in order to cause the end effector 312 to articulate relative to the shaft 308. In certain embodiments, the articulation control 316 can comprise an articulation switch or can be configured to operate an articulation switch which can selectively permit and/or prevent the firing trigger 320 from operating the electric motor 342. For instance, such an articulation switch can be placed in series with the electric motor 342 and a firing switch operably associated with the firing trigger 320 wherein the articulation switch can be in a closed state when the articulation control 316 is in a locked state. When the articulation control 316 is moved into an unlocked state, the articulation control 316 can open the articulation switch thereby electrically decoupling the operation of the firing trigger 320 and the operation of the electric motor 342. In such circumstances, the firing drive of the instrument 310 cannot be fired while the end effector 312 is in an unlocked state and is articulatable relative to the shaft 308. When the articulation control 316 is returned to its locked state, the articulation control 316 can re-close the articulation switch which can then electrically couple the operation of the firing trigger 320 with the electric motor 342. Various details of one or more surgical stapling instruments are disclosed in patent application Ser. No. 12/647,100, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT WITH ELECTRIC ACTUATOR DIRECTIONAL CONTROL ASSEMBLY, now U.S. Pat. No. 8,220,688, the entire disclosure of which are incorporated by reference herein.
Turning now to
Turning now to
As illustrated in
As discussed above, the articulation lock actuator 409 is in a retracted, unlocked, position in
In various circumstances, further to the above, the articulation switch can be used to make small adjustments in the position of the end effector 402. For instance, the surgeon can move the articulation switch in a first direction to rotate the end effector 402 about the articulation joint in a first direction and then reverse the movement of the end effector 402 by moving the articulation switch in the second direction, and/or any other suitable combinations of movements in the first and second directions, until the end effector 402 is positioned in a desired position. Referring primarily to
As outlined above, the firing member 470 can be advanced distally in order to advance the articulation driver 460 distally and, as a result, rotate the end effector 402 in a first direction and, similarly, the firing member 470 can be retracted proximally in order to retract the articulation driver 460 proximally and, as a result, rotate the end effector 402 in an opposite direction. In some circumstances, however, it may be undesirable to move, or at least substantially move, the distal cutting portion 472 of the firing member 470 when the firing member 470 is being utilized to articulate the end effector 402. Turning now to
Further to the above, the articulation lock actuator 409 can be configured to bias the proximal portion 461 of the articulation driver 460 toward the drive member 470 when the articulation lock actuator 409 is in its proximal, unlocked, position. More particularly, in at least one such embodiment, the inner surface of the articulation lock actuator 409 can comprise a cam which can engage a lateral side 466 of the proximal portion 461 and bias the proximal portion 461 into engagement with the slot 476 defined in the intermediate portion 475 of the drive member 470. When the articulation lock actuator 409 is moved back into its distal, locked, position, the articulation lock actuator 409 may no longer bias the proximal portion 461 inwardly toward the drive member 470. In at least one such embodiment, the handle 403 and/or the shaft 404 can comprise a resilient member, such as a spring, for example, which can be configured to bias the proximal portion 461 outwardly away from the firing member 470 such that the proximal portion 461 is not operably engaged with the slot 476 unless the biasing force of the resilient member is overcome by the articulation lock actuator 409 when the articulation lock actuator 409 is moved proximally into its unlocked position, as described above. In various circumstances, the proximal portion 461 and the slot 476 can comprise a force-limiting clutch.
Once the end effector 402 has been articulated into the desired orientation, further to the above, the closure trigger 114 can be actuated to move the anvil 420 toward its closed position, as illustrated in
Referring now to
Turning now to
The reader will note that the intermediate portion 475 of the firing member 470 has been retracted proximally in
Referring again to
As described above in connection with the embodiment of
As described herein, it may be desirable to employ surgical systems and devices that may include reusable portions that are configured to be used with interchangeable surgical components. Referring to
The surgical instrument 1010 depicted in the
The handle 1042 may further include a frame 1080 that operably supports a plurality of drive systems. For example, the frame 1080 can operably support a first or closure drive system, generally designated as 1050, which may be employed to apply a closing and opening motions to the interchangeable shaft assembly 1200 that is operably attached or coupled thereto. In at least one form, the closure drive system 1050 may include an actuator in the form of a closure trigger 1052 that is pivotally supported by the frame 1080. More specifically, as illustrated in
Still referring to
In at least one form, the handle 1042 and the frame 1080 may operably support another drive system referred to herein as firing drive system 1100 that is configured to apply firing motions to corresponding portions of the interchangeable shaft assembly attached thereto. The firing drive system may also be referred to herein as a “second drive system”. The firing drive system 1100 may employ an electric motor 1102, located in the pistol grip portion 1048 of the handle 1042. In various forms, the motor 1102 may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM, for example. In other arrangements, the motor may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. A battery 1104 (or “power source” or “power pack”), such as a Li ion battery, for example, may be coupled to the handle 1042 to supply power to a control circuit board assembly 1106 and ultimately to the motor 1102.
As outlined above with respect to other various forms, the electric motor 1102 can include a rotatable shaft (not shown) that operably interfaces with a gear reducer assembly 1108 that is mounted in meshing engagement with a with a set, or rack, of drive teeth 1112 on a longitudinally-movable drive member 1110. In use, a voltage polarity provided by the battery can operate the electric motor 1102 in a clockwise direction wherein the voltage polarity applied to the electric motor by the battery can be reversed in order to operate the electric motor 1102 in a counter-clockwise direction. When the electric motor 1102 is rotated in one direction, the drive member 1110 will be axially driven in the distal direction “D”. When the motor 1102 is driven in the opposite rotary direction, the drive member 1110 will be axially driven in a proximal direction “P”. See, for example,
Actuation of the motor 1102 can be controlled by a firing trigger 1120 that is pivotally supported on the handle 1042. The firing trigger 1120 may be pivoted between an unactuated position and an actuated position. The firing trigger 1120 may be biased into the unactuated position by a spring (not shown) or other biasing arrangement such that when the clinician releases the firing trigger 1120, it may be pivoted or otherwise returned to the unactuated position by the spring or biasing arrangement. In at least one form, the firing trigger 1120 can be positioned “outboard” of the closure trigger 1052 as was discussed above. In at least one form, a firing trigger safety button 1122 may be pivotally mounted to the closure trigger 1052. As can be seen in
As indicated above, in at least one form, the longitudinally movable drive member 1110 has a rack of teeth 1112 formed thereon for meshing engagement with a corresponding drive gear 1114 of the gear reducer assembly 1108. At least one form may also include a manually-actuatable “bailout” assembly 1130 that is configured to enable the clinician to manually retract the longitudinally movable drive member 1110 should the motor become disabled. The bailout assembly 1130 may include a lever or bailout handle assembly 1132 that is configured to be manually pivoted into ratcheting engagement with the teeth 1112 in the drive member 1110. Thus, the clinician can manually retract the drive member 1110 by using the bailout handle assembly 1132 to ratchet the drive member in the proximal direction “P”. U.S. Pat. No. 8,608,045 discloses bailout arrangements and other components, arrangements and systems that may also be employed with the various instruments disclosed herein. U.S. Pat. No. 8,608,045, is incorporated by reference in its entirety.
The interchangeable shaft assembly 1200 may further include a shaft 1210 that includes a shaft frame 1212 that is coupled to a shaft attachment module or shaft attachment portion 1220. In at least one form, a proximal end 1214 of the shaft frame 1212 may extend through a hollow collar portion 1222 formed on the shaft attachment module 1220 and be rotatably attached thereto. For example, an annular groove 1216 may be provided in the proximal end 1214 of the shaft frame 1212 for engagement with a U-shaped retainer 1226 that extends through a slot 1224 in the shaft attachment module 1220. Such arrangement enables the shaft frame 1212 to be rotated relative to the shaft attachment module 1220.
The shaft assembly 1200 may further comprise a hollow outer sleeve or closure tube 1250 through which the shaft frame 1212 extends. The outer sleeve 1250 may also be referred to herein as a “first shaft” and/or a “first shaft assembly”. The outer sleeve 1250 has a proximal end 1252 that is adapted to be rotatably coupled to a closure tube attachment yoke 1260. As can be seen in
As can be seen in
In at least one form, the interchangeable shaft assembly 1200 may further include an articulation joint 1350. Other interchangeable shaft assemblies, however, may not be capable of articulation. As can be seen in
In use, the closure sleeve assembly 1354 is translated distally (direction “D”) to close the anvil 1310, for example, in response to the actuation of the closure trigger 1052. The anvil 1310 is closed by distally translating the outer sleeve 1250, and thus the shaft closure sleeve assembly 1354, causing it to strike a proximal surface on the anvil 1310 in the manner described above. As was also described above, the anvil 1310 is opened by proximally translating the outer sleeve 1250 and the shaft closure sleeve assembly 1354, causing tab 1362 and the horseshoe aperture 1360 to contact and push against the anvil tab to lift the anvil 1310. In the anvil-open position, the shaft closure sleeve assembly 1352 is moved to its proximal position.
In at least one form, the interchangeable shaft assembly 1200 further includes a firing member 1270 that is supported for axial travel within the shaft frame 1212. The firing member 1270 includes an intermediate firing shaft portion 1272 that is configured for attachment to a distal cutting portion 1280. The firing member 1270 may also be referred to herein as a “second shaft” and/or a “second shaft assembly”. As can be seen in
As can be seen in
In various forms, the lock yoke 1240 is biased in the proximal direction by spring or biasing member (not shown). Stated another way, the lock yoke 1240 is biased into the latched position (
The interchangeable shaft assembly 1200 may further include a nozzle assembly 1290 that is rotatably supported on the shaft attachment module 1220. In at least one form, for example, the nozzle assembly 1290 can be comprised of two nozzle halves, or portions, 1292, 1294 that may be interconnected by screws, snap features, adhesive, etc. When mounted on the shaft attachment module 1220, the nozzle assembly 1290 may interface with the outer sleeve 1250 and shaft frame 1212 to enable the clinician to selectively rotate the shaft 1210 relative to the shaft attachment module 1220 about a shaft axis SA-SA which may be defined for example, the axis of the firing member assembly 1270. In particular, a portion of the nozzle assembly 1290 may extend through a window 1253 in the outer sleeve to engage a notch 1218 in the shaft frame 1212. See
Referring now to
Attachment of the interchangeable shaft assembly 1220 to the handle 1042 will now be described with reference to
To commence the coupling process, the clinician may position the shaft attachment module 1220 of the interchangeable shaft assembly 1200 above or adjacent to the frame attachment module portion 1084 of the frame 1080 such that the attachment lugs 1229 formed on the connector portion 1228 of the shaft attachment module 1220 are aligned with the dovetail slots 1088 in the attachment module portion 1084 as shown in
As discussed above, referring again to
Further to the above, the frame system, the closure drive system, the firing drive system, and the electrical system of the shaft assembly 1200 can be assembled to the corresponding systems of the handle 1042 in a transverse direction, i.e., along axis IA-IA, for example. In various circumstances, the frame system, the closure drive system, and the firing drive system of the shaft assembly 1200 can be simultaneously coupled to the corresponding systems of the handle 1042. In certain circumstances, two of the frame system, the closure drive system, and the firing drive system of the shaft assembly 1200 can be simultaneously coupled to the corresponding systems of the handle 1042. In at least one circumstance, the frame system can be at least initially coupled before the closure drive system and the firing drive system are coupled. In such circumstances, the frame system can be configured to align the corresponding components of the closure drive system and the firing drive system before they are coupled as outlined above. In various circumstances, the electrical system portions of the housing assembly 1200 and the handle 1042 can be configured to be coupled at the same time that the frame system, the closure drive system, and/or the firing drive system are finally, or fully, seated. In certain circumstances, the electrical system portions of the housing assembly 1200 and the handle 1042 can be configured to be coupled before the frame system, the closure drive system, and/or the firing drive system are finally, or fully, seated. In some circumstances, the electrical system portions of the housing assembly 1200 and the handle 1042 can be configured to be coupled after the frame system has been at least partially coupled, but before the closure drive system and/or the firing drive system are have been coupled. In various circumstances, the locking system can be configured such that it is the last system to be engaged, i.e., after the frame system, the closure drive system, the firing drive system, and the electrical system have all been engaged.
As outlined above, referring again to
In various circumstances, referring again to
In various embodiments, any number of magnetic sensing elements may be employed to detect whether a shaft assembly has been assembled to the handle 1042, for example. For example, the technologies used for magnetic field sensing include search coil, fluxgate, optically pumped, nuclear precession, SQUID, Hall-effect, anisotropic magnetoresistance, giant magnetoresistance, magnetic tunnel junctions, giant magnetoimpedance, magnetostrictive/piezoelectric composites, magnetodiode, magnetotransistor, fiber optic, magnetooptic, and microelectromechanical systems-based magnetic sensors, among others.
After the interchangeable shaft assembly 1200 has been operably coupled to the handle 1042, actuation of the closure trigger 1052 will result in the distal axial advancement of the outer sleeve 1250 and the shaft closure sleeve assembly 1354 coupled thereto to actuate the anvil 1310 in the various manners disclosed herein. As can also be seen in
To detach the interchangeable shaft assembly 1220 from the frame 1080, the clinician pushes the latch button 1236 in the distal direction “D” to cause the lock yoke 1240 to pivot as shown in
Those of ordinary skill in the art will understand that the shaft attachment module 1220 may also be held stationary and the handle 1042 moved along the installation axis IA-IA that is substantially transverse to the shaft axis SA-SA to bring the lugs 1229 on the connector portion 1228 into seating engagement with the dovetail slots 1088. It will be further understood that the shaft attachment module 1220 and the handle 1042 may be simultaneously moved toward each other along the installation axis IA-IA that is substantially transverse to the shaft axis SA-SA and the actuation axis AA-AA.
As used herein, the phrase, “substantially transverse to the actuation axis and/or to the shaft axis” refers to a direction that is nearly perpendicular to the actuation axis and/or shaft axis. It will be appreciated, however, that directions that deviate some from perpendicular to the actuation axis and/or the shaft axis are also substantially transverse to those axes.
In at least one form, the shaft assembly 1600 includes a shaft 1610 that may include all of the other components of shaft 1210 described above and may have an end effector (not shown) of the type described above operably attached thereto. Turning to
In various forms, the shaft assembly 1600 includes a shaft attachment module or shaft attachment portion 1620 that has an open bottom 1621. The shaft 1610 is coupled to the shaft attachment module 1620 by inserting the proximal end of the shaft 1610 through an opening 1622 in the shaft attachment module 1620. The closure tube attachment yoke 1660 may be inserted into the shaft attachment module 1620 through the open bottom portion 1621 such that the proximal end 1652 of the outer sleeve 1650 is received within the cradle 1662 in the closure tube attachment yoke 1660. In the manner discussed above, a U-shaped connector 1666 is passed through a slot 1624 in the shaft attachment module 1620 to engage an annular groove 1654 in the proximal end 1652 of the outer sleeve 1250 and slots 1664 in the closure tube attachment yoke 1660 to affix the outer sleeve 1650 to the closure tube attachment yoke 1660. As was discussed above, such arrangement enables the outer sleeve 1650 to rotate relative to the shaft attachment module 1620.
In at least one form, the closure tube attachment yoke 1660 is configured to be supported within the shaft attachment module 1620 such that the closure tube yoke attachment yoke 1660 may move axially therein in the distal and proximal directions. In at least one form, a closure spring 1625 is provided within the shaft attachment module to bias the closure tube yoke assembly 1660 in the proximal direction “P”. See
In at least one form, the frame 1480 has a frame attachment module or frame attachment portion 1484 formed thereon or attached thereto. The frame attachment module 1484 may be formed with opposed dovetail receiving slots 1488. Each dovetail receiving slot 1488 may be tapered or, stated another way, be somewhat V-shaped. The slots 1488 are configured to releasably receive corresponding portion of a dovetail connector 1629 protruding from a proximal end of the shaft attachment module 1620. As can be seen in
As can also be seen in
A method for coupling the shaft assembly 1600 to the frame 1480 may be understood from reference to
In at least one form, the shaft assembly 1900 includes a shaft 1910 that may include all of the other components of shaft 1210 described above and may have an end effector of the type described above, for example, (not shown) operably attached thereto. Turning to
In various forms, the shaft assembly 1900 may include a shaft attachment module or shaft attachment portion 1920 that has an open bottom 1921. The shaft 1910 is coupled to the shaft attachment module 1920 by inserting the proximal end of the shaft 1910 through an opening 1922 in the shaft attachment module 1920. The closure tube attachment yoke 1960 may be inserted into the shaft attachment module 1920 through the open bottom portion 1921 such that the proximal end 1952 of the outer sleeve 1950 is received within the cradle 1962 in the closure tube attachment yoke 1660. In the manner discussed above, a U-shaped connector 1966 engages an annular groove (not shown) in the proximal end 1952 of the outer sleeve 1950 and slots 1964 in the closure tube attachment yoke 1960 to affix the outer sleeve 1950 to the closure tube attachment yoke 1960. As was discussed above, such arrangement enables the outer sleeve 1950 to rotate relative to the shaft attachment module 1920.
In at least one form, the closure tube attachment yoke 1960 is configured to be supported within the shaft attachment module 1920 such that the closure tube yoke assembly 1960 may move axially therein in the distal (“D”) and proximal (“P”) directions. As with the above described shaft assembly 1210, the proximal end of the shaft frame protrudes proximally out of the proximal end 1952 of the outer sleeve 1950. As can be seen in
The interchangeable shaft assembly 1900 may further include a nozzle assembly 1990 that is rotatably supported on the shaft attachment module 1920. In at least one form, for example, the nozzle assembly 1990 can be comprised of two nozzle halves, or portions that may be interconnected by screws, snap features, adhesive, etc. When mounted on the shaft attachment module 1920, the nozzle assembly 1990 may interface with a shaft rotation adapter 1995 that is configured to engage the outer sleeve 1950 and shaft frame 1912 to enable the clinician to selectively rotate the shaft 1910 relative to the shaft attachment module 1920 about a shaft axis SA-SA which may be defined for example, the axis of the firing member assembly. Thus, rotation of the nozzle assembly 1990 will result in rotation of the shaft frame and outer sleeve 1950 about axis A-A relative to the shaft attachment module 1920.
In at least one form, the frame 1780 has a frame attachment module or frame attachment portion 1784 formed thereon or attached thereto. The frame attachment module 1784 may be formed with outwardly facing dovetail receiving slots 1788. Each dovetail receiving slot 1788 may be tapered or, stated another way, be somewhat V-shaped. See
In at least one form, the closure tube attachment yoke 1960 has a proximally extending yoke arm 1961 protruding therefrom that has a downwardly open hook 1963 formed thereon to engage an attachment lug 1766 formed on the closure attachment bar 1764 of the closure drive system 1750. See
As with other arrangements disclosed herein, the shaft assembly 1900 may define a shaft axis SA-SA and the frame 1780 may define an actuation axis AA-AA. For example, the shaft axis SA-SA may be defined by the firing member 1970 and the actuation axis AA-AA may be defined by the longitudinally movable drive member 1810 operably supported by the frame 1780. To commence the coupling process, the clinician may position the shaft attachment module 1920 of the interchangeable shaft assembly 1900 above or adjacent to the frame attachment module 1784 of the frame 1780 such that the dovetail connector portions 1929 of the shaft attachment module 1920 are each aligned with their corresponding dovetail slot 1788 in the frame attachment module 1784. The clinician may then move the shaft attachment module 1920 along an installation axis that is substantially transverse to the actuation axis AA-AA. Stated another way, the shaft attachment module 1920 is moved in an installation direction that is substantially transverse to the actuation axis AA-AA until the dovetail connectors 1929 are seated in operable engagement in their corresponding dovetail slot 1788 in the frame module 1784. When the shaft attachment module 1920 has been attached to the frame attachment module 1784, the closure tube attachment yoke 1960 will be operably coupled to the closure drive system 1750 and actuation of the closure trigger 1752 will result in the distal axial advancement of the outer sleeve 1950 and the shaft closure tube assembly coupled thereto to actuate the anvil in the various manners disclosed herein. Likewise, the firing member will be coupled in operable engagement with the longitudinally movable drive member 1810. See
In at least one form, the shaft assembly 2200 includes a shaft 2210 that may include all of the other components of shaft 1210 described above and may have an end effector (not shown) of the type described above operably attached thereto. The various constructions and operations of those features are described above. In the illustrated arrangement, the shaft assembly 2200 includes a closure tube attachment yoke 2260 that may be rotatably coupled to an outer sleeve 2250 in the manner in which the closure tube yoke attachment yoke 1260 was rotatably coupled to the outer sleeve 1250. The shaft assembly 2200, however, does not include a shaft attachment module as was described above.
As can be seen in
In at least one form, the closure tube attachment yoke 2260 is configured to be supported within a passage 2081 in the frame 2080 such that the closure tube attachment yoke 2260 may move axially therein in the distal and proximal directions. As with the above described shaft assembly 1210, the proximal end 2214 of the shaft frame 2212 protrudes proximally out of the proximal end of the 2252 of the outer sleeve 2250. As can be seen in
As can be further seen in
The first frame portion 2080A and/or the longitudinally movable drive member 2110 which is movably supported by the first frame portion 2080A may define an actuation axis A-A and the shaft assembly 2200 defines a shaft axis SA-SA. As can be seen in
Once the first and second frame portions 2080A, 2080b have been joined together as shown in
As can be further seen in
As can be seen in
Once the shaft attachment module 2520 has been latched to the frame attachment module 2384 as shown in
The various interchangeable shaft arrangements disclosed herein represent vast improvements over prior surgical instrument arrangements that employ dedicated shafts. For example, one shaft arrangement may be used on multiple handle arrangements and/or with robotically controlled surgical systems. The methods of coupling the shaft arrangements also differ from prior shaft arrangements that employ bayonet connections and other structures that require the application of a rotary motion to the shaft and/or the handle or housing during the coupling process. The various exemplary descriptions of the coupling processes employed by the shaft assemblies disclosed herein include bringing a portion of the interchangeable shaft assembly into coupling engagement with a corresponding portion of a housing, a handle, and/or a frame in a direction or orientation that is substantially transverse to an actuation axis. These coupling processes are intended to encompass movement of either one or both of the shaft assembly and housing, handle and/or frame during the coupling process. For example, one method may encompass retaining the handle, housing and/or frame stationary while moving the shaft assembly into coupling engagement with it. Another method may encompass retaining the shaft assembly stationary while moving the handle, housing and/or frame into coupling engagement with it. Still another method may involve simultaneously moving the shaft assembly and the handle, housing and/or frame together into coupling engagement. It will be understood that the coupling procedures employed for coupling the various shaft assembly arrangements disclosed herein may encompass one or more (including all) of such variations.
Referring to
As can be seen in
Operation of the closure lockout assembly 2690 may be understood from reference to
As can be seen in
In various forms, the lockout assembly 2800 may further include a movable lock bar or lock member 2802 that is pivotally attached to the frame attachment module 2684″. For example, the lock bar 2802 may be pivotally mounted to a laterally protruding pin 2804 on the frame attachment module 2684″. The lock bar 2802 may further have a lock pin 2806 protruding from a proximal portion thereof that is configured to extend into a lock slot 2808 provided in the closure link 1762′ when the closure drive system 1750″ in unactuated. See
When the lockout assembly is in the locked position, the lock pin 2806 is received in the lock slot in 2808 in the closure link 1762′. When in that position, the lock pin prevents movement closure linkage assembly 1760′. Thus, if the clinician attempts to actuate the closure drive system 1750″ by depressing the closure trigger 1752, the lock pin 2806 will prevent movement of the closure link 1762 and ultimately prevent the advancement of the slide member 2720.
Referring now to
As was discussed in detail above, during the coupling of the interchangeable shaft assembly to the surgical instrument, the attachment lug 1278 on the end of the intermediate firing shaft portion 1272 enters a cradle 1113 in the distal end of the longitudinally movable drive member 1110. See
Turning now to
Further to the above, referring again to
Further to the above, referring again to
Upon comparing
When the proximal articulation driver 10030 is operatively engaged with the firing member 10060 via the clutch system 10070, further to the above, the firing member 10060 can move the proximal articulation driver 10030 proximally and/or distally. For instance, proximal movement of the firing member 10060 can move the proximal articulation driver 10030 proximally and, similarly, distal movement of the firing member 10060 can move the proximal articulation driver 10030 distally. Referring primarily to
Further to the above, referring primarily to
In order to release the first lock elements 10054 and permit the end effector 10020 to be rotated in the direction indicated by arrow 10002, referring now to
Concurrent to the above, referring again to
Similar to the above, referring primarily to
In order to release the second lock elements 10056 and permit the end effector 10020 to be rotated in the direction indicated by arrow 10003, referring now to
Concurrent to the above, referring again to
In view of the above, the articulation lock 10050, in a locked condition, can be configured to resist the proximal and distal movements of the distal articulation driver 10040. In terms of resistance, the articulation lock 10050 can be configured to prevent, or at least substantially prevent, the proximal and distal movements of the distal articulation driver 10040. Collectively, the proximal motion of the distal articulation driver 10040 is resisted by the first lock elements 10054 when the first lock elements 10054 are in their locked orientation and the distal motion of the distal articulation driver 10040 is resisted by the second lock elements 10056 when the second lock elements 10056 are in their locked orientation, as described above. Stated another way, the first lock elements 10054 comprise a first one-way lock and the second lock elements 10056 comprise a second one-way lock which locks in an opposite direction.
When the first lock elements 10054 are in a locked configuration, referring again to
Similar to the above, when the second lock elements 10056 are in a locked configuration, referring again to
Discussed in connection with the exemplary embodiment illustrated in
Turning now to
In order to pull the distal articulation driver 10140 proximally, the proximal articulation driver 10130 can be configured to, one, displace the distal lock element 10154 proximally to unlock the articulation lock 10150 in the proximal direction and, two, directly engage the distal articulation driver 10140 and apply a proximal pulling force thereto. More specifically, further to the above, the proximal articulation driver 10130 can comprise a distal arm 10134 configured to initially engage the first lock element 10154 and a proximal arm 10136 which can be configured to then engage a proximal drive wall 10147 defined at the proximal end of the lock recess 10145 and pull the distal articulation driver 10140 proximally. Similar to the above, the proximal movement of the distal articulation driver 10140 can be configured to articulate the end effector of the surgical instrument. Once the end effector has been suitably articulated, the proximal articulation driver 10130 can be released, in various circumstances, to permit a spring 10155 positioned intermediate the first lock element 10154 and the second lock element 10156 to expand and sufficiently re-position the first lock element 10154 relative to the first lock surface 10141 and re-lock the distal articulation driver 10140 and the end effector in position.
Concurrent to the above, the second lock element 10156 may not resist, or at least substantially resist, the proximal movement of the distal articulation driver 10140. When the articulation lock 10150 is in a locked condition, the second lock element 10156 may be positioned between a second, or proximal, lock surface 10143 of the lock recess 10145 and the lock wall 10153 of the lock channel 10151. As the distal articulation driver 10140 is pulled proximally by the proximal articulation driver 10130, further to the above, a dwell portion 10142 of the lock recess 10145 may move over the second lock element 10156. In various circumstances, the dwell portion 10142 of the lock recess 10145 may comprise the widest portion of the recess 10145 which may, as a result, permit relative sliding movement between the distal articulation driver 10140 and the second lock element 10156 as the distal articulation driver 10140 is pulled proximally. In some circumstances, the second lock element 10156 can be configured to roll within the dwell portion 10142 thereby reducing the resistance force between the distal articulation driver 10140 and the second lock element 10156. As the reader will appreciate, the second lock element 10156 may be permissive to the proximal movement of the distal articulation driver 10140 but can be configured to selectively resist the distal movement of the distal articulation driver 10140 as discussed in greater detail further below.
Similar to the above, the second lock element 10156 can be configured to resist a distal pulling force D transmitted through the distal articulation member 10140. To this end, the second lock surface 10143 of the lock recess 10145 can be configured to wedge the second lock element 10156 against the lock wall 10153 of the lock channel 10151 and, owing to this wedged relationship, the distal articulation driver 10140 may not be able to pass between the second lock element 10156 and the opposing sidewall 10157 of the lock channel 10151. The reader will appreciate that the lock recess 10145 is contoured such that it gradually decreases in depth toward the proximal end of the lock recess 10145 wherein, correspondingly, the distal articulation driver 10140 gradually increases in thickness toward the proximal end of the lock recess 10145. As a result, a distal pulling force D applied to the distal articulation driver 10140 may only serve to further increase the resistance, or wedging force, holding the distal articulation driver 10140 in position.
In order to push the distal articulation driver 10140 distally, the proximal articulation driver 10130 can be configured to, one, displace the second lock element 10156 distally to unlock the articulation lock 10150 in the distal direction and, two, directly engage the distal articulation driver 10140 and apply a distal pushing force thereto. More specifically, further to the above, the proximal arm 10136 of the proximal articulation driver 10130 can be configured to initially engage the second lock element 10156 wherein the distal arm 10134 can then engage a distal drive wall 10148 defined at the distal end of the lock recess 10145 and push the distal articulation driver 10140 distally. Similar to the above, the distal movement of the distal articulation driver 10140 can be configured to articulate the end effector of the surgical instrument. Once the end effector has been suitably articulated, the proximal articulation driver 10130 can be released, in various circumstances, to permit the spring 10155 to expand and sufficiently re-position the second lock element 10156 relative to the second lock surface 10143 in order to re-lock the distal articulation driver 10140 and the end effector in position.
Concurrent to the above, the first lock element 10154 may not resist, or at least substantially resist, the distal movement of the distal articulation driver 10140. When the articulation lock 10150 is in a locked condition, the first lock element 10154 may be positioned between the first lock surface 10141 of the lock recess 10145 and the lock wall 10153 of the lock channel 10151, as discussed above. As the distal articulation driver 10140 is pushed distally by the proximal articulation driver 10130, further to the above, the dwell portion 10142 of the lock recess 10145 may move over the first lock element 10154. In various circumstances, the dwell portion 10142 may permit relative sliding movement between the distal articulation driver 10140 and the first lock element 10154 as the distal articulation driver 10140 is pushed distally. In some circumstances, the first lock element 10154 can be configured to roll within the dwell portion 10142 thereby reducing the resistance force between the distal articulation driver 10140 and the first lock element 10154. As the reader will appreciate, the first lock element 10154 may be permissive to the distal movement of the distal articulation driver 10140 but can selectively resist the proximal movement of the distal articulation driver 10140, as discussed above.
Further to the above, the first lock surface 10141, the dwell 10142, and the second lock surface 10143 of the lock recess 10145 can define a suitable contour. Such a contour can be defined by first, second, and third flat surfaces which comprise the first lock surface 10141, the dwell 10142, and the second lock surface 10143, respectively. In such circumstances, definitive breaks between the first lock surface 10141, the dwell 10142, and the second lock surface 10143 can be identified. In various circumstances, the first lock surface 10141, the dwell 10142, and the second lock surface 10143 can comprise a continuous surface, such as an arcuate surface, for example, wherein definitive breaks between the first lock surface 10141, the dwell 10142, and the second lock surface 10143 may not be present.
Turning now to
Turning now to
In various circumstances, further to the above, the first lock element 10354 and the second lock element 10356 can each comprise a wedge, for example, which can be configured to lock the distal articulation driver 10340 in position. Referring primarily again to
Turning now to
In order to unlock the first lock cam 10454, referring generally to
Further to the above, when a proximal load P is transmitted to the distal articulation driver 10440 from the end effector when the articulation lock 10450 is in its locked condition, the second lock cam 10456 will be further biased into engagement with the lock wall 10459. In such circumstances, the proximal load P may only increase the wedging force holding the second lock cam 10456 in position. In effect, the second lock cam 10456 can comprise a one-way lock which can inhibit the proximal movement of the distal articulation driver 10440 until the second lock cam 10456 is unlocked, as described above. When the second lock cam 10456 is unlocked and the distal articulation driver 10440 is being moved proximally, the first lock cam 10454 may not resist, or at least substantially resist, the proximal movement of the distal articulation driver 10440. When a distal load D is transmitted to the distal articulation driver 10440 from the end effector when the articulation lock 10450 is in its locked condition, the first lock cam 10454 will be further biased into engagement with the lock wall 10453. In such circumstances, the distal load D may only increase the wedging force holding the first lock cam 10454 in position. In effect, the first lock cam 10454 can comprise a one-way lock which can inhibit the distal movement of the distal articulation driver 10440 until the first lock cam 10454 is unlocked, as described above. When the first lock cam 10454 is unlocked and the distal articulation driver 10440 is being moved distally, the second lock cam 10454 may not resist, or at least substantially resist, the distal movement of the distal articulation driver 10440.
As discussed above, a surgical instrument can comprise a firing drive for treating tissue captured within an end effector of the surgical instrument, an articulation drive for articulating the end effector about an articulation joint, and a clutch assembly which can be utilized to selectively engage the articulation drive with the firing drive. An exemplary clutch assembly 10070 was discussed above while another exemplary clutch assembly, i.e., clutch assembly 11070, is discussed below. In various circumstances, the surgical instruments disclosed herein can utilize either clutch assembly.
Turning now to
Further to the above, the shaft assembly 11010 can include a clutch assembly 11070 which can be configured to selectively and releasably couple the proximal articulation driver 11030 to the firing member 11060. The clutch assembly 11070 can comprise a lock collar, or sleeve, 11072 positioned around the firing member 11060 wherein the lock sleeve 11072 can be rotated between an engaged position in which the lock sleeve 11072 couples the proximal articulation driver 11030 to the firing member 11060 and a disengaged position in which the proximal articulation driver 11030 is not operably coupled to the firing member 11060. When lock sleeve 11072 is in its engaged position (
Referring primarily to
Further to the above, the clutch assembly 11070 can further comprise a rotatable lock actuator 11074 which can be configured to rotate the lock sleeve 11072 between its engaged position and its disengaged position. In various circumstances, the lock actuator 11074 can comprise a collar which can surround the lock sleeve 11072, a longitudinal aperture extending through the collar, and referring primarily to
Further to the above, referring primarily to
In various circumstances, further to the above, the closure mechanism of the shaft assembly 11010 can be configured to bias the clutch assembly 11070 into its disengaged state. For instance, referring primarily to
As described elsewhere in greater detail, the surgical instrument 1010 may include several operable systems that extend, at least partially, through the shaft 1210 and are in operable engagement with the end effector 1300. For example, the surgical instrument 1010 may include a closure assembly that may transition the end effector 1300 between an open configuration and a closed configuration, an articulation assembly that may articulate the end effector 1300 relative to the shaft 1210, and/or a firing assembly that may fasten and/or cut tissue captured by the end effector 1300. In addition, the surgical instrument 1010 may include a housing such as, for example, the handle 1042 which may be separably couplable to the shaft 1210 and may include complimenting closure, articulation, and/or firing drive systems that can be operably coupled to the closure, articulation, and firing assemblies, respectively, of the shaft 1210 when the handle 1042 is coupled to the shaft 1210.
In use, an operator of the surgical instrument 1010 may desire to reset the surgical instrument 1010 and return one or more of the assemblies of the surgical instrument 1010 to a default position. For example, the operator may insert the end effector 1300 into a surgical site within a patient through an access port and may then articulate and/or close the end effector 1300 to capture tissue within the cavity. The operator may then choose to undo some or all of the previous actions and may choose to remove the surgical instrument 1010 from the cavity. The surgical instrument 1010 may include one more systems configured to facilitate a reliable return of one or more of the assemblies described above to a home state with minimal input from the operator thereby allowing the operator to remove the surgical instrument from the cavity.
Referring to
Further to the above, the end effector 1300 can be positioned in sufficient alignment with the shaft 1210 in the articulation home state position, also referred to herein as an unarticulated position such that the end effector 1300 and at least a portion of shaft 1210 can be inserted into or retracted from a patient's internal cavity through an access port such as, for example, a trocar positioned in a wall of the internal cavity without damaging the axis port. In certain embodiments, the end effector 1300 can be aligned, or at least substantially aligned, with a longitudinal axis “LL” passing through the shaft 1210 when the end effector 1300 is in the articulation home state position, as illustrated in
The articulation control system 3000 can be operated to articulate the end effector 1300 relative to the shaft 1210 in a plane intersecting the longitudinal axis in a first direction such as, for example, a clockwise direction and/or a second direction opposite the first direction such as, for example, a counterclockwise direction. In at least one instance, the articulation control system 3000 can be operated to articulate the end effector 1300 in the clockwise direction form the articulation home state position to an articulated position at a 10° angle with the longitudinal axis on the right to the longitudinal axis, for example. In another example, the articulation control system 3000 can be operated to articulate the end effector 1300 in the counterclockwise direction form the articulated position at the 10° angle with the longitudinal axis to the articulation home state position. In yet another example, the articulation control system 3000 can be operated to articulate the end effector 1300 relative to the shaft 1210 in the counterclockwise direction from the articulation home state position to an articulated position at a 10° angle with the longitudinal axis on the left of the longitudinal axis. The reader will appreciate that the end effector can be articulated to different angles in the clockwise direction and/or the counterclockwise direction in response to the operator's commands.
Referring to
Further to the above, the controller 3002 may comprise a processor 3008 and/or one or more memory units 3010. By executing instruction code stored in the memory 3010, the processor 3008 may control various components of the surgical instrument 1, such as the motor 1102 and/or a user display. The controller 3002 may be implemented using integrated and/or discrete hardware elements, software elements, and/or a combination of both. Examples of integrated hardware elements may include processors, microprocessors, microcontrollers, integrated circuits, application specific integrated circuits (ASIC), programmable logic devices (PLD), digital signal processors (DSP), field programmable gate arrays (FPGA), logic gates, registers, semiconductor devices, chips, microchips, chip sets, microcontroller, system-on-chip (SoC), and/or system-in-package (SIP). Examples of discrete hardware elements may include circuits and/or circuit elements (e.g., logic gates, field effect transistors, bipolar transistors, resistors, capacitors, inductors, relay and so forth). In other embodiments, the controller 3002 may include a hybrid circuit comprising discrete and integrated circuit elements or components on one or more substrates, for example.
Referring again to
In addition, as described elsewhere in this document in greater detail, the motor 1102 can be operably coupled to an articulation drive such as, for example, the proximal articulation drive 10030 (
Further to the above, referring again to
Further to the above, the switches 3004A-C can comprise open-biased dome switches, as illustrated in
In certain embodiments, the articulation control system 3000 may include a virtual detent that may alert the operator when the end effector reaches the articulation home state position. For example, the operator may tilt the rocker 3012 to articulate the end effector 1300 from an articulated position to the articulation home state position. Upon reach the articulation home state position, the controller 3002 may stop the articulation of the end effector 1300. In order to continue past the articulation home state position, the operator may release the rocker 3012 and then tilt it again to restart the articulation. Alternatively, a mechanical detent can also be used to provide haptic feedback for the operator that the end effect reached the articulation home state position. Other forms of feedback may be utilized such as audio feedback, for example.
Further to the above, the articulation control system 3000 may include a reset input which may reset or return the end effector 1300 to the articulation home state position if the end effector 1300 is in an articulated position. For example, as illustrated in
Referring to
As described above, the controller 3002 can be configured to determine the articulation position of the end effector 1300. Knowledge of the articulation position of the end effector 1300 may allow the controller 3002 to determine whether the motor 1102 needs to be activated to return the end effector 1300 to the articulation home state position and, if so, to determine the direction of rotation, and the amount of the rotation, of the motor 1102 required to return the end effector 1300 to the articulation home state position. In certain embodiments, the controller 3002 may track the articulation of the end effector 1300 and store the articulation position of the end effector 1300, for example, in the memory 3010. For example, the controller 3002 may track the direction of rotation, speed of rotation, and the time of rotation of the motor 1102 when the motor 1102 is used to articulate the end effector 1300. In some circumstances, the controller 3002 can be configured to evaluate the displacement of the firing system when the firing system is used to drive the articulation system. More specifically, when the articulation drive is coupled to the firing drive, the controller 3002 can monitor the firing drive in order to determine the displacement of the articulation drive. The processor 3008 may calculate the articulation position of the end effector 1300 based on these parameters and store the displaced position of the articulation drive in the memory 3010, for example. The reader will appreciate that other parameters can be tracked and other algorithms can be utilized by the processor 3010 to calculate the articulation position of the end effector 1300, all of which are contemplated by the present disclosure. The stored articulation position of the end effector 1300 can be continuously updated as the end effector 1300 is articulated. Alternatively, the stored articulation position can be updated at discrete points, for example, when the operator releases the dome switch 3004A or the switch 3004B after depressing the same to articulate the end effector 1300.
In any event, upon receiving the reset input signal, the processor 3008 may access the memory 3010 to recover the last stored articulation position of the end effector 1300. If the last stored articulation position is not the articulation home state position, the processor 3008 may calculate the direction and time of rotation of the motor 1102 required to return the end effector 1300 to the articulation home state position based on the last stored articulation position. In some circumstances, the processor 3008 may calculate the distance and direction in which the firing drive needs to be displaced in order to place the articulation drive in its home state position. In either event, the controller 3002 may activate the motor 1102 to rotate accordingly to return the end effector 1300 to the articulation home state position. Furthermore, the processor 3008 may also update the stored articulation position to indicate articulation home state position. However, if the last stored articulation position is the articulation home state position, the controller 3002 may take no action. In some circumstances, the controller 3002 may alert the user through some form of feedback that the end effector and the articulation system is in its home state position. For example, the controller 3002 can be configured to activate a sound and/or a light signal to alert the operator that the end effector 1300 is in the articulation home state position.
In certain embodiments, the surgical instrument 1010 may include a sensor configured to detect the articulation position of the end effector 1300 and communicate the same to the controller 3002. Similar to the above, the detected articulation position of the end effector 1300 can be stored in the memory 3010 and can be continuously updated as the end effector 1300 is articulated or can be updated when the operator releases the dome switch 3004A or after depressing the same to articulate the end effector 1300, for example.
In certain embodiments, it may be desirable to include a warning step prior to resetting or returning the end effector 1300 to the articulation home state position to allow an operator a chance to remedy an erroneous activation of the reset switch. For example, the controller 3002 can be configured to react to a first transmission of the reset input signal to the controller 3002 by activating a light and/or a sound signal alerting the operator that the rocker 3012 has been depressed. In addition, the controller 3002 can also be configured to react to a second transmission of the reset input signal to the controller 3002 within a predetermined time period from the first transmission by activating the motor 1102 to return the end effector 1300 to the articulation home state position. Said another way, a first downward depression of the rocker 3012 may yield a warning to the operator and a second downward depression of the rocker 3012 within a predetermined time period from the first downward depression may cause the controller 3002 to activate the motor 1102 to return the end effector 1300 to the articulation home state position.
Further to the above, the interface 3001 may include a display which can be used by the controller 3002 to communicate a warning message to the operator in response to the first downward depression of the rocker 3012. For example, in response to the first downward depression of the rocker 3012, the controller 3002 may prompt the operator through the display to confirm that the operator wishes to return the end effector 1300 to the articulation home state position. If the operator responds by depressing the rocker 3012 a second time within the predetermined period of time, the controller 3012 may react by activating the motor 1102 to return the end effector 1300 to the articulation home state position.
As described elsewhere in greater detail, the end effector 1300 of the surgical instrument 1010 may include a first jaw comprising an anvil such as, for example, the anvil 1310 and a second jaw comprising a channel configured to receive a staple cartridge such as, for example, the staple cartridge 1304 which may include a plurality of staples. In addition, the end effector 1300 can be transitioned between an open configuration and a closed configuration. Furthermore, the surgical instrument 1010 may include a closure lock and the handle 1042 may include a release member for the closure lock such as, for example, the release member 1072 which can be depressed by the operator to release the closure lock thereby returning the end effector 1300 to the open configuration. In addition, the controller 3002 can be coupled to a sensor 3014 configured to detect the release of the closure lock by the release member 1272. Furthermore, the surgical instrument 1010 may include a firing drive such as, for example, the firing drive 1110 which can be operably coupled to a firing member such as, for example, the firing member 10060. The controller 3002 can be coupled to a sensor 3015 configured to detect the position of the firing drive 1110. The firing drive 1110 can be moved axially to advance the firing member 10060 from a firing home state position to a fired position to deploy the staples from the staple cartridge 1304 and/or cut tissue captured between the anvil 1310 and the staple cartridge 1304 when the end effector 1300 is in the closed configuration.
Also, as described elsewhere in greater detail, the proximal articulation drive 10030 of the surgical instrument 1010 can be selectively coupled with the firing drive 1110 such that, when the firing drive 1110 is motivated by the motor 1102, the proximal articulation drive 10030 can be driven by the firing drive 1110 and the proximal articulation drive 10030 can, in turn, articulate the end effector 1300 relative to the shaft 1210, as described above. Furthermore, the firing drive 1110 can be decoupled from the proximal articulation drive 10030 when the end effector 1300 is in the closed configuration. This arrangement permits the motor 1102 to motivate the firing drive 1110 to move the firing member 10060 between the firing home state position and the fired position independent of the proximal articulation drive 10030.
Further to the above, as described else wherein in greater detail, the surgical instrument 1010 can include a clutch system 10070 (See
Further to the above, in certain embodiments, the firing home state position of the firing member 10060 can be located at a proximal portion of the end effector 1300. Alternatively, the firing home state position of the firing member 10060 can be located at a distal portion of the end effector 1300. In certain embodiments, the firing home state position may be defined at a position where the firing member 10060 is sufficiently retracted relative to the end effector 1300 such that the end effector 1300 can be freely moved between the open configuration and the closed configuration. In other circumstances, the firing home state position of the firing member 10060 can be identified as the position of the firing member which positions the articulation drive system and the end effector in its articulated home state position.
Referring again to
Referring again to
In certain embodiments, referring to
Referring to
As described elsewhere in greater detail, the surgical instrument 1010 may include several assemblies that extend, at least partially, through the shaft 1210 and may be in operable engagement with the end effector 1300. For example, the surgical instrument 1010 may include a closure assembly that may transition the end effector 1300 between an open configuration and a closed configuration, an articulation assembly that may articulate the end effector 1300 relative to the shaft 1210, and/or a firing assembly that may fasten and/or cut tissue captured by the end effector 1300. In addition, the surgical instrument 1010 may include a housing such as, for example, the handle 1042 which may be separably couplable to the shaft 1210 and may include complimenting closure, articulation, and/or firing drive systems that can be operably coupled to the closure, articulation, and/or firing assemblies, respectively, of the shaft 1210 when the handle 1042 is coupled to the shaft 1210.
In use, the assemblies described above and their corresponding drive systems may be operably connected. Attempting to separate the handle 1042 from the shaft 1210 during operation of the surgical instrument 1010 may sever the connections between the assemblies and their corresponding drive systems in a manner that may cause one or more of these assemblies and their corresponding drive systems to be out of alignment. On the other hand, preventing the user from separating the handle 1042 from the shaft 1210 during operation, without more, may lead to confusion, frustration, and/or an erroneous assumption that the surgical instrument is not operating properly.
The surgical instrument 1010 may include a safe release system 3080 that may be configured to return one or more of the assemblies and/or corresponding drive systems of the surgical instrument 1010 to a home state thereby allowing the operator to safely separate the handle 1042 from the shaft 1210. The term home state as used herein may refer to a default state wherein one or more of the assemblies and/or corresponding drive systems of the surgical instrument 1010 may reside or may be returned to their default position such as, for example, their position prior to coupling the handle 1042 with the shaft 1210.
Referring to
Referring to
Referring again to
In certain embodiments, as illustrated in
As described elsewhere in greater detail, the end effector 1300 of the surgical instrument 1010 may include a first jaw comprising an anvil such as, for example, the anvil 1310 and a second jaw comprising a channel configured to receive a staple cartridge such as, for example, the staple cartridge 1304 which may include a plurality of staples. In addition, the end effector 1300 can be transitioned between an open configuration and a closed configuration. For example, the surgical instrument 1010 may include a closure lock for locking the end effector 1300 in a closed configuration and the handle 1042 may include a release member for the closure lock such as, for example, the release member 1072 which can be depressed by the operator to release the closure lock thereby returning the end effector 1300 to the open configuration. In addition, the controller 3002 can be coupled to a sensor 3014 configured to detect the release of the closure lock by the release member 1072. Furthermore, the surgical instrument 1010 may include a firing drive such as, for example, the firing drive 1110 which can be operably coupled to a firing member such as, for example, the firing member 10060. The controller 3002 can be coupled to a sensor 3015 configured to detect the position of the firing drive 1110. In addition, the firing drive 1110 can be advanced axially, as illustrated in
Further to the above, as described elsewhere in greater detail, the proximal articulation drive 10030 of the surgical instrument 1010 can be selectively coupled with the firing drive 1110 such that, when the firing drive 1110 is motivated by the motor 5, the proximal articulation drive 10030 can be driven by the firing drive 1110 and the proximal articulation drive 10030 can, in turn, articulate the end effector 1300 relative to the shaft 1210 between the articulation home state position and the articulate position, as described above. Furthermore, the firing drive 1110 can be decoupled from the proximal articulation drive 10030, for example, when the end effector 1300 is in the closed configuration. This arrangement permits the motor 1102 to motivate the firing drive 1110 to move the firing member 10060 between the unfired position and the fired position independent of the proximal articulation drive 10030. Since the firing drive 1110 can be decoupled from and moved independently from the proximal articulation drive 10030, the controller 3002 may be configured to guide the firing drive 1110 to locate and reconnect with the proximal articulation drive 10030. In a way, the controller 3002 can remember where it left the proximal articulation drive 10030. More particularly, the controller 3002 can, one, evaluate the position of the firing drive 1110 when the proximal articulation drive 10030 is decoupled from the firing drive 1110 and, two, remember where the proximal articulation drive 10030 is when the controller 3002 is instructed to reconnect the firing drive 1110 with the proximal articulation drive 10030. In such circumstances, the controller 3002 can move the firing drive 1110 into a position in which the clutch assembly 10070, for example, can reconnect the proximal articulation drive 10030 to the firing drive 1110. The controller 3002 may track the direction of rotation, speed of rotation and the time of rotation of the motor 1102 when the firing drive 1110 is coupled to the proximal articulation drive 10030 to determine and store the location of the proximal articulation drive 10030, for example, in the memory 3010. Other parameters and algorithms can be utilized to determine the location of the proximal articulation drive 10030. In certain embodiments, the firing drive 1110 may include a sensor configured to detect when the firing drive 1110 is coupled to the proximal articulation drive 10030 and communicate the same to the controller 3002 to confirm the coupling engagement between the firing drive 1110 and the proximal articulation drive 10030. In certain embodiments, when the controller 3002 is not configured to store and access the proximal articulation drive 10030, the controller may activate the motor 1102 to motivate the firing drive 1110 to travel along its full range of motion until the firing drive 1110 comes into coupling arrangement with the proximal articulation drive 10030.
Referring now to
Referring again to
In certain embodiments, referring to
In certain embodiments, it may be desirable to include a warning step prior to resetting the surgical instrument 1010 to home state in response to the home state input signal to provide an operator with a chance to remedy an accidental unlocking of the locking member 3082. For example, the controller 3002 can be configured to react to a first transmission of the home state input signal by asking the operator to confirm that the operator wishes to reset the surgical instrument 1010, for example, through the display. In certain embodiments, the operator may transmit a second home state input signal to the controller 3002 within a predetermined time period from the first home state input signal by locking and unlocking the locking member 3082 a second time. The controller 3002 can be configured to react to the second transmission of the home state input signal if transmitted within the predetermined time period from the first transmission by resetting the surgical instrument 1010 to the home state, as described above.
An electric motor for a surgical instrument described herein can perform multiple functions. For example, a multi-function electric motor can advance and retract a firing element during a firing sequence. To perform multiple functions, the multi-function electric motor can switch between different operating states. The electric motor can perform a first function in a first operating state, for example, and can subsequently switch to a second operating state to perform a second function, for example. In various circumstances, the electric motor can drive the firing element distally during the first operating state, e.g., an advancing state, and can retract the firing element proximally during the second operating state, e.g., a retracting state. In certain circumstances, the electric motor can rotate in a first direction during the first operating state and can rotate in second direction during the second operating state. For example, clockwise rotation of the electric motor can advance the firing element distally and counterclockwise rotation of the electric motor can retract the firing element proximally. The electric motor can be balanced or substantially balanced during the first and second operating states such that background haptic feedback or “noise” generated by the electric motor is minimized. Though the haptic feedback can be minimized during the first and second operating states, it may not be entirely eliminated in certain circumstances. In fact, such “noise” may be expected by the operator during normal operation of the surgical instrument and, as such, may not constitute a feedback signal indicative of a particular condition of the surgical instrument.
In various circumstances, the multi-function electric motor can perform additional functions during additional operating states. For example, during a third operating state, e.g., a feedback state, the electric motor can generate amplified haptic or tactile feedback in order to communicate a particular condition of the surgical instrument to the operator thereof. In other words, a multi-function electric motor can drive a firing element distally and proximally during a firing sequence, e.g., the first operating state and the second operating state, respectively, and can also generate the amplified haptic feedback to communicate with the operator of the surgical instrument, e.g., during the third operating state. The amplified haptic feedback generated during the third operating state can substantially exceed the background haptic feedback or “noise” generated during the first and second operating states. In various embodiments, the amplified haptic feedback generated during the third operating state can constitute a feedback signal to the operator that is indicative of a particular condition of the surgical instrument. For example, the electric motor can generate the amplified haptic feedback when a predetermined threshold force is detected on the firing element. In such embodiments, the amplified haptic feedback can constitute a warning signal to the operator such as, for example, a potential overload warning. In other embodiments, the amplified haptic feedback can communicate a status update to the operator such as, for example, a signal that the firing element has reached a distal-most position and/or successfully completed a firing stroke. In various embodiments, the electric motor can oscillate between clockwise rotation and counterclockwise rotation during the third operating state. As described herein, a resonator or amplifier mounted to the electric motor can oscillate with the electric motor to optimize or amplify the haptic feedback generated by the electric motor. Though the resonator can amplify haptic feedback during the third operating state, the resonator can be balanced relative to its axis of rotation, for example, such that the background haptic feedback or “noise” remains minimized during the first and second operating states.
In various circumstances, the multi-function electric motor can switch between different operating states. For example, the electric motor can switch from the first operating state to the second operating state in order to retract the firing element from a distal position in an end effector. Furthermore, the electric motor can switch to the third operating state to communicate a signal indicative of a particular condition of the surgical instrument to the operator. For example, when a clinically-important condition is detected, the electric motor can switch from the first operating state to the third operating state in order to communicate the clinically-important condition to the operator. In certain embodiments, the electric motor can generate amplified haptic feedback to communicate the clinically-important condition to the operator. When the electric motor switches to the third operating state, the advancement of the firing element can be paused. In various embodiments, upon receiving the amplified haptic feedback, the operator can decide whether (A) to resume the first operating state, or (B) to initiate the second operating state. For example, where the clinically-important condition is a high force on the firing element, which may be indicative of potential instrument overload, the operator can decide (A) to resume advancing the firing element distally, or (B) to heed the potential overload warning and retract the firing element proximally. If the operator decides to resume the first operating state despite the potential for instrument overload, the instrument may be at risk of failure. In various embodiments, a different electric motor can generate feedback to communicate the clinically-important condition to the operator. For example, a second electric motor can generate sensory feedback such as a noise, a light, and/or a tactile signal, for example, to communicate the clinically-important condition to the operator.
Referring now to
In various embodiments, a resonator or amplifier 5020 can be mounted on the shaft 5006 of the electric motor 5002. A washer 5008 can secure the resonator 5020 relative to the shaft 5006, for example. Furthermore, the resonator 5020 can be fixedly secured to the shaft 5006 such that the resonator 5020 rotates and/or moves with the shaft 5006. In various embodiments, the resonator 5020 and/or various portions thereof can be fastened to the shaft 5006 and/or can be integrally formed therewith, for example.
Referring now to
In various circumstances, the resonator 5020 can further comprise a pendulum 5030 extending from the body 5022. For example, the pendulum 5030 can comprise a spring or bar 5032 extending from the body 5022 and a weight 5034 extending from the spring 5032. In certain circumstances, the resonator 5020 and/or the pendulum 5030 thereof can be designed to have an optimized natural frequency. As described herein, an optimized natural frequency can amplify the haptic feedback generated when the electric motor 5002 oscillates between clockwise and counterclockwise rotations, e.g., during the third operating state. In various circumstances, the resonator 5020 can further comprise a counterweight 5024 extending from the body 5022. Referring primarily to
The center of mass 5028 of the resonator 5020 (CMR) can be determined from the following relationship:
where mR is the total mass of the resonator 5020, CMB is the center of mass of the body 5022, CMC is the center of mass of the counterweight 5024, CMS is the center of mass of the spring 5032, CMW is the center of mass of the weight 5034, mB is the mass of the body 5022, mC is the mass of the counterweight 5024, mS is the mass of the spring 5032, and mW is the mass of the weight 5034. Where the center of mass of the body 5022 is positioned along the central axis of the mounting bore 5040 and the resonator 5020 comprises a uniform thickness and uniform density, the resonator 5020 can be balanced relative to the central axis of the mounting bore 5040 according to the following simplified relationship:
AC·CMC=AS·CMS+AW·CMW,
wherein AC is the area of the counterweight 5024, AS is the area of the spring 5032, and AW is the area of the weight 5034.
In various circumstances, when the center of mass 5028 of the resonator 5020 is centered along the central axis of the mounting hole 5040, and thus, along the axis of rotation of the shaft 5006 (
Referring still to
In use, the rotation of the pendulum 5030 can generate a centrifugal force on the weight 5034, and the spring 5032 of the pendulum 5030 can elongate in response to the centrifugal force. In various embodiments, the resonator 5020 and/or the motor 5002 can comprise a retainer for limiting radial elongation of the spring 5032. Such a retainer can retain the pendulum 5030 within a predefined radial boundary 5050 (
In various circumstances, the resonator 5020 can be designed to amplify the haptic feedback generated by the electric motor 5002 (
In certain embodiments, the natural frequency of the resonator 5020 can be approximated by the natural frequency of the pendulum 5030. For example, substantially non-oscillating components can be ignored in the natural frequency approximation. In certain embodiments, the body 5022 and the counterweight 5024 can be assumed to be substantially non-oscillating components of the resonator 5020, and thus, assumed to have a negligible or inconsequential effect on the natural frequency of the resonator 5020. Accordingly, the oscillating component of the resonator 5020, e.g., the pendulum 5030, can be designed to amplify the haptic feedback generated by the electric motor 5002 (
wherein kS is the spring constant of the spring 5032 and mW is the mass of the weight 5034. The spring constant of the spring 5032 (kS) can be determined from the following relationship:
where ES is the modulus of elasticity of the spring 5032, IS is the second moment of inertia of the spring 5032, and LS is the length of the spring 5032. In various embodiments, the spring constant (kS) of the spring 5032 and/or the mass of the weight 5034 (mW) can be selected such that the natural frequency of the pendulum 5030 (fP) relates to the oscillation frequency of the electric motor 5002 during the third operating state. For example, the natural frequency of the pendulum 5030 can be optimized by varying the spring constant of the spring 5032 and/or the mass of the weight 5034.
Referring still to
In various embodiments, the oscillation frequency of the electric motor 5002 can coincide with and/or correspond to the natural frequency of the resonator 5020 in order to drive the resonator 5020 at or near its natural frequency. In certain embodiments, the oscillation frequency of the electric motor 5002 can be near or at the natural frequency of the resonator 5020 and, in other embodiments, the oscillation frequency of the electric motor 5002 can be offset from the natural frequency of the resonator 5020. In various embodiments, the oscillation frequency of the electric motor 5002 can be optimized to coincide with the natural frequency of the resonator 5020. Furthermore, in certain embodiments, the oscillation frequency of the electric motor 5002 and the natural frequency of the resonator 5020 can be cooperatively selected, designed and/or optimized to amplify the haptic feedback generated by the electric motor 5002 during the third operating state.
Referring primarily to
Referring now to
Referring primarily to
In various embodiments, the resonator 5120 can further comprise a pendulum 5130 extending from the body 5122. For example, the pendulum 5130 can comprise a spring or bar 5132 extending from the body 5122 and a weight 5134 extending from the spring 5132. In certain embodiments, the spring 5132 can extend along an axis that defines at least one contour between the body 5122 and the weight 5134. The spring 5132 can wind, bend, twist, turn, crisscross, and/or zigzag, for example. The geometry of the spring 5132 can affect the spring constant thereof, for example. In at least one embodiment, the spring 5132 can form a first loop 5137 on a first lateral side of the resonator 5120 and a second loop 5138 on a second lateral side of the resonator 5120. An intermediate portion 5139 of the spring 5132 can traverse between the first and second loops 5137, 5138, for example. Similar to the spring 5032, the spring 5132 can be deflectable, and can deflect in response to rotations and/or oscillations of the resonator 5120. Furthermore, in certain embodiments, the weight 5134 can include a pin 5136, which can provide additional mass to the weight 5134, for example. As described herein, the mass of the weight 5134 and the geometry and properties of the spring 5132 can be selected to optimize the natural frequency of the pendulum 5130, and thus, the natural frequency of the entire resonator 5120, for example.
Referring still to
Similar to the resonator 5020, the resonator 5120 can be designed to amplify the haptic feedback generated by the electric motor 5002 (
Referring now to
Referring primarily to
In various embodiments, the resonator 5220 can further comprise a pendulum 5230 extending from the body 5222. For example, the pendulum 5230 can comprise a spring or bar 5232 extending from the body 5222 and a weight 5234 extending from the spring 5232. In various embodiments, the spring 5232 can curve, wind, bend, twist, turn, crisscross, and/or zigzag between the body 5222 and the weight 5234. Furthermore, in certain embodiments, the weight 5234 can include a pin 5236, which can provide additional mass to the weight 5234, for example. As described herein, the mass of the weight 5234 and the geometry and properties of the spring 5232 can be selected to optimize the natural frequency of the pendulum 5230, and thus, the natural frequency of the entire resonator 5220, for example.
In various embodiments, a retainer can limit or constrain radial elongation of the spring 5232 and/or the pendulum 5230 during rotation and/or oscillation. For example, a retainer can comprise a barrier or retaining wall around at least a portion of the pendulum 5230. During the first and second operating states, for example, the spring 5232 may deform and extend the weight 5234 toward the barrier, which can prevent further elongation of the spring 5232. For example, referring primarily to
In various embodiments, when the resonator 5220 rotates during the first and second operating states, the spring 5232 of the pendulum 5230 can be substantially deformed and/or elongated. For example, the rotation of the resonator 5220 can generate a centrifugal force on the spring 5232, and the spring 5232 may elongate in response to the centrifugal force. In certain embodiments, the weight 5234 of the pendulum 5230 can move toward and into abutting contact with the barrier leg 5248 of the retainer 5244. In such embodiments, the barrier 5248 can limit or constrain further radial elongation of the spring 5232 during the first and second operating states.
In various embodiments, the retainer 5244 can be substantially rigid such that the retainer 5244 resists deformation and/or elongation. In certain embodiments, the retainer 5244 can be integrally formed with the resonator 5220 and/or secured relative thereto. In some embodiments, the retainer 5244 can be secured to the motor 5002 (
Referring still to
Similar to the resonators 5020, 5120, the resonator 5220 can be designed to amplify the haptic feedback generated by the electric motor 5002 during the third operating state. In other words, the resonator 5220 can be designed such that the natural frequency of the resonator 5220 is optimized, and the electric motor 5002 can oscillate at a frequency that drives the resonator 5220 to oscillate at or near its optimized natural frequency. For example, the electric motor 5002 can drive the resonator 5220 to oscillate within a range of amplifying frequencies inclusive of the natural frequency of the resonator 5220. In certain embodiments, the natural frequency of the resonator 5220 can be approximated by the natural frequency of the pendulum 5230. In such embodiments, the pendulum 5230 can be designed to amplify the haptic feedback generated by the electric motor 5002 during the third operating state. For example, the pendulum 5230 can be designed to have an optimized natural frequency, and the electric motor 5002 can drive the resonator 5220 to oscillate at or near the optimized natural frequency of the pendulum 5230 to amplify the haptic feedback generated during the third operating state.
Referring now to
In various embodiments, a retaining ring 5344, similar to retainer 5244, can limit or constrain radial elongation of the spring 5332 and/or the pendulum 5230 during rotation and/or oscillation. In various embodiments, the retaining ring 5344 can comprise a barrier or retaining wall around at least a portion of the pendulum 5330. In certain embodiments, the retaining ring 5344 can comprise a ring encircling the resonator 5320, for example. In various embodiments, the retaining ring 5344 can be attached to the electric motor 5002, such as the motor housing 5004, for example. In other embodiments, the retaining ring 5344 can be attached to the handle 5101 of the surgical instrument 5100, for example. In still other embodiments, the retaining ring 5344 can be attached to the rotor and/or the shaft 5006 (
The retaining ring 5344 can define the radial boundary beyond which the pendulum 5330 cannot extend. For example, the pendulum 5330 can be out of contact with the retaining ring 5344 when the spring 5332 is undeformed. In other words, a gap can be defined between the weight 5334 of the pendulum 5330 and the retaining ring 5344 when the spring 5334 is undeformed. Further, the pendulum 5330 can remain out of contact with the retaining ring 5344 when the resonator 5320 oscillates during the third operating state. For example, the centrifugal force on the oscillating pendulum 5330 during the third operating state may be insufficient to extend the weight 5334 of the pendulum 5330 beyond the predefined radial boundary. Though the gap defined between the weight 5334 and the retaining ring 5344 may be reduced during the third operating state, the weight 5334 can remain out of contact with the retaining ring 5344, for example. In such embodiments, the natural frequency of the pendulum 5330 can be substantially unaffected by the retaining ring 5344 during the third operating state.
In various embodiments, when the resonator 5320 rotates during the first and second operating states, the spring 5332 of the pendulum 5330 can be substantially deformed and/or elongated. For example, the rotation of the resonator 5320 can generate a centrifugal force on the spring 5332, and the spring 5332 may elongate in response to the centrifugal force. In certain embodiments, the weight 5334 of the pendulum 5330 can move toward and into abutting contact with the retaining ring 5344. In such embodiments, the retaining ring 5344 can limit or constrain further radial elongation of the spring 5332 during the first and second operating states.
In various embodiments, the surgical instrument 5100 (
In various embodiments, the surgical instrument 5100 may be designed to overcome a maximum threshold force in order to transect tissue. When the force applied to the firing element exceeds the maximum threshold force, the surgical instrument 5100 may not perform as intended. For example, when the firing element attempts to transect thicker and/or tougher tissue, the thicker and/or tougher tissue may exert a force on the firing element that exceeds the maximum threshold force. Accordingly, the firing element may be unable to transect the thicker and/or tougher tissue. In such embodiments, the electric motor 5002 can switch to the third operating state in order to warn the operator that overload and/or failure of the surgical instrument 5100 is possible. In various embodiments, the surgical instrument 5100 can comprise a sensor (not shown). The sensor can be positioned in the end effector (illustrated elsewhere), for example, and can be configured to detect the force applied to the firing element during the firing sequence. In certain embodiments, the sensor and the control system can be in signal communication. In such embodiments, when the force detected by the sensor exceeds the maximum threshold force, the control system can switch the electric motor 5002 to the third operating state. In the third operating state, as described herein, advancement of the firing element can be paused and the electric motor can generate amplified haptic feedback to communicate the potential overload warning to the operator.
In response to the amplified haptic feedback, the operator can decide whether to resume the first operating state or to initiate the second operating state. For example, the operator can decide to resume advancement of the firing element distally, i.e., operate the surgical instrument in a warned operating state, or to heed the potential overload warning and retract the firing element proximally, i.e., operate the surgical instrument in a modified operating state. If the operator decides to operate the surgical instrument in the warned operating state, the surgical instrument 5100 may be at risk of failure. In various embodiments, the surgical instrument 5100 can comprise an input key (not shown), such as a plurality of lever(s) and/or button(s), for example. In various embodiments, the input key can be in signal communication with the control system. The operator can control the surgical instrument by entering input via the input key. For example, the operator can select a first button of the input key to resume advancement of the firing element, i.e., enter the warned operating state, or can select a second button of the input key to retract the firing element, i.e., enter the modified operating state. In various embodiments, the operator can select an additional button and/or lever to select yet a different operating state.
Though the surgical instrument 5100 may fail when operated in the warned operating state, the operator of the surgical instrument 5100 may decide that the failure risk is outweighed by the necessity and/or urgency of the surgical function. For example, when time is essential, the operator may decide that the risk of instrument failure is outweighed by a critical need to expeditiously complete (or attempt to complete) a surgical transection and/or stapling. Furthermore, by allowing the operator to determine the course of action, the holistic knowledge of the operator can be applied to the surgical procedure, and the operator is less likely to become confused and/or frustrated with the surgical instrument 5100.
In various embodiments, a different motor can generate feedback to communicate with the operator. For example, a first motor can drive the firing member during a firing sequence, and a second motor can generate feedback. In various embodiments, the second motor can generate sensory feedback such as, for example, a noise, a light, and/or a tactile signal to communicate with the operator. Furthermore, in certain embodiments, the control system can control the multiple motors of the surgical instrument.
Referring primarily to
Referring still to
In certain embodiments, after the surgical instrument has communicated feedback indicative of a particular condition to the operator, the operator can determine how to proceed. For example, the operator can decide between a plurality of possible operating states. In various embodiments, the operator can decide to enter a warned operating state 5412, or a modified operating state 5414. For example, referring still to
As outlined above with respect to other various forms, the electric motor 1102 can include a rotatable shaft (not shown) that operably interfaces with a gear reducer assembly 1108 that is mounted in meshing engagement with a with a set, or rack, of drive teeth 1112 on a longitudinally-movable drive member 1110. In use, a voltage polarity provided by the battery can operate the electric motor 1102 in a clockwise direction wherein the voltage polarity applied to the electric motor by the battery can be reversed in order to operate the electric motor 1102 in a counter-clockwise direction. When the electric motor 1102 is rotated in one direction, the drive member 1110 will be axially driven in the distal direction “D”. When the motor 1102 is driven in the opposite rotary direction, the drive member 1110 will be axially driven in a proximal direction “P”. The handle 1042 can include a switch which can be configured to reverse the polarity applied to the electric motor 1102 by the battery. As with the other forms described herein, the handle 1042 can also include a sensor that is configured to detect the position of the drive member 1110 and/or the direction in which the drive member 1110 is being moved.
The battery 1104, or other energy source, provides power for the absolute positioning system 7000. In addition, other sensor(s) 7018 may be provided to measure other parameters associated with the absolute positioning system 7000. One or more display indicators 7020, which may include an audible component, also may provided.
As shown in
In accordance one embodiment of the present disclosure, the sensor arrangement 7002 for the absolute positioning system 7000 provides a more robust position sensor 7012 for use with surgical devices. By providing a unique position signal or value for each possible actuator position, such arrangement eliminates the need for a zeroing or calibration step and reduces the possibility of negative design impact in the cases where noise or power brown-out conditions may create position sense errors as in conventional rotary encoder configurations.
In one embodiment, the sensor arrangement 7002 for the absolute positioning system 7000 replaces conventional rotary encoders typically attached to the motor rotor and replaces it with a position sensor 7012 which generates a unique position signal for each rotational position in a single revolution of a sensor element associated with the position sensor 7012. Thus, a single revolution of a sensor element associated with the position sensor 7012 is equivalent to a longitudinal linear displacement d1 of the of the longitudinally-movable drive member 1110. In other words, d1 is the longitudinal linear distance that the longitudinally-movable drive member 1110 moves from point a to point b after a single revolution of a sensor element coupled to the longitudinally-movable drive member 1110. The sensor arrangement 7002 may be connected via a gear reduction that results in the position sensor 7012 completing only a single turn for the full stroke of the longitudinally-movable drive member 1110. With a suitable gear ratio, the full stroke of the longitudinally-movable drive member 1110 can be represented in one revolution of the position sensor 7012.
A series of switches 7022a to 7022n, where n is an integer greater than one, may be employed alone or in combination with gear reduction to provide a unique position signal for more than one revolution of the position sensor 7012. The state of the switches 7022a-7022n are fed back to the microcontroller 7004 which applies logic to determine a unique position signal corresponding to the longitudinal linear displacement d1+d2+ . . . dn of the longitudinally-movable drive member 1110.
Accordingly, the absolute positioning system 7000 provides an absolute position of the longitudinally-movable drive member 1110 upon power up of the instrument without retracting or advancing the longitudinally-movable drive member 1110 to a reset (zero or home) position as may be required with conventional rotary encoders that merely count the number of steps forwards or backwards that motor has taken to infer the position of a device actuator, drive bar, knife, and the like.
In various embodiments, the position sensor 7012 of the sensor arrangement 7002 may comprise one or more magnetic sensor, analog rotary sensor like a potentiometer, array of analog Hall-effect elements, which output a unique combination of position signals or values, among others, for example.
In various embodiments, the microcontroller 7004 may be programmed to perform various functions such as precise control over the speed and position of the knife and articulation systems. Using the known physical properties, the microcontroller 7004 can be designed to simulate the response of the actual system in the software of the controller 7004. The simulated response is compared to (noisy and discrete) measured response of the actual system to obtain an “observed” response, which is used for actual feedback decisions. The observed response is a favorable, tuned, value that balances the smooth, continuous nature of the simulated response with the measured response, which can detect outside influences on the system.
In various embodiments, the absolute positioning system 7000 may further comprise and/or be programmed to implement the following functionalities. A feedback controller, which can be one of any feedback controllers, including, but not limited to: PID, state feedback and adaptive. A power source converts the signal from the feedback controller into a physical input to the system, in this case voltage. Other examples include, but are not limited to pulse width modulated (PWMed) voltage, current and force. The motor 1102 may be a brushed DC motor with a gearbox and mechanical links to an articulation or knife system. Other sensor(s) 7018 may be provided to measure physical parameters of the physical system in addition to position measured by the position sensor 7012. Since it is a digital signal (or connected to a digital data acquisition system) its output will have finite resolution and sampling frequency. A compare and combine circuit may be provided to combine the simulated response with the measured response using algorithms such as, without limitation, weighted average and theoretical control loop that drives the simulated response towards the measured response. Simulation of the physical system takes in account of properties like mass, inertial, viscous friction, inductance resistance, etc. to predict what the states and outputs of the physical system will be by knowing the input.
In one embodiment, the microcontroller 7004 may be an LM 4F230H5QR, available from Texas Instruments, for example. In one embodiment, the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory 7006 of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) loaded with StellarisWare software, 2 KB electrically erasable programmable read-only memory (EEPROM), two pulse width modulation (PWM) modules, with a total of 16 advanced PWM outputs for motion and energy applications, two quadrature encoder inputs (QEI) analog, two 12-bit Analog-to-Digital Converters (ADC) with 12 analog input channels, among other features that are readily available for the product datasheet. Other microcontrollers may be readily substituted for use in the absolute positioning system 7000. Accordingly, the present disclosure should not be limited in this context.
In one embodiment, the driver 7010 may be a A3941 available from Allegro Microsystems, Inc. The A3941 driver 7010 is a full-bridge controller for use with external N-channel power metal oxide semiconductor field effect transistors (MOSFETs) specifically designed for inductive loads, such as brush DC motors. The driver 7010 comprises a unique charge pump regulator provides full (>10 V) gate drive for battery voltages down to 7 V and allows the A3941 to operate with a reduced gate drive, down to 5.5 V. A bootstrap capacitor may be employed to provide the above-battery supply voltage required for N-channel MOSFETs. An internal charge pump for the high-side drive allows DC (100% duty cycle) operation. The full bridge can be driven in fast or slow decay modes using diode or synchronous rectification. In the slow decay mode, current recirculation can be through the high-side or the lowside FETs. The power FETs are protected from shoot-through by resistor adjustable dead time. Integrated diagnostics provide indication of undervoltage, overtemperature, and power bridge faults, and can be configured to protect the power MOSFETs under most short circuit conditions. Other motor drivers may be readily substituted for use in the absolute positioning system 7000. Accordingly, the present disclosure should not be limited in this context.
Having described a general architecture for implementing various embodiments of an absolute positioning system 7000 for a sensor arrangement 7002, the disclosure now turns to
In various embodiments, any number of magnetic sensing elements may be employed on the absolute positioning system 7000, such as, for example, magnetic sensors classified according to whether they measure the total magnetic field or the vector components of the magnetic field. The techniques used to produce both types of magnetic sensors encompass many aspects of physics and electronics. The technologies used for magnetic field sensing include search coil, fluxgate, optically pumped, nuclear precession, SQUID, Hall-effect, anisotropic magnetoresistance, giant magnetoresistance, magnetic tunnel junctions, giant magnetoimpedance, magnetostrictive/piezoelectric composites, magnetodiode, magnetotransistor, fiber optic, magnetooptic, and microelectromechanical systems-based magnetic sensors, among others.
In the illustrated embodiment, the gear assembly 7106 comprises a first gear 7108 and a second gear 7110 in meshing engagement to provide a 3:1 gear ratio connection. A third gear 7112 rotates about shaft 7114. The third gear is in meshing engagement with the longitudinally-movable drive member 1110 and rotates in a first direction as the longitudinally-movable drive member 1110 advances in a distal direction D (
As discussed above, a gear assembly can be utilized to drive the magnet holder 7104 and the magnet 7102. A gear assembly can be useful in various circumstances as the relative rotation between one gear in the gear assembly and another gear in the gear assembly can be reliably predicted. In various other circumstances, any suitable drive means can be utilized to drive the holder 7104 and the magnet 7102 so long as the relationship between the output of the motor and the rotation of the magnet 7102 can be reliably predicted. Such means can include, for example, a wheel assembly including at least two contacting wheels, such as plastic wheels and/or elastomeric wheels, for example, which can transmit motion therebetween. Such means can also include, for example, a wheel and belt assembly.
The Hall-effect elements 7128A, 7128B, 7128C, 7128D are located directly above the rotating magnet. The Hall-effect is a well known effect and will not be described in detail herein for the sake of conciseness and clarity of disclosure. Generally, the Hall-effect is the production of a voltage difference (the Hall voltage) across an electrical conductor, transverse to an electric current in the conductor and a magnetic field perpendicular to the current. It was discovered by Edwin Hall in 1879. The Hall coefficient is defined as the ratio of the induced electric field to the product of the current density and the applied magnetic field. It is a characteristic of the material from which the conductor is made, since its value depends on the type, number, and properties of the charge carriers that constitute the current. In the AS5055 position sensor 7100, the Hall-effect elements 7128A, 7128B, 7128C, 7128D are capable producing a voltage signal that is indicative of the absolute position of the magnet 7104 (
The AS5055 position sensor 7100 requires only a few external components to operate when connected to the host microcontroller 7004. Six wires are needed for a simple application using a single power supply: two wires for power and four wires 7140 for the SPI serial communication interface 7134 with the host microcontroller 7004. A seventh connection can be added in order to send an interrupt to the host microcontroller 7004 to inform that a new valid angle can be read.
Upon power-up, the AS5055 position sensor 7100 performs a full power-up sequence including one angle measurement. The completion of this cycle is indicated as an INT request at output pin 7142 and the angle value is stored in an internal register. Once this output is set, the AS5055 position sensor 7100 suspends to sleep mode. The external microcontroller 7004 can respond to the INT request at 7142 by reading the angle value from the AS5055 position sensor 7100 over the SPI interface 7134. Once the angle value is read by the microcontroller 7004, the INT output 7142 is cleared again. Sending a “read angle” command by the SPI interface 7134 by the microcontroller 7004 to the position sensor 7100 also automatically powers up the chip and starts another angle measurement. As soon ad the microcontroller 7004 has completed reading of the angle value, the INT output 7142 is cleared and a new result is stored in the angle register. The completion of the angle measurement is again indicated by setting the INT output 7142 and a corresponding flag in the status register.
Due to the measurement principle of the AS5055 position sensor 7100, only a single angle measurement is performed in very short time (˜600 μs) after each power-up sequence. As soon as the measurement of one angle is completed, the AS5055 position sensor 7100 suspends to power-down state. An on-chip filtering of the angle value by digital averaging is not implemented, as this would require more than one angle measurement and consequently, a longer power-up time which is not desired in low power applications. The angle jitter can be reduced by averaging of several angle samples in the external microcontroller 7004. For example, an averaging of 4 samples reduces the jitter by 6 dB (50%).
As discussed above, the motor 1102 positioned within the handle 1042 of surgical instrument system 1000 can be utilized to advance and/or retract the firing system of the shaft assembly 1200, including firing members 1272 and 1280, for example, relative to the end effector 1300 of the shaft assembly 1200 in order to staple and/or incise tissue captured within the end effector 1300. In various circumstances, it may be desirable to advance the firing members 1272 and 1280 at a desired speed, or within a range of desired speeds. Likewise, it may be desirable to retract the firing members 1272 and 1280 at a desired speed, or within a range of desired speeds. In various circumstances, the microcontroller 7004 of the handle 1042, for example, and/or any other suitable controller, can be configured to control the speed of the firing members 1272 and 1280. In some circumstances, the controller can be configured to predict the speed of the firing members 1272 and 1280 based on various parameters of the power supplied to the motor 1102, such as voltage and/or current, for example, and/or other operating parameters of the motor 1102. The controller can also be configured to predict the current speed of the firing members 1272 and 1280 based on the previous values of the current and/or voltage supplied to the motor 1102, and/or previous states of the system like velocity, acceleration, and/or position. Furthermore, the controller can also be configured to sense the speed of the firing members 1272 and 1280 utilizing the absolute positioning sensor system described above, for example. In various circumstances, the controller can be configured to compare the predicted speed of the firing members 1272 and 1280 and the sensed speed of the firing members 1272 and 1280 to determine whether the power to the motor 1102 should be increased in order to increase the speed of the firing members 1272 and 1280 and/or decreased in order to decrease the speed of the firing members 1272 and 1280. U.S. patent application Ser. No. 12/235,782, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, now U.S. Pat. No. 8,210,411, is incorporated by reference in its entirety. U.S. patent application Ser. No. 11/343,803, entitled SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES, now U.S. Pat. No. 7,845,537 is incorporated by reference in its entirety.
Using the physical properties of the instruments disclosed herein, turning now to
With continued reference to
With continued reference to
Having described various embodiments of an absolute positioning system 7000 to determine an absolute position signal/value of a sensor element corresponding to a unique absolute position of elements associated with articulation and firing, the disclosure now turns to a description of several techniques for employing the absolute position/value in a position feedback system to control the position of the articulation and knife to compensate for knife band splay in a powered articulated surgical instrument 1010 (
The operation of the articulation joint 1350 has been described in connection with
The surgical instrument according to the present disclosure utilizes multiple flexible knife bands 8002 to transfer compressive force to a translating a knife element in the cartridge (not shown) of the end effector 1300 (
In one embodiment, the articulation angle θ can be determined fairly accurately based on the firing drive of the surgical instrument. As outlined above, the movement of the firing member 10060 can be tracked by the absolute positioning system 7000 wherein, when the articulation drive is operably coupled to the firing member 10060 by the clutch system 10070, for example, the absolute positioning system 7000 can, in effect, track the movement of the articulation system via the firing member 10060. As a result of tracking the movement of the articulation system, the controller of the surgical instrument can track the articulation angle θ of the end effector, such as end effector 10020, for example. In various circumstances, as a result, the articulation angle θ can be determined as a function of longitudinal displacement DL of the flexible knife bands 8002. Since the longitudinal displacement DL of the flexible knife bands 8002 can be precisely determined based on the absolute position signal/value provided by the absolute positioning system 7000, an algorithm may be employed to compensate for the error in displacement of the knife following the articulation joint 8000.
In another embodiment, the articulation angle θ can be determined by locating sensors on the flexible knife bands 8002 distal D to the articulation joint 8000. The sensors can be configured to sense the amount of tension or compression in the articulated flexible knife bands 8002. The measured tension or compression results are provided to the microcontroller 7004 to calculate the articulation angle θ based on the amount of tension or compression measured in the knife bands 8002. Suitable sensors such as microelectronic mechanical systems (MEMS) devices and strain gauges may be readily adapted to make such measurements. Other techniques include locating a tilt sensor, inclinometer, accelerometer, or any suitable device for measuring angles, in the articulation joint 8000 to measure the articulation angle θ.
In various embodiments, several techniques for compensating for splay of the flexible knife bands 8002 in a powered articulatable surgical instrument 1010 (
In various embodiments, the characterization data representative of the relationship between the articulation angle θ of the end effector 1300 (
In one embodiment, the output of the characterization 8102 process is a best curve fit formula, linear or nonlinear. Accordingly, in one embodiment, the processor 7008 is operative to execute computer readable instructions to implement a best curve fit formula based on the characterization data. Curve fitting is the process of constructing a curve, or mathematical function that has the best fit to a series of data points, possibly subject to constraints. Curve fitting can involve either interpolation, where an exact fit to the data is required. In the instant disclosure, the curve represents the transection length T1 displacement of the flexible knife bands 8002 distal D of the articulated articulation joint 8000 (
In one embodiment, the characterization 8102 process accounts for articulation angle θ and compressive force on the knife bands 8002.
In one embodiment, the effective transection length is a distance between the distal most surface of the knife blade in relationship to a predetermined reference in the handle of the surgical instruments 1010.
In various embodiments, the memory 7006 for storing the characterization may be a nonvolatile memory located on the on the shaft, the handle, or both, of the surgical instrument 1010 (
In various embodiments, the articulation angle θ can be tracked by a sensor located on the shaft of the surgical instrument 1010 (
In one embodiment, the characterization is utilized by control software of the microcontroller 7004 communicating with the non-volatile memory 7006 to gain access to the characterization.
Various embodiments described herein are described in the context of staples removably stored within staple cartridges for use with surgical stapling instruments. In some circumstances, staples can include wires which are deformed when they contact an anvil of the surgical stapler. Such wires can be comprised of metal, such as stainless steel, for example, and/or any other suitable material. Such embodiments, and the teachings thereof, can be applied to embodiments which include fasteners removably stored with fastener cartridges for use with any suitable fastening instrument.
Various embodiments described herein are described in the context of linear end effectors and/or linear fastener cartridges. Such embodiments, and the teachings thereof, can be applied to non-linear end effectors and/or non-linear fastener cartridges, such as, for example, circular and/or contoured end effectors. For example, various end effectors, including non-linear end effectors, are disclosed in U.S. patent application Ser. No. 13/036,647, filed Feb. 28, 2011, entitled SURGICAL STAPLING INSTRUMENT, now U.S. Pat. No. 8,561,870, which is hereby incorporated by reference in its entirety. Additionally, U.S. patent application Ser. No. 12/893,461, filed Sep. 29, 2012, entitled STAPLE CARTRIDGE, now U.S. Pat. No. 8,733,613, is hereby incorporated by reference in its entirety. U.S. patent application Ser. No. 12/031,873, filed Feb. 15, 2008, entitled END EFFECTORS FOR A SURGICAL CUTTING AND STAPLING INSTRUMENT, now U.S. Pat. No. 7,980,443, is also hereby incorporated by reference in its entirety. U.S. Pat. No. 8,393,514, entitled SELECTIVELY ORIENTABLE IMPLANTABLE FASTENER CARTRIDGE, which issued on Mar. 12, 2013, is also hereby incorporated by reference in its entirety.
A surgical instrument for treating tissue can comprise a handle including a trigger, a shaft extending from the handle, an end effector, and an articulation joint, wherein the end effector is rotatably coupled to the shaft by the articulation joint. The surgical instrument can further comprise a firing member operably coupled with the trigger, wherein the operation of the trigger is configured to advance the firing member toward the end effector, and an articulation member operably coupled with the end effector. The articulation member is selectively engageable with the firing member such that the articulation member is operably engaged with the firing member in an engaged configuration and such that the articulation member is operably disengaged from the firing member in a disengaged configuration, wherein the firing member is configured to advance the articulation member toward the end effector to rotate the end effector about the articulation joint when the articulation member and the firing member are in the engaged configuration. The surgical instrument can further include a biasing member, such as a spring, for example, which can be configured to re-center the end effector and re-align the end effector with the shaft along a longitudinal axis after the end effector has been articulated.
A surgical instrument for treating tissue can comprise an electric motor, a shaft, an end effector, and an articulation joint, wherein the end effector is rotatably coupled to the shaft by the articulation joint. The surgical instrument can further comprise a firing drive operably engageable with the electric motor, wherein the firing drive is configured to be advanced toward the end effector and retracted away from the end effector by the electric motor. The surgical instrument can also comprise an articulation drive operably coupled with the end effector, wherein the articulation drive is configured to rotate the end effector in a first direction when the articulation drive is pushed distally toward the end effector, wherein the articulation drive is configured to rotate the end effector in a second direction when the articulation drive is pulled proximally away from the end effector, wherein the firing drive is selectively engageable with the articulation drive and is configured to at least one of push the articulation drive distally toward the end effector and pull the articulation drive away from the end effector when the firing drive is operably engaged with the articulation drive, and wherein the firing drive can operate independently of the articulation drive when the firing drive is operably disengaged from the articulation drive.
A surgical instrument for treating tissue can comprise a shaft, an end effector rotatably coupled to the shaft, and a firing member configured to be moved relative to the end effector. The surgical instrument can further comprise an articulation member operably coupled with the end effector, wherein the articulation member is selectively engageable with the firing member such that the articulation member is operably engaged with the firing member in an engaged configuration and such that the articulation member is operably disengaged from the firing member in a disengaged configuration, and wherein the firing member is configured to move the articulation member relative to the end effector to rotate the end effector when the articulation member and the firing member are in the engaged configuration. The surgical instrument can further comprise an end effector lock configurable in a locked configuration and an unlocked configuration, wherein the end effector lock is configured to operably engage the articulation member with the firing member when the end effector lock is in the unlocked configuration.
A surgical instrument that may include at least one drive system that is configured to generate control motions and which defines an actuation axis. The surgical instrument may further comprise at least one interchangeable shaft assembly that is configured to be removably coupled to the at least one drive system in a direction that is substantially transverse to the actuation axis and transmit the control motions from the at least one drive system to a surgical end effector operably coupled to the interchangeable shaft assembly. In addition, the surgical instrument may further include a lockout assembly that interfaces with the at least one drive system for preventing actuation of the drive system unless the at least one interchangeable shaft assembly has been operably coupled to the at least one drive system.
A surgical instrument that comprises a shaft assembly that includes an end effector. The end effector may comprise a surgical staple cartridge and an anvil that is movably supported relative to the surgical staple cartridge. The shaft assembly may further comprise a movable closure shaft assembly that is configured to apply opening and closing motions to the anvil. A shaft attachment frame may operably support a portion of the movable closure shaft assembly thereon. The surgical instrument may further comprise a frame member that is configured for removable operable engagement with the shaft attachment frame and a closure drive system that is operably supported by the frame member and defines an actuation axis. The closure drive system may be configured for operable engagement with the closure shaft assembly in a direction that is substantially transverse to the actuation axis when the shaft attachment frame is in operable engagement with the frame member. A lockout assembly may interface with the closure drive system for preventing actuation of the closure drive system unless the closure shaft assembly is in operable engagement with the closure drive system.
A surgical system that may comprise a frame that operably supports at least one drive system for generating control motions upon actuation of a control actuator. At least one of the drive systems defines an actuation axis. The surgical system may further comprise a plurality of interchangeable shaft assemblies wherein each interchangeable shaft assembly may comprise a shaft attachment frame that is configured to removably operably engage a portion of the frame in a direction that is substantially transverse to the actuation axis. A first shaft assembly may be operably supported by the shaft attachment frame and be configured for operable engagement with a corresponding one of the at least one drive systems in the direction that is substantially transverse to the actuation axis. A lockout assembly may mechanically engage a portion of the corresponding one of the at least one drive systems and cooperate with the control actuator to prevent actuation of the control actuator until the shaft attachment frame is in operable engagement with the frame portion and the first shaft assembly is in operable engagement with the one of the at least one drive systems.
An interchangeable shaft assembly can be used with a surgical instrument. In at least one form, the surgical instrument includes a frame that operably supports a plurality of drive systems and defines an actuation axis. In one form, the shaft assembly comprises a first shaft that is configured to apply first actuation motions to a surgical end effector operably coupled thereto, wherein a proximal end of the first shaft is configured to be operably releasably coupled to a first one of the drive systems supported by the frame in a direction that is substantially transverse to the actuation axis.
An interchangeable shaft assembly can be used with a surgical instrument. In at least one form, the surgical instrument may include a frame that defines an actuation axis and operably supports a plurality of drive systems. Various forms of the shaft assembly may comprise a shaft frame that has a shaft attachment module attached to a proximal end thereof and is configured to be releasably coupled to a portion of the frame in a direction that is substantially transverse to the actuation axis. The shaft assembly may further comprise an end effector that is operably coupled to a distal end of the shaft frame. In at least one form, the end effector comprises a surgical staple cartridge and an anvil that is movably supported relative to the surgical staple cartridge. The shaft assembly may further comprise an outer shaft assembly that includes a distal end that is configured to apply control motions to the anvil. The outer shaft assembly may include a proximal end that is configured to be operably releasably coupled to a first one of the drive systems supported by the frame in a direction that is substantially transverse to the actuation axis. The shaft assembly may also comprise a firing shaft assembly that includes a distal cutting portion that is configured to move between a starting position and an ending position within the end effector. The firing shaft assembly may include a proximal end that is configured to be operably releasably coupled to a firing drive system supported by the frame in the direction that is substantially transverse to the actuation axis.
A surgical system may comprise a frame that supports a plurality of drive systems and defines an actuation axis. The system may further comprise a plurality of interchangeable shaft assemblies. Each interchangeable shaft assembly may comprise an elongate shaft that is configured to apply first actuation motions to a surgical end effector operably coupled thereto, wherein a proximal end of the elongate shaft is configured to be operably releasably coupled to a first one of the drive systems supported by the frame in a direction that is substantially transverse to the actuation axis. Each interchangeable shaft assembly may further comprise a control shaft assembly that is operably supported within the elongate shaft and is configured to apply control motions to the end effector and wherein a proximal end of the control shaft assembly is configured to be operably releasably coupled to a second one of the drive systems supported by the frame in the direction that is substantially transverse to the actuation axis and wherein at least one of the surgical end effectors differs from another one of the surgical end effectors.
Those of ordinary skill in the art will understand that the various surgical instrument arrangements disclosed herein include a variety of mechanisms and structures for positive alignment and positive locking and unlocking of the interchangeable shaft assemblies to corresponding portion(s) of a surgical instrument, whether it be a hand-held instrument or a robotically-controlled instrument. For example, it may be desirable for the instrument to be configured to prevent actuation of one or more (including all) of the drive systems at an incorrect time during instrument preparation or while being used in a surgical procedure.
A housing for use with a surgical instrument that includes a shaft and an end effector, wherein the surgical instrument includes an articulation assembly configured to move the end effector relative to the shaft. The housing comprises a motor operably supported by the housing, an articulation drive configured to transmit at least one articulation motion to the articulation assembly to move the end effector between an articulation home state position and an articulated position, a controller in communication with the motor, a first input configured to transmit a first input signal to the controller, wherein the controller is configured to activate the motor to generate the at least one articulation motion to move the end effector to the articulated position in response to the first input signal, and a reset input configured to transmit a reset input signal to the controller, wherein the controller is configured to activate the motor to generate at least one reset motion to move the end effector to the articulation home state position in response to the reset input signal.
A surgical instrument comprises a shaft, an end effector extending distally from the shaft, wherein the end effector is movable relative to the shaft between an articulation home state position and an articulated position. The end effector comprises a staple cartridge including a plurality of staples and a firing member configured to fire the plurality of staples, wherein the firing member is movable between a firing home state position and a fired position. In addition, the surgical instrument comprises a housing extending proximally from the shaft. The housing comprises a motor operably supported by the housing, a controller in communication with the motor, and a home state input configured to transmit a home state input signal to the controller, wherein the controller is configured to activate the motor in response to the home state input signal to effectuate a return of the end effector to the articulation home state position and a return of the firing member to the firing home state position.
A surgical instrument comprises an end effector, a shaft extending proximally from the end effector, an articulation assembly configured to move the end effector relative to the shaft between an unarticulated position, a first articulated position on a first side of the unarticulated position, and a second articulated position on a second side of the unarticulated position, wherein the first side is opposite the second side. In addition, the surgical instrument further comprises a motor, a controller in communication with the motor, a first input configured to transmit a first input signal to the controller, wherein the controller is configured to activate the motor to move the end effector to the first articulated position in response to the first input signal, a second input configured to transmit a second input signal to the controller, wherein the controller is configured to activate the motor to move the end effector to the second articulated position in response to the second input signal, and a reset input configured to transmit a reset input signal to the controller, wherein the controller is configured to activate the motor to move the end effector to the unarticulated position in response to the reset input signal.
A surgical instrument comprises an end effector, a shaft extending proximally from the end effector, a firing assembly configured to fire a plurality of staples, an articulation assembly configured to articulate the end effector relative to the shaft, a locking member movable between a locked configuration and an unlocked configuration, and a housing extending proximally from the shaft, wherein the housing is removably couplable to the shaft when the locking member is in the unlocked configuration. The housing comprises a motor configured to drive at least one of the firing assembly and the articulation assembly, and a controller in communication with the motor, wherein the controller is configured to activate the motor to reset at least one of the firing assembly and the articulation assembly to a home state when the locking member is moved between the locked configuration and the unlocked configuration.
A surgical instrument comprises an end effector, a shaft extending proximally from the end effector, a firing assembly configured to fire a plurality of staples, an articulation assembly configured to articulate the end effector relative to the shaft, a locking member movable between a locked configuration and an unlocked configuration, and a housing extending proximally from the shaft, wherein the housing is removably couplable to the shaft when the locking member is in the unlocked configuration. The housing comprises a motor configured to drive at least one of the firing assembly and the articulation assembly, a controller in communication with the motor, and a home state input operably coupled to the locking member, wherein the home state input is configured to transmit a home state input signal to the controller, and wherein the controller is configured to activate the motor to reset at least one of the firing assembly and the articulation assembly to a home state in response to the home state input signal.
A surgical instrument comprises an end effector, a shaft extending proximally from the end effector, an articulation assembly configured to articulate the end effector relative to the shaft between a home state position and an articulated position, a locking member movable between a locked configuration and an unlocked configuration, and a housing extending proximally from the shaft, wherein the housing is removably couplable to the shaft when the locking member is in the unlocked configuration. The housing comprises a motor configured to drive the articulation assembly, and a controller in communication with the motor, wherein the controller is configured to activate the motor to effectuate a return of the end effector to the home state position when the locking member is moved between the locked configuration and the unlocked configuration.
An absolute position sensor system for a surgical instrument can comprise, one, a sensor element operatively coupled to a movable drive member of the surgical instrument and, two, a position sensor operably coupled to the sensor element, the position sensor configured to sense the absolute position of the sensor element.
A surgical instrument can comprise, one, an absolute position sensor system comprising a sensor element operatively coupled to a movable drive member of the surgical instrument and a position sensor operably coupled to the sensor element, the position sensor configured to sense the absolute position of the sensor element and, two, a motor operatively coupled to the movable drive member.
An absolute position sensor system for a surgical instrument can comprise, one, a sensor element operatively coupled to a movable drive member of the surgical instrument, two, a holder to hold the sensor element, wherein the holder and the sensor element are rotationally coupled and, three, a position sensor operably coupled to the sensor element, the position sensor configured to sense the absolute position of the sensor element, wherein the position sensor is fixed relative to the rotation of the holder and the sensor element.
A method of compensating for the effect of splay in flexible knife bands on transection length of a surgical instrument comprising a processor and a memory, wherein the surgical instrument comprises stored in the memory characterization data representative of a relationship between articulation angle of an end effector and effective transection length distal of an articulation joint, comprising the steps of, one, accessing, by the processor, the characterization data from the memory of the surgical instrument, two, tracking, by the processor, the articulation angle of the end effector during use of the surgical instrument and, three, adjusting, by the processor, the target transection length by the surgical instrument based on the tracked articulation angle and the stored characterization data.
A surgical instrument can comprise a microcontroller comprising a processor configured to execute computer readable instructions and a memory coupled to the microcontroller, wherein the processor is operative to, one, access from the memory characterization data representative of a relationship between articulation angle of an end effector and effective transection length distal of an articulation joint, two, track the articulation angle of the end effector during use of the surgical instrument and, three, adjust the target transection length based on the tracked articulation angle and the stored characterization data.
A surgical instrument can comprise an end effector comprising an articulation joint, flexible knife bands configured to translate from a position proximal of the articulation joint to a position distal of the articulation joint, a microcontroller comprising a processor operative to execute computer readable instructions, and a memory coupled to the microcontroller. The processor is operative to, one, access from the memory characterization date representative of a relationship between articulation angle of an end effector and effective transection length distal of the articulation joint, two, track the articulation angle of the end effector during use of the surgical instrument and, three, adjust the target transection length based on the known articulation angle and the stored characterization data.
A shaft assembly for use with a surgical instrument can comprise a shaft, an end effector, an articulation joint connecting the end effector to the shaft, a firing driver movable relative to the end effector, an articulation driver configured to articulate the end effector about the articulation joint, and a clutch collar configured to selectively engage the articulation driver to the firing driver to impart the movement of the firing driver to the articulation driver.
A surgical instrument can comprise a handle, an electric motor positioned in the handle, a shaft attachable to the handle, an end effector, an articulation joint connecting the end effector to the shaft, a firing driver movable toward the end effector, wherein the electric motor is configured to impart a firing motion to the firing driver, an articulation driver configured to articulate the end effector about the articulation joint, and a rotatable clutch configured to selectively engage the articulation driver to the firing driver to impart the firing motion to the articulation driver.
A shaft assembly for use with a surgical instrument can comprise a shaft, an end effector, an articulation joint connecting the end effector to the shaft, a firing driver movable relative to the end effector, an articulation driver configured to articulate the end effector about the articulation joint, and a longitudinal clutch configured to selectively engage the articulation driver to the firing driver to impart the movement of the firing driver to the articulation driver.
A shaft assembly attachable to a handle of a surgical instrument, the shaft assembly comprising a shaft comprising a connector portion configured to operably connect the shaft to the handle, an end effector, an articulation joint connecting the end effector to the shaft, a firing driver movable relative to the end effector when a firing motion is applied to the firing driver, an articulation driver configured to articulate the end effector about the articulation joint when an articulation motion is applied to the articulation driver, and an articulation lock configured to releasably hold the articulation driver in position, wherein the articulation motion is configured to unlock the articulation lock.
A shaft assembly attachable to a handle of a surgical instrument, the shaft assembly comprising a shaft including, one, a connector portion configured to operably connect the shaft to the handle and, two, a proximal end, an end effector comprising a distal end, an articulation joint connecting the end effector to the shaft, a firing driver movable relative to the end effector by a firing motion, an articulation driver configured to articulate the end effector about the articulation joint when an articulation motion is applied to the articulation driver, and an articulation lock comprising, one, a first one-way lock configured to releasably resist proximal movement of the articulation driver and, two, a second one-way lock configured to releasably resist distal movement of the articulation driver.
A shaft assembly attachable to a handle of a surgical instrument comprising a shaft including, one, a connector portion configured to operably connect the shaft to the handle and, two, a proximal end, an end effector comprising a distal end, an articulation joint connecting the end effector to the shaft, a firing driver movable relative to the end effector by a firing motion, an articulation driver system comprising, one, a proximal articulation driver and, two, a distal articulation driver operably engaged with the end effector, and an articulation lock configured to releasably hold the distal articulation driver in position, wherein the movement of the proximal articulation driver is configured to unlock the articulation lock and drive the distal articulation driver.
A shaft assembly attachable to a handle of a surgical instrument comprising a shaft including, one, a connector portion configured to operably connect the shaft to the handle and, two, a proximal end, an end effector comprising a distal end, an articulation joint connecting the end effector to the shaft, a firing driver movable relative to the end effector by a firing motion, and an articulation driver system comprising, one, a first articulation driver and, two, a second articulation driver operably engaged with the end effector, and an articulation lock configured to releasably hold the second articulation driver in position, wherein an initial movement of the first articulation driver is configured to unlock the second articulation driver and a subsequent movement of the first articulation driver is configured to drive the second articulation driver.
A surgical stapler can comprise a handle, a firing member, and an electric motor. The electric motor can advance the firing member during a first operating state, retract the firing member during a second operating state, and transmit feedback to the handle during a third operating state. Furthermore, the electric motor can comprise a shaft and a resonator mounted on the shaft. The resonator can comprise a body, which can comprise a mounting hole. The mounting hole and the shaft can be coaxial with a central axis of the resonator, and the center of mass of the resonator can be positioned along the central axis. The resonator can also comprises a spring extending from the body, a weight extending from the spring, and a counterweight extending from the body.
A surgical instrument for cutting and stapling tissue can comprise a handle, a firing member extending from the handle, an electric motor positioned in the handle, and an amplifier comprising a center of mass. The electric motor can be configured to operate in a plurality of states and can comprise a motor shaft. Furthermore, the amplifier can be mounted to the motor shaft at the center of mass. The amplifier can rotate in a first direction when the electric motor is in a firing state, and the amplifier can oscillate between the first direction and a second direction when the electric motor is in a feedback state.
A surgical instrument for cutting and stapling tissue can comprise holding means for holding the surgical instrument, a firing member, and motor means for operating in a plurality of operating states. The plurality of operating states can comprise a firing state and a feedback state. The motor means can rotate in a first direction during the firing state and can oscillate between the first direction and a second direction during the feedback state. The surgical instrument can further comprise feedback generating means for generating haptic feedback. The feedback generating means can be mounted to the motor means.
A surgical instrument for cutting and stapling tissue can comprise a handle, a firing member extending from the handle, and an electric motor positioned in the handle. The electric motor can be configured to operate in a plurality of states, and the electric motor can comprise a motor shaft. The surgical instrument can further comprise a resonator comprising a center of mass. The resonator can be mounted to the motor shaft at the center of mass. Furthermore, the resonator can be balanced when the electric motor is in an advancing state, and the resonator can be unbalanced when the electric motor is in a feedback state.
A method for operating a surgical stapler can comprise initiating an initial operating state. A cutting element can be driven distally during the initial operating state. The method can also comprise detecting a threshold condition at the cutting element, communicating the threshold condition to an operator of the surgical stapler, and receiving one of a plurality of inputs from the operator. The plurality of inputs can comprise a first input and a second input. The method can also comprise initiating a secondary operating state in response to the input from the operator. The cutting element can be driven distally in response to the first input and can be retracted proximally in response to the second input.
A method for operating a surgical instrument can comprise initiating an initial surgical function, detecting a clinically-important condition, communicating the clinically-important condition to an operator of the surgical instrument, accepting an input from the operator, and performing a secondary surgical function based on the input from the operator. The secondary surgical function can comprise one of continuing the initial surgical function or initiating a modified surgical function.
A system for controlling a surgical instrument can comprise a motor, and the motor can drive a firing member during a firing stroke. The system can also comprise a controller for controlling the motor, and the controller can be configured to operate in a plurality of operating states during the firing stroke. The plurality of operating states can comprise an advancing state and a retracting state. The system can also comprise a sensor configured to detect a force on the firing member, wherein the sensor and the controller can be in signal communication. The controller can pause the firing stroke when the sensor detects a force on the firing member that exceeds a threshold force. The system can also comprise a plurality of input keys, wherein the input keys and the controller can be in signal communication. The controller can resume the advancing state when a first input key is activated, and the controller can initiate the retracting state when a second input key is activated.
A surgical instrument can comprise a firing member, a motor configured to drive the firing member, and a controller for controlling the motor. The controller can be configured to operate the surgical instrument in a plurality of operating states, and the plurality of operating states can comprise a firing state for driving the firing member and a warned firing state for driving the firing member. The surgical instrument can also comprise means for operating the surgical instrument in the warned firing state.
A surgical instrument can comprise a handle, a shaft extending from the handle, an end effector, and an articulation joint connecting the end effector to the shaft. The surgical instrument can further comprise a firing driver movable relative to the end effector when a firing motion is applied to the firing driver, an articulation driver configured to articulate the end effector about the articulation joint when an articulation motion is applied to the articulation driver, and an articulation lock configured to releasably hold the articulation driver in position, wherein the articulation motion is configured to unlock the articulation lock.
A surgical instrument can comprise at least one drive system configured to generate control motions upon actuation thereof and defining an actuation axis, at least one interchangeable shaft assembly configured to be removably coupled to the at least one drive system in a direction that is substantially transverse to the actuation axis and transmit the control motions from the at least one drive system to a surgical end effector operably coupled to said interchangeable shaft assembly, and a lockout assembly comprising interfacing means for interfacing with the at least one drive system and for preventing actuation of the drive system unless the at least one interchangeable shaft assembly has been operably coupled to the at least one drive system.
A surgical instrument including a shaft assembly can comprise an end effector comprising a surgical staple cartridge and an anvil, wherein one of the anvil and the surgical staple cartridge is movable relative to the other of the anvil and the surgical staple cartridge upon the application of an opening motion and a closing motion. The surgical instrument can further comprise a movable closure shaft assembly configured to apply the opening motion and the closing motion, a shaft attachment frame operably supporting a portion of the movable closure shaft assembly thereon, a frame member configured for removable operable engagement with the shaft attachment frame, a closure drive system operably supported by the frame member and defining an actuation axis, the closure drive system configured for operable engagement with the closure shaft assembly in a direction that is substantially transverse to the actuation axis when the shaft attachment frame is in operable engagement with the frame member, and a lockout assembly interfacing with the closure drive system for preventing actuation of the closure drive system unless the closure shaft assembly is in operable engagement with the closure drive system.
A surgical instrument can comprise an end effector, a shaft extending proximally from the end effector, and an articulation assembly configured to move the end effector relative to the shaft between an unarticulated position, a first range of articulated positions on a first side of the unarticulated position, and a second range of articulated positions on a second side of the unarticulated position, wherein the first side is opposite the second side. The surgical instrument can further comprise a motor, a controller in communication with the motor, a first input configured to transmit a first input signal to the controller, wherein the controller is configured to activate the motor to move the end effector to an articulated position within the first range of articulated positions in response to the first input signal, a second input configured to transmit a second input signal to the controller, wherein the controller is configured to activate the motor to move the end effector to an articulated position within the second range of articulated positions in response to the second input signal and a reset input configured to transmit a reset input signal to the controller, wherein the controller is configured to activate the motor to move the end effector to the unarticulated position in response to the reset input signal.
While various details have been set forth in the foregoing description, the various embodiments may be practiced without these specific details. For example, for conciseness and clarity selected aspects have been shown in block diagram form rather than in detail. Some portions of the detailed descriptions provided herein may be presented in terms of instructions that operate on data that is stored in a computer memory. Such descriptions and representations are used by those skilled in the art to describe and convey the substance of their work to others skilled in the art. In general, an algorithm refers to a self-consistent sequence of steps leading to a desired result, where a “step” refers to a manipulation of physical quantities which may, though need not necessarily, take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It is common usage to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. These and similar terms may be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities.
Unless specifically stated otherwise as apparent from the foregoing discussion, it is appreciated that, throughout the foregoing description, discussions using terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.
The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link (e.g., transmitter, receiver, transmission logic, reception logic, etc.), etc.).
One skilled in the art will recognize that the herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.
The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures may be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly interacting components, and/or logically interacting, and/or logically interactable components.
In some instances, one or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
Although various embodiments have been described herein, many modifications, variations, substitutions, changes, and equivalents to those embodiments may be implemented and will occur to those skilled in the art. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications and variations as falling within the scope of the disclosed embodiments. The following claims are intended to cover all such modification and variations.
The disclosure of U.S. Pat. No. 8,308,040, entitled SURGICAL STAPLING INSTRUMENT WITH AN ARTICULATABLE END EFFECTOR, filed on Apr. 22, 2010, is incorporated herein by reference in its entirety. The disclosure of U.S. Pat. No. 9,101,358, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, filed on Jun. 15, 2012, is incorporated herein by reference in its entirety.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
Preferably, the invention described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more embodiments has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more embodiments were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.
Number | Name | Date | Kind |
---|---|---|---|
66052 | Smith | Jun 1867 | A |
662587 | Blake | Nov 1900 | A |
670748 | Weddeler | Mar 1901 | A |
951393 | Hahn | Mar 1910 | A |
1306107 | Elliott | Jun 1919 | A |
1314601 | McCaskey | Sep 1919 | A |
1677337 | Grove | Jul 1928 | A |
1794907 | Kelly | Mar 1931 | A |
2037727 | La Chapelle | Apr 1936 | A |
2132295 | Hawkins | Oct 1938 | A |
2161632 | Nattenheimer | Jun 1939 | A |
2211117 | Hess | Aug 1940 | A |
2214870 | West | Sep 1940 | A |
2318379 | Davis et al. | May 1943 | A |
2441096 | Happe | May 1948 | A |
2526902 | Rublee | Oct 1950 | A |
2578686 | Fish | Dec 1951 | A |
2674149 | Benson | Apr 1954 | A |
2711461 | Happe | Jun 1955 | A |
2804848 | O'Farrell et al. | Sep 1957 | A |
2808482 | Zanichkowsky et al. | Oct 1957 | A |
2853074 | Olson | Sep 1958 | A |
2959974 | Emrick | Nov 1960 | A |
3032769 | Palmer | May 1962 | A |
3075062 | Iaccarino | Jan 1963 | A |
3078465 | Bobrov | Feb 1963 | A |
3079606 | Bobrov et al. | Mar 1963 | A |
3166072 | Sullivan, Jr. | Jan 1965 | A |
3196869 | Scholl | Jul 1965 | A |
3204731 | Bent et al. | Sep 1965 | A |
3266494 | Brownrigg et al. | Aug 1966 | A |
3269630 | Fleischer | Aug 1966 | A |
3275211 | Hirsch et al. | Sep 1966 | A |
3317103 | Cullen et al. | May 1967 | A |
3317105 | Astafjev et al. | May 1967 | A |
3357296 | Lefever | Dec 1967 | A |
3490675 | Green et al. | Jan 1970 | A |
3494533 | Green et al. | Feb 1970 | A |
3499591 | Green | Mar 1970 | A |
3503396 | Pierie et al. | Mar 1970 | A |
3551987 | Wilkinson | Jan 1971 | A |
3568675 | Harvey | Mar 1971 | A |
3572159 | Tschanz | Mar 1971 | A |
3598943 | Barrett | Aug 1971 | A |
3608549 | Merrill | Sep 1971 | A |
3640317 | Panfili | Feb 1972 | A |
3643851 | Green et al. | Feb 1972 | A |
3661666 | Foster et al. | May 1972 | A |
3662939 | Bryan | May 1972 | A |
3695646 | Mommsen | Oct 1972 | A |
3709221 | Riely | Jan 1973 | A |
3717294 | Green | Feb 1973 | A |
3734207 | Fishbein | May 1973 | A |
3740994 | DeCarlo, Jr. | Jun 1973 | A |
3744495 | Johnson | Jul 1973 | A |
3746002 | Haller | Jul 1973 | A |
3751902 | Kingsbury et al. | Aug 1973 | A |
3819100 | Noiles et al. | Jun 1974 | A |
3821919 | Knohl | Jul 1974 | A |
3841474 | Maier | Oct 1974 | A |
3851196 | Hinds | Nov 1974 | A |
3885491 | Curtis | May 1975 | A |
3892228 | Mitsui | Jul 1975 | A |
3894174 | Cartun | Jul 1975 | A |
3940844 | Colby et al. | Mar 1976 | A |
3955581 | Spasiano et al. | May 1976 | A |
RE28932 | Noiles et al. | Aug 1976 | E |
3981051 | Brumlik | Sep 1976 | A |
4054108 | Gill | Oct 1977 | A |
4060089 | Noiles | Nov 1977 | A |
4106446 | Yamada et al. | Aug 1978 | A |
4111206 | Vishnevsky et al. | Sep 1978 | A |
4129059 | Van Eck | Dec 1978 | A |
4169990 | Lerdman | Oct 1979 | A |
4180285 | Reneau | Dec 1979 | A |
4198734 | Brumlik | Apr 1980 | A |
4198982 | Fortner et al. | Apr 1980 | A |
4207898 | Becht | Jun 1980 | A |
4213562 | Garrett et al. | Jul 1980 | A |
4226242 | Jarvik | Oct 1980 | A |
4244372 | Kapitanov et al. | Jan 1981 | A |
4250436 | Weissman | Feb 1981 | A |
4261244 | Becht et al. | Apr 1981 | A |
4272002 | Moshofsky | Jun 1981 | A |
4272662 | Simpson | Jun 1981 | A |
4274304 | Curtiss | Jun 1981 | A |
4275813 | Noiles | Jun 1981 | A |
4289133 | Rothfuss | Sep 1981 | A |
4296654 | Mercer | Oct 1981 | A |
4304236 | Conta et al. | Dec 1981 | A |
4305539 | Korolkov et al. | Dec 1981 | A |
4312685 | Riedl | Jan 1982 | A |
4317451 | Cerwin et al. | Mar 1982 | A |
4321002 | Froehlich | Mar 1982 | A |
4328839 | Lyons et al. | May 1982 | A |
4331277 | Green | May 1982 | A |
4340331 | Savino | Jul 1982 | A |
4347450 | Colligan | Aug 1982 | A |
4349028 | Green | Sep 1982 | A |
4353371 | Cosman | Oct 1982 | A |
4379457 | Gravener et al. | Apr 1983 | A |
4380312 | Landrus | Apr 1983 | A |
4382326 | Rabuse | May 1983 | A |
4383634 | Green | May 1983 | A |
4393728 | Larson et al. | Jul 1983 | A |
4396139 | Hall et al. | Aug 1983 | A |
4397311 | Kanshin et al. | Aug 1983 | A |
4402445 | Green | Sep 1983 | A |
4408692 | Siegel et al. | Oct 1983 | A |
4409057 | Molenda et al. | Oct 1983 | A |
4415112 | Green | Nov 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4428376 | Mericle | Jan 1984 | A |
4429695 | Green | Feb 1984 | A |
4434796 | Karapetian et al. | Mar 1984 | A |
4438659 | Desplats | Mar 1984 | A |
4442964 | Becht | Apr 1984 | A |
4448194 | DiGiovanni et al. | May 1984 | A |
4451743 | Suzuki et al. | May 1984 | A |
4454887 | Krüger | Jun 1984 | A |
4467805 | Fukuda | Aug 1984 | A |
4473077 | Noiles et al. | Sep 1984 | A |
4475679 | Fleury, Jr. | Oct 1984 | A |
4485816 | Krumme | Dec 1984 | A |
4486928 | Tucker et al. | Dec 1984 | A |
4488523 | Shichman | Dec 1984 | A |
4489875 | Crawford et al. | Dec 1984 | A |
4499895 | Takayama | Feb 1985 | A |
4500024 | DiGiovanni et al. | Feb 1985 | A |
4505272 | Utyamyshev et al. | Mar 1985 | A |
4505273 | Braun et al. | Mar 1985 | A |
4505414 | Filipi | Mar 1985 | A |
4506671 | Green | Mar 1985 | A |
4520817 | Green | Jun 1985 | A |
4522327 | Korthoff et al. | Jun 1985 | A |
4526174 | Froehlich | Jul 1985 | A |
4527724 | Chow et al. | Jul 1985 | A |
4530453 | Green | Jul 1985 | A |
4531522 | Bedi et al. | Jul 1985 | A |
4532927 | Miksza, Jr. | Aug 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4565109 | Tsay | Jan 1986 | A |
4565189 | Mabuchi | Jan 1986 | A |
4566620 | Green et al. | Jan 1986 | A |
4569469 | Mongeon et al. | Feb 1986 | A |
4571213 | Ishimoto | Feb 1986 | A |
4573468 | Conta et al. | Mar 1986 | A |
4573469 | Golden et al. | Mar 1986 | A |
4573622 | Green et al. | Mar 1986 | A |
4576167 | Noiles et al. | Mar 1986 | A |
4580712 | Green | Apr 1986 | A |
4585153 | Failla et al. | Apr 1986 | A |
4589416 | Green | May 1986 | A |
4591085 | Di Giovanni | May 1986 | A |
4597753 | Turley | Jul 1986 | A |
4600037 | Hatten | Jul 1986 | A |
4604786 | Howie, Jr. | Aug 1986 | A |
4605001 | Rothfuss et al. | Aug 1986 | A |
4605004 | Di Giovanni et al. | Aug 1986 | A |
4606343 | Conta et al. | Aug 1986 | A |
4607638 | Crainich | Aug 1986 | A |
4608981 | Rothfuss et al. | Sep 1986 | A |
4610250 | Green | Sep 1986 | A |
4610383 | Rothfuss et al. | Sep 1986 | A |
4619262 | Taylor | Oct 1986 | A |
4619391 | Sharkany et al. | Oct 1986 | A |
4628459 | Shinohara et al. | Dec 1986 | A |
4629107 | Fedotov et al. | Dec 1986 | A |
4632290 | Green et al. | Dec 1986 | A |
4633874 | Chow et al. | Jan 1987 | A |
4634419 | Kreizman et al. | Jan 1987 | A |
4641076 | Linden | Feb 1987 | A |
4643731 | Eckenhoff | Feb 1987 | A |
4646722 | Silverstein et al. | Mar 1987 | A |
4655222 | Florez et al. | Apr 1987 | A |
4662555 | Thornton | May 1987 | A |
4663874 | Sano et al. | May 1987 | A |
4664305 | Blake, III et al. | May 1987 | A |
4665916 | Green | May 1987 | A |
4667674 | Korthoff et al. | May 1987 | A |
4669647 | Storace | Jun 1987 | A |
4671445 | Barker et al. | Jun 1987 | A |
4676245 | Fukuda | Jun 1987 | A |
4684051 | Akopov et al. | Aug 1987 | A |
4693248 | Failla | Sep 1987 | A |
4700703 | Resnick et al. | Oct 1987 | A |
4708141 | Inoue et al. | Nov 1987 | A |
4709120 | Pearson | Nov 1987 | A |
4715520 | Roehr, Jr. et al. | Dec 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4727308 | Huljak et al. | Feb 1988 | A |
4728020 | Green et al. | Mar 1988 | A |
4728876 | Mongeon et al. | Mar 1988 | A |
4729260 | Dudden | Mar 1988 | A |
4730726 | Holzwarth | Mar 1988 | A |
4741336 | Failla et al. | May 1988 | A |
4743214 | Tai-Cheng | May 1988 | A |
4747820 | Hornlein et al. | May 1988 | A |
4750902 | Wuchinich et al. | Jun 1988 | A |
4752024 | Green et al. | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4767044 | Green | Aug 1988 | A |
4773420 | Green | Sep 1988 | A |
4777780 | Holzwarth | Oct 1988 | A |
4787387 | Burbank, III et al. | Nov 1988 | A |
4790225 | Moody et al. | Dec 1988 | A |
4805617 | Bedi et al. | Feb 1989 | A |
4805823 | Rothfuss | Feb 1989 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4815460 | Porat et al. | Mar 1989 | A |
4817847 | Redtenbacher et al. | Apr 1989 | A |
4819853 | Green | Apr 1989 | A |
4821939 | Green | Apr 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4830855 | Stewart | May 1989 | A |
4834720 | Blinkhorn | May 1989 | A |
4844068 | Arata et al. | Jul 1989 | A |
4848637 | Pruitt | Jul 1989 | A |
4865030 | Polyak | Sep 1989 | A |
4869414 | Green et al. | Sep 1989 | A |
4869415 | Fox | Sep 1989 | A |
4873977 | Avant et al. | Oct 1989 | A |
4880015 | Nierman | Nov 1989 | A |
4890613 | Golden et al. | Jan 1990 | A |
4892244 | Fox et al. | Jan 1990 | A |
4893622 | Green et al. | Jan 1990 | A |
4896678 | Ogawa | Jan 1990 | A |
4900303 | Lemelson | Feb 1990 | A |
4903697 | Resnick et al. | Feb 1990 | A |
4915100 | Green | Apr 1990 | A |
4930503 | Pruitt | Jun 1990 | A |
4930674 | Barak | Jun 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4932960 | Green et al. | Jun 1990 | A |
4938408 | Bedi et al. | Jul 1990 | A |
4941623 | Pruitt | Jul 1990 | A |
4944443 | Oddsen et al. | Jul 1990 | A |
4951860 | Peters et al. | Aug 1990 | A |
4955959 | Tompkins et al. | Sep 1990 | A |
4965709 | Ngo | Oct 1990 | A |
4973274 | Hirukawa | Nov 1990 | A |
4978049 | Green | Dec 1990 | A |
4978333 | Broadwin et al. | Dec 1990 | A |
4986808 | Broadwin et al. | Jan 1991 | A |
4988334 | Hornlein et al. | Jan 1991 | A |
5002543 | Bradshaw et al. | Mar 1991 | A |
5002553 | Shiber | Mar 1991 | A |
5005754 | Van Overloop | Apr 1991 | A |
5009661 | Michelson | Apr 1991 | A |
5014899 | Presty et al. | May 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5018515 | Gilman | May 1991 | A |
5018657 | Pedlick et al. | May 1991 | A |
5024671 | Tu et al. | Jun 1991 | A |
5027834 | Pruitt | Jul 1991 | A |
5031814 | Tompkins et al. | Jul 1991 | A |
5035040 | Kerrigan et al. | Jul 1991 | A |
5038109 | Goble et al. | Aug 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5061269 | Muller | Oct 1991 | A |
5062563 | Green et al. | Nov 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5071052 | Rodak et al. | Dec 1991 | A |
5071430 | de Salis et al. | Dec 1991 | A |
5074454 | Peters | Dec 1991 | A |
5079006 | Urquhart | Jan 1992 | A |
5080556 | Carreno | Jan 1992 | A |
5083695 | Foslien et al. | Jan 1992 | A |
5084057 | Green et al. | Jan 1992 | A |
5088979 | Filipi et al. | Feb 1992 | A |
5088997 | Delahuerga et al. | Feb 1992 | A |
5094247 | Hernandez et al. | Mar 1992 | A |
5100420 | Green et al. | Mar 1992 | A |
5104025 | Main et al. | Apr 1992 | A |
5104397 | Vasconcelos et al. | Apr 1992 | A |
5106008 | Tompkins et al. | Apr 1992 | A |
5108368 | Hammerslag et al. | Apr 1992 | A |
5111987 | Moeinzadeh et al. | May 1992 | A |
5116349 | Aranyi | May 1992 | A |
5122156 | Granger et al. | Jun 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5137198 | Nobis et al. | Aug 1992 | A |
5139513 | Segato | Aug 1992 | A |
5141144 | Foslien et al. | Aug 1992 | A |
5142932 | Moya et al. | Sep 1992 | A |
5155941 | Takahashi et al. | Oct 1992 | A |
5156315 | Green et al. | Oct 1992 | A |
5156609 | Nakao et al. | Oct 1992 | A |
5156614 | Green et al. | Oct 1992 | A |
5158567 | Green | Oct 1992 | A |
D330699 | Gill | Nov 1992 | S |
5163598 | Peters et al. | Nov 1992 | A |
5171247 | Hughett et al. | Dec 1992 | A |
5171249 | Stefanchik et al. | Dec 1992 | A |
5171253 | Klieman et al. | Dec 1992 | A |
5188111 | Yates et al. | Feb 1993 | A |
5190517 | Zieve et al. | Mar 1993 | A |
5190544 | Chapman et al. | Mar 1993 | A |
5190560 | Woods et al. | Mar 1993 | A |
5192288 | Thompson et al. | Mar 1993 | A |
5195968 | Lundquist et al. | Mar 1993 | A |
5197648 | Gingold | Mar 1993 | A |
5197649 | Bessler et al. | Mar 1993 | A |
5197966 | Sommerkamp | Mar 1993 | A |
5200280 | Karasa | Apr 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5207697 | Carusillo et al. | May 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5211649 | Kohler et al. | May 1993 | A |
5211655 | Hasson | May 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217478 | Rexroth | Jun 1993 | A |
5219111 | Bilotti et al. | Jun 1993 | A |
5221036 | Takase | Jun 1993 | A |
5221281 | Klicek | Jun 1993 | A |
5222963 | Brinkerhoff et al. | Jun 1993 | A |
5222975 | Crainich | Jun 1993 | A |
5222976 | Yoon | Jun 1993 | A |
5223675 | Taft | Jun 1993 | A |
5234447 | Kaster et al. | Aug 1993 | A |
5236440 | Hlavacek | Aug 1993 | A |
5239981 | Anapliotis | Aug 1993 | A |
5240163 | Stein et al. | Aug 1993 | A |
5242457 | Akopov et al. | Sep 1993 | A |
5244462 | Delahuerga et al. | Sep 1993 | A |
5246156 | Rothfuss et al. | Sep 1993 | A |
5246443 | Mai | Sep 1993 | A |
5253793 | Green et al. | Oct 1993 | A |
5258009 | Conners | Nov 1993 | A |
5258012 | Luscombe et al. | Nov 1993 | A |
5259366 | Reydel et al. | Nov 1993 | A |
5260637 | Pizzi | Nov 1993 | A |
5263629 | Trumbull et al. | Nov 1993 | A |
5263973 | Cook | Nov 1993 | A |
5264218 | Rogozinski | Nov 1993 | A |
5268622 | Philipp | Dec 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
5271544 | Fox et al. | Dec 1993 | A |
RE34519 | Fox et al. | Jan 1994 | E |
5275323 | Schulze et al. | Jan 1994 | A |
5275608 | Forman et al. | Jan 1994 | A |
5279416 | Malec et al. | Jan 1994 | A |
5281216 | Klicek | Jan 1994 | A |
5282806 | Haber et al. | Feb 1994 | A |
5282829 | Hermes | Feb 1994 | A |
5284128 | Hart | Feb 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5289963 | McGarry et al. | Mar 1994 | A |
5290271 | Jernberg | Mar 1994 | A |
5292053 | Bilotti et al. | Mar 1994 | A |
5297714 | Kramer | Mar 1994 | A |
5304204 | Bregen | Apr 1994 | A |
5307976 | Olson et al. | May 1994 | A |
5309927 | Welch | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312024 | Grant et al. | May 1994 | A |
5312329 | Beaty et al. | May 1994 | A |
5314424 | Nicholas | May 1994 | A |
5314445 | Heidmueller née Degwitz et al. | May 1994 | A |
5314466 | Stern et al. | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5330487 | Thornton et al. | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5332142 | Robinson et al. | Jul 1994 | A |
5333422 | Warren et al. | Aug 1994 | A |
5333772 | Rothfuss et al. | Aug 1994 | A |
5333773 | Main et al. | Aug 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5336232 | Green et al. | Aug 1994 | A |
5339799 | Kami et al. | Aug 1994 | A |
5341724 | Vatel | Aug 1994 | A |
5341810 | Dardel | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5342395 | Jarrett et al. | Aug 1994 | A |
5342396 | Cook | Aug 1994 | A |
5344060 | Gravener et al. | Sep 1994 | A |
5344454 | Clarke et al. | Sep 1994 | A |
5346504 | Ortiz et al. | Sep 1994 | A |
5348259 | Blanco et al. | Sep 1994 | A |
5350388 | Epstein | Sep 1994 | A |
5350391 | Iacovelli | Sep 1994 | A |
5350400 | Esposito et al. | Sep 1994 | A |
5352229 | Goble et al. | Oct 1994 | A |
5352235 | Koros et al. | Oct 1994 | A |
5352238 | Green et al. | Oct 1994 | A |
5354303 | Spaeth et al. | Oct 1994 | A |
5356006 | Alpern et al. | Oct 1994 | A |
5358506 | Green et al. | Oct 1994 | A |
5358510 | Luscombe et al. | Oct 1994 | A |
5359231 | Flowers et al. | Oct 1994 | A |
D352780 | Glaeser et al. | Nov 1994 | S |
5360305 | Kerrigan | Nov 1994 | A |
5360428 | Hutchinson, Jr. | Nov 1994 | A |
5364001 | Bryan | Nov 1994 | A |
5364003 | Williamson, IV | Nov 1994 | A |
5366133 | Geiste | Nov 1994 | A |
5366134 | Green et al. | Nov 1994 | A |
5366479 | McGarry et al. | Nov 1994 | A |
5368015 | Wilk | Nov 1994 | A |
5368592 | Stern et al. | Nov 1994 | A |
5370645 | Klicek et al. | Dec 1994 | A |
5372124 | Takayama et al. | Dec 1994 | A |
5372596 | Klicek et al. | Dec 1994 | A |
5372602 | Burke | Dec 1994 | A |
5374277 | Hassler | Dec 1994 | A |
5376095 | Ortiz | Dec 1994 | A |
5379933 | Green et al. | Jan 1995 | A |
5381649 | Webb | Jan 1995 | A |
5381782 | DeLaRama et al. | Jan 1995 | A |
5382247 | Cimino et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5383881 | Green et al. | Jan 1995 | A |
5383888 | Zvenyatsky et al. | Jan 1995 | A |
5383895 | Holmes et al. | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5389104 | Hahnen et al. | Feb 1995 | A |
5391180 | Tovey et al. | Feb 1995 | A |
5392979 | Green et al. | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5395034 | Allen et al. | Mar 1995 | A |
5395312 | Desai | Mar 1995 | A |
5395384 | Duthoit | Mar 1995 | A |
5397046 | Savage et al. | Mar 1995 | A |
5397324 | Carroll et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5405072 | Zlock et al. | Apr 1995 | A |
5405073 | Porter | Apr 1995 | A |
5405344 | Williamson et al. | Apr 1995 | A |
5405360 | Tovey | Apr 1995 | A |
5407293 | Crainich | Apr 1995 | A |
5409498 | Braddock et al. | Apr 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413107 | Oakley et al. | May 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5413268 | Green et al. | May 1995 | A |
5413272 | Green et al. | May 1995 | A |
5413573 | Koivukangas | May 1995 | A |
5415334 | Williamson, IV et al. | May 1995 | A |
5415335 | Knodell, Jr. | May 1995 | A |
5417203 | Tovey et al. | May 1995 | A |
5417361 | Williamson, IV | May 1995 | A |
5421829 | Olichney et al. | Jun 1995 | A |
5422567 | Matsunaga | Jun 1995 | A |
5423471 | Mastri et al. | Jun 1995 | A |
5423809 | Klicek | Jun 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5431322 | Green et al. | Jul 1995 | A |
5431654 | Nic | Jul 1995 | A |
5431668 | Burbank, III et al. | Jul 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5437681 | Meade et al. | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5439155 | Viola | Aug 1995 | A |
5439156 | Grant et al. | Aug 1995 | A |
5439479 | Schichman et al. | Aug 1995 | A |
5441191 | Linden | Aug 1995 | A |
5441193 | Gravener | Aug 1995 | A |
5441483 | Avitall | Aug 1995 | A |
5441494 | Ortiz | Aug 1995 | A |
5444113 | Sinclair et al. | Aug 1995 | A |
5445155 | Sieben | Aug 1995 | A |
5445304 | Plyley et al. | Aug 1995 | A |
5445644 | Pietrafitta et al. | Aug 1995 | A |
5447417 | Kuhl et al. | Sep 1995 | A |
5447513 | Davison et al. | Sep 1995 | A |
5449355 | Rhum et al. | Sep 1995 | A |
5449365 | Green et al. | Sep 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5452836 | Huitema et al. | Sep 1995 | A |
5452837 | Williamson, IV et al. | Sep 1995 | A |
5454378 | Palmer et al. | Oct 1995 | A |
5454827 | Aust et al. | Oct 1995 | A |
5456401 | Green et al. | Oct 1995 | A |
5458579 | Chodorow et al. | Oct 1995 | A |
5462215 | Viola et al. | Oct 1995 | A |
5464013 | Lemelson | Nov 1995 | A |
5464144 | Guy et al. | Nov 1995 | A |
5464300 | Crainich | Nov 1995 | A |
5465894 | Clark et al. | Nov 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5465896 | Allen et al. | Nov 1995 | A |
5466020 | Page et al. | Nov 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5468253 | Bezwada et al. | Nov 1995 | A |
5470006 | Rodak | Nov 1995 | A |
5470007 | Plyley et al. | Nov 1995 | A |
5470009 | Rodak | Nov 1995 | A |
5470010 | Rothfuss et al. | Nov 1995 | A |
5472132 | Savage et al. | Dec 1995 | A |
5472442 | Klicek | Dec 1995 | A |
5473204 | Temple | Dec 1995 | A |
5474057 | Makower et al. | Dec 1995 | A |
5474566 | Alesi et al. | Dec 1995 | A |
5476206 | Green et al. | Dec 1995 | A |
5476479 | Green et al. | Dec 1995 | A |
5478003 | Green et al. | Dec 1995 | A |
5478354 | Tovey et al. | Dec 1995 | A |
5480089 | Blewett | Jan 1996 | A |
5480409 | Riza | Jan 1996 | A |
5482197 | Green et al. | Jan 1996 | A |
5484095 | Green et al. | Jan 1996 | A |
5484398 | Stoddard | Jan 1996 | A |
5484451 | Akopov et al. | Jan 1996 | A |
5485947 | Olson et al. | Jan 1996 | A |
5485952 | Fontayne | Jan 1996 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5487500 | Knodel et al. | Jan 1996 | A |
5489058 | Plyley et al. | Feb 1996 | A |
5489256 | Adair | Feb 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5501654 | Failla et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5503635 | Sauer et al. | Apr 1996 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5505363 | Green et al. | Apr 1996 | A |
5507426 | Young et al. | Apr 1996 | A |
5509596 | Green et al. | Apr 1996 | A |
5509916 | Taylor | Apr 1996 | A |
5511564 | Wilk | Apr 1996 | A |
5514129 | Smith | May 1996 | A |
5514157 | Nicholas et al. | May 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5520678 | Heckele et al. | May 1996 | A |
5520700 | Beyar et al. | May 1996 | A |
5522817 | Sander et al. | Jun 1996 | A |
5522831 | Sleister et al. | Jun 1996 | A |
5527320 | Carruthers et al. | Jun 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
D372086 | Grasso et al. | Jul 1996 | S |
5531305 | Roberts et al. | Jul 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5533521 | Granger | Jul 1996 | A |
5533581 | Barth et al. | Jul 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5535935 | Vidal et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5540375 | Bolanos et al. | Jul 1996 | A |
5541376 | Ladtkow et al. | Jul 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5542949 | Yoon | Aug 1996 | A |
5543119 | Sutter et al. | Aug 1996 | A |
5547117 | Hamblin et al. | Aug 1996 | A |
5549621 | Bessler et al. | Aug 1996 | A |
5549627 | Kieturakis | Aug 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5551622 | Yoon | Sep 1996 | A |
5553675 | Pitzen et al. | Sep 1996 | A |
5553765 | Knodel et al. | Sep 1996 | A |
5554148 | Aebischer et al. | Sep 1996 | A |
5554169 | Green et al. | Sep 1996 | A |
5556416 | Clark et al. | Sep 1996 | A |
5558665 | Kieturakis | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5560530 | Bolanos et al. | Oct 1996 | A |
5560532 | DeFonzo et al. | Oct 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5562241 | Knodel et al. | Oct 1996 | A |
5562682 | Oberlin et al. | Oct 1996 | A |
5562690 | Green et al. | Oct 1996 | A |
5562701 | Huitema et al. | Oct 1996 | A |
5562702 | Huitema et al. | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5569161 | Ebling et al. | Oct 1996 | A |
5569270 | Weng | Oct 1996 | A |
5569284 | Young et al. | Oct 1996 | A |
5571090 | Sherts | Nov 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5571116 | Bolanos et al. | Nov 1996 | A |
5571285 | Chow et al. | Nov 1996 | A |
5573543 | Akopov et al. | Nov 1996 | A |
5574431 | McKeown et al. | Nov 1996 | A |
5575054 | Klinzing et al. | Nov 1996 | A |
5575789 | Bell et al. | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5575803 | Cooper et al. | Nov 1996 | A |
5575805 | Li | Nov 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5579978 | Green et al. | Dec 1996 | A |
5580067 | Hamblin et al. | Dec 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5584425 | Savage et al. | Dec 1996 | A |
5586711 | Plyley et al. | Dec 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5588580 | Paul et al. | Dec 1996 | A |
5588581 | Conlon et al. | Dec 1996 | A |
5591170 | Spievack et al. | Jan 1997 | A |
5591187 | Dekel | Jan 1997 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5599151 | Daum et al. | Feb 1997 | A |
5599279 | Slotman et al. | Feb 1997 | A |
5599344 | Paterson | Feb 1997 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5599852 | Scopelianos et al. | Feb 1997 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5603443 | Clark et al. | Feb 1997 | A |
5605272 | Witt et al. | Feb 1997 | A |
5605273 | Hamblin et al. | Feb 1997 | A |
5607094 | Clark et al. | Mar 1997 | A |
5607095 | Smith et al. | Mar 1997 | A |
5607433 | Polla et al. | Mar 1997 | A |
5607450 | Zvenyatsky et al. | Mar 1997 | A |
5609285 | Grant et al. | Mar 1997 | A |
5609601 | Kolesa et al. | Mar 1997 | A |
5611709 | McAnulty | Mar 1997 | A |
5613966 | Makower et al. | Mar 1997 | A |
5615820 | Viola | Apr 1997 | A |
5618294 | Aust et al. | Apr 1997 | A |
5618303 | Marlow et al. | Apr 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5619992 | Guthrie et al. | Apr 1997 | A |
5620289 | Curry | Apr 1997 | A |
5620452 | Yoon | Apr 1997 | A |
5624398 | Smith et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626587 | Bishop et al. | May 1997 | A |
5626595 | Sklar et al. | May 1997 | A |
5628446 | Geiste et al. | May 1997 | A |
5628743 | Cimino | May 1997 | A |
5628745 | Bek | May 1997 | A |
5630539 | Plyley et al. | May 1997 | A |
5630540 | Blewett | May 1997 | A |
5630541 | Williamson, IV et al. | May 1997 | A |
5630782 | Adair | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5632433 | Grant et al. | May 1997 | A |
5634584 | Okorocha et al. | Jun 1997 | A |
5636779 | Palmer | Jun 1997 | A |
5636780 | Green et al. | Jun 1997 | A |
5639008 | Gallagher et al. | Jun 1997 | A |
5643291 | Pier et al. | Jul 1997 | A |
5645209 | Green et al. | Jul 1997 | A |
5647526 | Green et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5649956 | Jensen et al. | Jul 1997 | A |
5651491 | Heaton et al. | Jul 1997 | A |
5653373 | Green et al. | Aug 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5653677 | Okada et al. | Aug 1997 | A |
5653721 | Knodel et al. | Aug 1997 | A |
5655698 | Yoon | Aug 1997 | A |
5657921 | Young et al. | Aug 1997 | A |
5658238 | Suzuki et al. | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5658307 | Exconde | Aug 1997 | A |
5662258 | Knodel et al. | Sep 1997 | A |
5662260 | Yoon | Sep 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5667526 | Levin | Sep 1997 | A |
5667527 | Cook | Sep 1997 | A |
5669544 | Schulze et al. | Sep 1997 | A |
5669904 | Platt, Jr. et al. | Sep 1997 | A |
5669907 | Platt, Jr. et al. | Sep 1997 | A |
5669918 | Balazs et al. | Sep 1997 | A |
5673840 | Schulze et al. | Oct 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5673842 | Bittner et al. | Oct 1997 | A |
5674286 | D'Alessio et al. | Oct 1997 | A |
5678748 | Plyley et al. | Oct 1997 | A |
5680981 | Mililli et al. | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5680983 | Plyley et al. | Oct 1997 | A |
5683349 | Makower et al. | Nov 1997 | A |
5685474 | Seeber | Nov 1997 | A |
5686090 | Schilder et al. | Nov 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5693020 | Rauh | Dec 1997 | A |
5693042 | Boiarski et al. | Dec 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5695494 | Becker | Dec 1997 | A |
5695502 | Pier et al. | Dec 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5695524 | Kelley et al. | Dec 1997 | A |
5697542 | Knodel et al. | Dec 1997 | A |
5697543 | Burdorff | Dec 1997 | A |
5697943 | Sauer et al. | Dec 1997 | A |
5700270 | Peyser et al. | Dec 1997 | A |
5702387 | Arts et al. | Dec 1997 | A |
5702408 | Wales et al. | Dec 1997 | A |
5702409 | Rayburn et al. | Dec 1997 | A |
5704087 | Strub | Jan 1998 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5706997 | Green et al. | Jan 1998 | A |
5706998 | Plyley et al. | Jan 1998 | A |
5707392 | Kortenbach | Jan 1998 | A |
5709334 | Sorrentino et al. | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5709706 | Kienzle et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5713128 | Schrenk et al. | Feb 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5713895 | Lontine et al. | Feb 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5713920 | Bezwada et al. | Feb 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5715988 | Palmer | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5718359 | Palmer et al. | Feb 1998 | A |
5718360 | Green et al. | Feb 1998 | A |
5718548 | Costellessa | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
D393067 | Geary et al. | Mar 1998 | S |
5725536 | Oberlin et al. | Mar 1998 | A |
5725554 | Simon et al. | Mar 1998 | A |
5728110 | Vidal et al. | Mar 1998 | A |
5728121 | Bimbo et al. | Mar 1998 | A |
5730758 | Allgeyer | Mar 1998 | A |
5732821 | Stone et al. | Mar 1998 | A |
5732871 | Clark et al. | Mar 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5733308 | Daugherty et al. | Mar 1998 | A |
5735445 | Vidal et al. | Apr 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5735874 | Measamer et al. | Apr 1998 | A |
5738474 | Blewett | Apr 1998 | A |
5738648 | Lands et al. | Apr 1998 | A |
5743456 | Jones et al. | Apr 1998 | A |
5747953 | Philipp | May 1998 | A |
5749889 | Bacich et al. | May 1998 | A |
5749893 | Vidal et al. | May 1998 | A |
5752644 | Bolanos et al. | May 1998 | A |
5752965 | Francis et al. | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5758814 | Gallagher et al. | Jun 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5766188 | Igaki | Jun 1998 | A |
5766205 | Zvenyatsky et al. | Jun 1998 | A |
5769892 | Kingwell | Jun 1998 | A |
5772379 | Evensen | Jun 1998 | A |
5772578 | Heimberger et al. | Jun 1998 | A |
5772659 | Becker et al. | Jun 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5778939 | Hok-Yin | Jul 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5779131 | Knodel et al. | Jul 1998 | A |
5779132 | Knodel et al. | Jul 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5782749 | Riza | Jul 1998 | A |
5782859 | Nicholas et al. | Jul 1998 | A |
5784934 | Izumisawa | Jul 1998 | A |
5785232 | Vidal et al. | Jul 1998 | A |
5785647 | Tompkins et al. | Jul 1998 | A |
5787897 | Kieturakis | Aug 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5794834 | Hamblin et al. | Aug 1998 | A |
5796188 | Bays | Aug 1998 | A |
5797536 | Smith et al. | Aug 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5797538 | Heaton et al. | Aug 1998 | A |
5797906 | Rhum et al. | Aug 1998 | A |
5797959 | Castro et al. | Aug 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5800379 | Edwards | Sep 1998 | A |
5800423 | Jensen | Sep 1998 | A |
5806676 | Wasgien | Sep 1998 | A |
5807376 | Viola et al. | Sep 1998 | A |
5807378 | Jensen et al. | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5809441 | McKee | Sep 1998 | A |
5810721 | Mueller et al. | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810846 | Virnich et al. | Sep 1998 | A |
5810855 | Rayburn et al. | Sep 1998 | A |
5813813 | Daum et al. | Sep 1998 | A |
5814055 | Knodel et al. | Sep 1998 | A |
5814057 | Oi et al. | Sep 1998 | A |
5816471 | Plyley et al. | Oct 1998 | A |
5817084 | Jensen | Oct 1998 | A |
5817091 | Nardella et al. | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5817109 | McGarry et al. | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5823066 | Huitema et al. | Oct 1998 | A |
5826776 | Schulze et al. | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5827298 | Hart et al. | Oct 1998 | A |
5829662 | Allen et al. | Nov 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5833696 | Whitfield et al. | Nov 1998 | A |
5836503 | Ehrenfels et al. | Nov 1998 | A |
5836960 | Kolesa et al. | Nov 1998 | A |
5839639 | Sauer et al. | Nov 1998 | A |
5843021 | Edwards et al. | Dec 1998 | A |
5843096 | Igaki et al. | Dec 1998 | A |
5843097 | Mayenberger et al. | Dec 1998 | A |
5843122 | Riza | Dec 1998 | A |
5843132 | Ilvento | Dec 1998 | A |
5843169 | Taheri | Dec 1998 | A |
5846254 | Schulze et al. | Dec 1998 | A |
5849011 | Jones et al. | Dec 1998 | A |
5849023 | Mericle | Dec 1998 | A |
5855311 | Hamblin et al. | Jan 1999 | A |
5855583 | Wang et al. | Jan 1999 | A |
5860581 | Robertson et al. | Jan 1999 | A |
5860975 | Goble et al. | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5868760 | McGuckin, Jr. | Feb 1999 | A |
5871135 | Williamson, IV et al. | Feb 1999 | A |
5873885 | Weidenbenner | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5878937 | Green et al. | Mar 1999 | A |
5878938 | Bittner et al. | Mar 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5893506 | Powell | Apr 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5893878 | Pierce | Apr 1999 | A |
5894979 | Powell | Apr 1999 | A |
5897552 | Edwards et al. | Apr 1999 | A |
5897562 | Bolanos et al. | Apr 1999 | A |
5899914 | Zirps et al. | May 1999 | A |
5901895 | Heaton et al. | May 1999 | A |
5902312 | Frater et al. | May 1999 | A |
5904647 | Ouchi | May 1999 | A |
5904693 | Dicesare et al. | May 1999 | A |
5904702 | Ek et al. | May 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5908402 | Blythe | Jun 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5911353 | Bolanos et al. | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5916225 | Kugel | Jun 1999 | A |
5918791 | Sorrentino et al. | Jul 1999 | A |
5919198 | Graves, Jr. et al. | Jul 1999 | A |
5921956 | Grinberg et al. | Jul 1999 | A |
5928256 | Riza | Jul 1999 | A |
5931847 | Bittner et al. | Aug 1999 | A |
5931853 | McEwen et al. | Aug 1999 | A |
5937951 | Izuchukwu et al. | Aug 1999 | A |
5938667 | Peyser et al. | Aug 1999 | A |
5941442 | Geiste et al. | Aug 1999 | A |
5944172 | Hannula | Aug 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5947984 | Whipple | Sep 1999 | A |
5948030 | Miller et al. | Sep 1999 | A |
5951516 | Bunyan | Sep 1999 | A |
5951552 | Long et al. | Sep 1999 | A |
5951574 | Stefanchik et al. | Sep 1999 | A |
5951581 | Saadat et al. | Sep 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5964394 | Robertson | Oct 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5971916 | Koren | Oct 1999 | A |
5973221 | Collyer et al. | Oct 1999 | A |
5984949 | Levin | Nov 1999 | A |
5988479 | Palmer | Nov 1999 | A |
5997528 | Bisch et al. | Dec 1999 | A |
5997552 | Person et al. | Dec 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6004319 | Goble et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6010513 | Törmälä et al. | Jan 2000 | A |
6012494 | Balazs | Jan 2000 | A |
6013076 | Goble et al. | Jan 2000 | A |
6015406 | Goble et al. | Jan 2000 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6017322 | Snoke et al. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6017356 | Frederick et al. | Jan 2000 | A |
6022352 | Vandewalle | Feb 2000 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6024748 | Manzo et al. | Feb 2000 | A |
6027501 | Goble et al. | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6033378 | Lundquist et al. | Mar 2000 | A |
6033399 | Gines | Mar 2000 | A |
6033427 | Lee | Mar 2000 | A |
6037724 | Buss et al. | Mar 2000 | A |
6039733 | Buysse et al. | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6042601 | Smith | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6047861 | Vidal et al. | Apr 2000 | A |
6050472 | Shibata | Apr 2000 | A |
6050990 | Tankovich et al. | Apr 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6053390 | Green et al. | Apr 2000 | A |
6053922 | Krause et al. | Apr 2000 | A |
RE36720 | Green et al. | May 2000 | E |
6056735 | Okada et al. | May 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6062360 | Shields | May 2000 | A |
6063097 | Oi et al. | May 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6065919 | Peck | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6068627 | Orszulak et al. | May 2000 | A |
6071233 | Ishikawa et al. | Jun 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
6074401 | Gardiner et al. | Jun 2000 | A |
6077286 | Cuschieri et al. | Jun 2000 | A |
6079606 | Milliman et al. | Jun 2000 | A |
6080181 | Jensen et al. | Jun 2000 | A |
6082577 | Coates et al. | Jul 2000 | A |
6083191 | Rose | Jul 2000 | A |
6083234 | Nicholas et al. | Jul 2000 | A |
6083242 | Cook | Jul 2000 | A |
6086544 | Hibner et al. | Jul 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6090106 | Goble et al. | Jul 2000 | A |
6093186 | Goble | Jul 2000 | A |
6099537 | Sugai et al. | Aug 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6102271 | Longo et al. | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6117148 | Ravo et al. | Sep 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6120433 | Mizuno et al. | Sep 2000 | A |
6123241 | Walter et al. | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6126058 | Adams et al. | Oct 2000 | A |
6126670 | Walker et al. | Oct 2000 | A |
6131789 | Schulze et al. | Oct 2000 | A |
6131790 | Piraka | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6139546 | Koenig et al. | Oct 2000 | A |
6149660 | Laufer et al. | Nov 2000 | A |
6152935 | Kammerer et al. | Nov 2000 | A |
6155473 | Tompkins et al. | Dec 2000 | A |
6156056 | Kearns et al. | Dec 2000 | A |
6159146 | El Gazayerli | Dec 2000 | A |
6159200 | Verdura et al. | Dec 2000 | A |
6159224 | Yoon | Dec 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6165175 | Wampler et al. | Dec 2000 | A |
6165184 | Verdura et al. | Dec 2000 | A |
6165188 | Saadat et al. | Dec 2000 | A |
6168605 | Measamer et al. | Jan 2001 | B1 |
6171316 | Kovac et al. | Jan 2001 | B1 |
6171330 | Benchetrit | Jan 2001 | B1 |
6174308 | Goble et al. | Jan 2001 | B1 |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6179195 | Adams et al. | Jan 2001 | B1 |
6179776 | Adams et al. | Jan 2001 | B1 |
6181105 | Cutolo et al. | Jan 2001 | B1 |
6182673 | Kindermann et al. | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6193129 | Bittner et al. | Feb 2001 | B1 |
6197042 | Ginn et al. | Mar 2001 | B1 |
6200330 | Benderev et al. | Mar 2001 | B1 |
6202914 | Geiste et al. | Mar 2001 | B1 |
6206897 | Jamiolkowski et al. | Mar 2001 | B1 |
6206904 | Ouchi | Mar 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6213999 | Platt, Jr. et al. | Apr 2001 | B1 |
6214028 | Yoon et al. | Apr 2001 | B1 |
6220368 | Ark et al. | Apr 2001 | B1 |
6223100 | Green | Apr 2001 | B1 |
6223835 | Habedank et al. | May 2001 | B1 |
6224617 | Saadat et al. | May 2001 | B1 |
6228081 | Goble | May 2001 | B1 |
6228083 | Lands et al. | May 2001 | B1 |
6228084 | Kirwan, Jr. | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6234178 | Goble et al. | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6241140 | Adams et al. | Jun 2001 | B1 |
6241723 | Heim et al. | Jun 2001 | B1 |
6245084 | Mark et al. | Jun 2001 | B1 |
6248117 | Blatter | Jun 2001 | B1 |
6249076 | Madden et al. | Jun 2001 | B1 |
6250532 | Green et al. | Jun 2001 | B1 |
6258107 | Balázs et al. | Jul 2001 | B1 |
6261286 | Goble et al. | Jul 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6270508 | Klieman et al. | Aug 2001 | B1 |
6273876 | Klima et al. | Aug 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6277114 | Bullivant et al. | Aug 2001 | B1 |
6293942 | Goble et al. | Sep 2001 | B1 |
6296640 | Wampler et al. | Oct 2001 | B1 |
6302311 | Adams et al. | Oct 2001 | B1 |
6305891 | Burlingame | Oct 2001 | B1 |
6306134 | Goble et al. | Oct 2001 | B1 |
6306149 | Meade | Oct 2001 | B1 |
6309403 | Minor et al. | Oct 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6320123 | Reimers | Nov 2001 | B1 |
6322494 | Bullivant et al. | Nov 2001 | B1 |
6324339 | Hudson et al. | Nov 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6325810 | Hamilton et al. | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6331761 | Kumar et al. | Dec 2001 | B1 |
6333029 | Vyakarnam et al. | Dec 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
6336926 | Goble | Jan 2002 | B1 |
6338737 | Toledano | Jan 2002 | B1 |
6343731 | Adams et al. | Feb 2002 | B1 |
6346077 | Taylor et al. | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6352532 | Kramer et al. | Mar 2002 | B1 |
6355699 | Vyakarnam et al. | Mar 2002 | B1 |
6356072 | Chass | Mar 2002 | B1 |
6358224 | Tims et al. | Mar 2002 | B1 |
6364877 | Goble et al. | Apr 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6370981 | Watarai | Apr 2002 | B2 |
6373152 | Wang et al. | Apr 2002 | B1 |
6383201 | Dong | May 2002 | B1 |
6387113 | Hawkins et al. | May 2002 | B1 |
6387114 | Adams | May 2002 | B2 |
6391038 | Vargas et al. | May 2002 | B2 |
6398781 | Goble et al. | Jun 2002 | B1 |
6398797 | Bombard et al. | Jun 2002 | B2 |
6402766 | Bowman et al. | Jun 2002 | B2 |
6406440 | Stefanchik | Jun 2002 | B1 |
6406472 | Jensen | Jun 2002 | B1 |
6409724 | Penny et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6413274 | Pedros | Jul 2002 | B1 |
6416486 | Wampler | Jul 2002 | B1 |
6416509 | Goble et al. | Jul 2002 | B1 |
6419695 | Gabbay | Jul 2002 | B1 |
6423079 | Blake, III | Jul 2002 | B1 |
RE37814 | Allgeyer | Aug 2002 | E |
6428070 | Takanashi et al. | Aug 2002 | B1 |
6429611 | Li | Aug 2002 | B1 |
6436097 | Nardella | Aug 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6436110 | Bowman et al. | Aug 2002 | B2 |
6436122 | Frank et al. | Aug 2002 | B1 |
6439439 | Rickard et al. | Aug 2002 | B1 |
6439446 | Perry et al. | Aug 2002 | B1 |
6440146 | Nicholas et al. | Aug 2002 | B2 |
6443973 | Whitman | Sep 2002 | B1 |
6447518 | Krause et al. | Sep 2002 | B1 |
6450391 | Kayan et al. | Sep 2002 | B1 |
6450989 | Dubrul et al. | Sep 2002 | B2 |
6454781 | Witt et al. | Sep 2002 | B1 |
6468275 | Wampler et al. | Oct 2002 | B1 |
6471106 | Reining | Oct 2002 | B1 |
6478210 | Adams et al. | Nov 2002 | B2 |
6482200 | Shippert | Nov 2002 | B2 |
6485490 | Wampler et al. | Nov 2002 | B2 |
6485667 | Tan | Nov 2002 | B1 |
6488196 | Fenton, Jr. | Dec 2002 | B1 |
6488197 | Whitman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6491690 | Goble et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6492785 | Kasten et al. | Dec 2002 | B1 |
6494896 | D'Alessio et al. | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500194 | Benderev et al. | Dec 2002 | B2 |
6503257 | Grant et al. | Jan 2003 | B2 |
6503259 | Huxel et al. | Jan 2003 | B2 |
6505768 | Whitman | Jan 2003 | B2 |
6510854 | Goble | Jan 2003 | B2 |
6511468 | Cragg et al. | Jan 2003 | B1 |
6512360 | Goto et al. | Jan 2003 | B1 |
6517528 | Pantages et al. | Feb 2003 | B1 |
6517535 | Edwards | Feb 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6522101 | Malackowski | Feb 2003 | B2 |
6527782 | Hogg et al. | Mar 2003 | B2 |
6527785 | Sancoff et al. | Mar 2003 | B2 |
6533157 | Whitman | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6535764 | Imran et al. | Mar 2003 | B2 |
6543456 | Freeman | Apr 2003 | B1 |
6545384 | Pelrine et al. | Apr 2003 | B1 |
6547786 | Goble | Apr 2003 | B1 |
6550546 | Thurler et al. | Apr 2003 | B2 |
6551333 | Kuhns et al. | Apr 2003 | B2 |
6554861 | Knox et al. | Apr 2003 | B2 |
6555770 | Kawase | Apr 2003 | B2 |
6558379 | Batchelor et al. | May 2003 | B1 |
6565560 | Goble et al. | May 2003 | B1 |
6569085 | Kortenbach et al. | May 2003 | B2 |
6569171 | DeGuillebon et al. | May 2003 | B2 |
6578751 | Hartwick | Jun 2003 | B2 |
6582427 | Goble et al. | Jun 2003 | B1 |
6582441 | He et al. | Jun 2003 | B1 |
6583533 | Pelrine et al. | Jun 2003 | B2 |
6585144 | Adams et al. | Jul 2003 | B2 |
6588643 | Bolduc et al. | Jul 2003 | B2 |
6589164 | Flaherty | Jul 2003 | B1 |
6592538 | Hotchkiss et al. | Jul 2003 | B1 |
6592597 | Grant et al. | Jul 2003 | B2 |
6596296 | Nelson et al. | Jul 2003 | B1 |
6596304 | Bayon et al. | Jul 2003 | B1 |
6596432 | Kawakami et al. | Jul 2003 | B2 |
D478665 | Isaacs et al. | Aug 2003 | S |
D478986 | Johnston et al. | Aug 2003 | S |
6601749 | Sullivan et al. | Aug 2003 | B2 |
6602252 | Mollenauer | Aug 2003 | B2 |
6602262 | Griego et al. | Aug 2003 | B2 |
6605078 | Adams | Aug 2003 | B2 |
6605669 | Awokola et al. | Aug 2003 | B2 |
6607475 | Doyle et al. | Aug 2003 | B2 |
6613069 | Boyd et al. | Sep 2003 | B2 |
6616686 | Coleman et al. | Sep 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6620166 | Wenstrom, Jr. et al. | Sep 2003 | B1 |
6626834 | Dunne et al. | Sep 2003 | B2 |
6629630 | Adams | Oct 2003 | B2 |
6629974 | Penny et al. | Oct 2003 | B2 |
6629988 | Weadock | Oct 2003 | B2 |
6636412 | Smith | Oct 2003 | B2 |
6638108 | Tachi | Oct 2003 | B2 |
6638285 | Gabbay | Oct 2003 | B2 |
6638297 | Huitema | Oct 2003 | B1 |
RE38335 | Aust et al. | Nov 2003 | E |
6641528 | Torii | Nov 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6645201 | Utley et al. | Nov 2003 | B1 |
6646307 | Yu et al. | Nov 2003 | B1 |
6648816 | Irion et al. | Nov 2003 | B2 |
6652595 | Nicolo | Nov 2003 | B1 |
D484243 | Ryan et al. | Dec 2003 | S |
D484595 | Ryan et al. | Dec 2003 | S |
D484596 | Ryan et al. | Dec 2003 | S |
6656177 | Truckai et al. | Dec 2003 | B2 |
6656193 | Grant et al. | Dec 2003 | B2 |
6663641 | Kovac et al. | Dec 2003 | B1 |
6666854 | Lange | Dec 2003 | B1 |
6666875 | Sakurai et al. | Dec 2003 | B1 |
6667825 | Lu et al. | Dec 2003 | B2 |
6669073 | Milliman et al. | Dec 2003 | B2 |
6671185 | Duval | Dec 2003 | B2 |
D484977 | Ryan et al. | Jan 2004 | S |
6676660 | Wampler et al. | Jan 2004 | B2 |
6679269 | Swanson | Jan 2004 | B2 |
6679410 | Würsch et al. | Jan 2004 | B2 |
6681978 | Geiste et al. | Jan 2004 | B2 |
6681979 | Whitman | Jan 2004 | B2 |
6682527 | Strul | Jan 2004 | B2 |
6682528 | Frazier et al. | Jan 2004 | B2 |
6685727 | Fisher et al. | Feb 2004 | B2 |
6689153 | Skiba | Feb 2004 | B1 |
6692507 | Pugsley et al. | Feb 2004 | B2 |
6695198 | Adams et al. | Feb 2004 | B2 |
6695199 | Whitman | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6699235 | Wallace et al. | Mar 2004 | B2 |
6704210 | Myers | Mar 2004 | B1 |
6705503 | Pedicini et al. | Mar 2004 | B1 |
6709445 | Boebel et al. | Mar 2004 | B2 |
6712773 | Viola | Mar 2004 | B1 |
6716223 | Leopold et al. | Apr 2004 | B2 |
6716232 | Vidal et al. | Apr 2004 | B1 |
6716233 | Whitman | Apr 2004 | B1 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6723087 | O'Neill et al. | Apr 2004 | B2 |
6723091 | Goble et al. | Apr 2004 | B2 |
6726697 | Nicholas et al. | Apr 2004 | B2 |
6729119 | Schnipke et al. | May 2004 | B2 |
6736825 | Blatter et al. | May 2004 | B2 |
6736854 | Vadurro et al. | May 2004 | B2 |
6740030 | Martone et al. | May 2004 | B2 |
6747121 | Gogolewski | Jun 2004 | B2 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6752768 | Burdorff et al. | Jun 2004 | B2 |
6752816 | Culp et al. | Jun 2004 | B2 |
6755195 | Lemke et al. | Jun 2004 | B1 |
6755338 | Hahnen et al. | Jun 2004 | B2 |
6758846 | Goble et al. | Jul 2004 | B2 |
6761685 | Adams et al. | Jul 2004 | B2 |
6762339 | Klun et al. | Jul 2004 | B1 |
6767352 | Field et al. | Jul 2004 | B2 |
6767356 | Kanner et al. | Jul 2004 | B2 |
6769590 | Vresh et al. | Aug 2004 | B2 |
6769594 | Orban, III | Aug 2004 | B2 |
6770027 | Banik et al. | Aug 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773438 | Knodel et al. | Aug 2004 | B1 |
6777838 | Miekka et al. | Aug 2004 | B2 |
6780151 | Grabover et al. | Aug 2004 | B2 |
6780180 | Goble et al. | Aug 2004 | B1 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6786864 | Matsuura et al. | Sep 2004 | B2 |
6786896 | Madani et al. | Sep 2004 | B1 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6793661 | Hamilton et al. | Sep 2004 | B2 |
6793663 | Kneifel et al. | Sep 2004 | B2 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6805273 | Bilotti et al. | Oct 2004 | B2 |
6806808 | Watters et al. | Oct 2004 | B1 |
6808525 | Latterell et al. | Oct 2004 | B2 |
6814741 | Bowman et al. | Nov 2004 | B2 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6817509 | Geiste et al. | Nov 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6818018 | Sawhney | Nov 2004 | B1 |
6820791 | Adams | Nov 2004 | B2 |
6821273 | Mollenauer | Nov 2004 | B2 |
6821282 | Perry et al. | Nov 2004 | B2 |
6821284 | Sturtz et al. | Nov 2004 | B2 |
6827246 | Sullivan et al. | Dec 2004 | B2 |
6827712 | Tovey et al. | Dec 2004 | B2 |
6827725 | Batchelor et al. | Dec 2004 | B2 |
6828902 | Casden | Dec 2004 | B2 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6831629 | Nishino et al. | Dec 2004 | B2 |
6832998 | Goble | Dec 2004 | B2 |
6834001 | Myono | Dec 2004 | B2 |
6835173 | Couvillon, Jr. | Dec 2004 | B2 |
6835199 | McGuckin, Jr. et al. | Dec 2004 | B2 |
6835336 | Watt | Dec 2004 | B2 |
6837846 | Jaffe et al. | Jan 2005 | B2 |
6838493 | Williams et al. | Jan 2005 | B2 |
6840423 | Adams et al. | Jan 2005 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
6843789 | Goble | Jan 2005 | B2 |
6843793 | Brock et al. | Jan 2005 | B2 |
6846307 | Whitman et al. | Jan 2005 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6846309 | Whitman et al. | Jan 2005 | B2 |
6849071 | Whitman et al. | Feb 2005 | B2 |
6850817 | Green | Feb 2005 | B1 |
6858005 | Ohline et al. | Feb 2005 | B2 |
RE38708 | Bolanos et al. | Mar 2005 | E |
6861142 | Wilkie et al. | Mar 2005 | B1 |
6863694 | Boyce et al. | Mar 2005 | B1 |
6866178 | Adams et al. | Mar 2005 | B2 |
6866671 | Tierney et al. | Mar 2005 | B2 |
6867248 | Martin et al. | Mar 2005 | B1 |
6869435 | Blake, III | Mar 2005 | B2 |
6872214 | Sonnenschein et al. | Mar 2005 | B2 |
6874669 | Adams et al. | Apr 2005 | B2 |
6877647 | Green et al. | Apr 2005 | B2 |
6878106 | Herrmann | Apr 2005 | B1 |
6889116 | Jinno | May 2005 | B2 |
6893435 | Goble | May 2005 | B2 |
6899538 | Matoba | May 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6911033 | de Guillebon et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6913608 | Liddicoat et al. | Jul 2005 | B2 |
6913613 | Schwarz et al. | Jul 2005 | B2 |
6921397 | Corcoran et al. | Jul 2005 | B2 |
6921412 | Black et al. | Jul 2005 | B1 |
6923093 | Ullah | Aug 2005 | B2 |
6923803 | Goble | Aug 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929641 | Goble et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6931830 | Liao | Aug 2005 | B2 |
6932218 | Kosann et al. | Aug 2005 | B2 |
6932810 | Ryan | Aug 2005 | B2 |
6936042 | Wallace et al. | Aug 2005 | B2 |
6939358 | Palacios et al. | Sep 2005 | B2 |
6942662 | Goble et al. | Sep 2005 | B2 |
6945444 | Gresham et al. | Sep 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
6953138 | Dworak et al. | Oct 2005 | B1 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6958035 | Friedman et al. | Oct 2005 | B2 |
6959851 | Heinrich | Nov 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6960107 | Schaub et al. | Nov 2005 | B1 |
6960163 | Ewers et al. | Nov 2005 | B2 |
6960220 | Marino et al. | Nov 2005 | B2 |
6964363 | Wales et al. | Nov 2005 | B2 |
6966907 | Goble | Nov 2005 | B2 |
6966909 | Marshall et al. | Nov 2005 | B2 |
6971988 | Orban, III | Dec 2005 | B2 |
6972199 | Lebouitz et al. | Dec 2005 | B2 |
6974462 | Sater | Dec 2005 | B2 |
6978921 | Shelton, IV et al. | Dec 2005 | B2 |
6978922 | Bilotti et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6981978 | Gannoe | Jan 2006 | B2 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
6984231 | Goble et al. | Jan 2006 | B2 |
6986451 | Mastri et al. | Jan 2006 | B1 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
6988650 | Schwemberger et al. | Jan 2006 | B2 |
6990796 | Schnipke et al. | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6995729 | Govari et al. | Feb 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7000819 | Swayze et al. | Feb 2006 | B2 |
7001380 | Goble | Feb 2006 | B2 |
7001408 | Knodel et al. | Feb 2006 | B2 |
7008435 | Cummins | Mar 2006 | B2 |
7009039 | Yayon et al. | Mar 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7018357 | Emmons | Mar 2006 | B2 |
7018390 | Turovskiy et al. | Mar 2006 | B2 |
7025743 | Mann et al. | Apr 2006 | B2 |
7029435 | Nakao | Apr 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7032799 | Viola et al. | Apr 2006 | B2 |
7033356 | Latterell et al. | Apr 2006 | B2 |
7036680 | Flannery | May 2006 | B1 |
7037344 | Kagan et al. | May 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7041868 | Greene et al. | May 2006 | B2 |
7043852 | Hayashida et al. | May 2006 | B2 |
7044352 | Shelton, IV et al. | May 2006 | B2 |
7044353 | Mastri et al. | May 2006 | B2 |
7048687 | Reuss et al. | May 2006 | B1 |
7048745 | Tierney et al. | May 2006 | B2 |
7052494 | Goble et al. | May 2006 | B2 |
7052499 | Steger et al. | May 2006 | B2 |
7055730 | Ehrenfels et al. | Jun 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7056284 | Martone et al. | Jun 2006 | B2 |
7056330 | Gayton | Jun 2006 | B2 |
7059331 | Adams et al. | Jun 2006 | B2 |
7059508 | Shelton, IV et al. | Jun 2006 | B2 |
7063671 | Couvillon, Jr. | Jun 2006 | B2 |
7063712 | Vargas et al. | Jun 2006 | B2 |
7066879 | Fowler et al. | Jun 2006 | B2 |
7066944 | Laufer et al. | Jun 2006 | B2 |
7067038 | Trokhan et al. | Jun 2006 | B2 |
7070083 | Jankowski | Jul 2006 | B2 |
7070559 | Adams et al. | Jul 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7071287 | Rhine et al. | Jul 2006 | B2 |
7075770 | Smith | Jul 2006 | B1 |
7077856 | Whitman | Jul 2006 | B2 |
7080769 | Vresh et al. | Jul 2006 | B2 |
7081114 | Rashidi | Jul 2006 | B2 |
7083073 | Yoshie et al. | Aug 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7083571 | Wang et al. | Aug 2006 | B2 |
7083615 | Peterson et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7083620 | Jahns et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7087071 | Nicholas et al. | Aug 2006 | B2 |
7090637 | Danitz et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7090683 | Brock et al. | Aug 2006 | B2 |
7090684 | McGuckin, Jr. et al. | Aug 2006 | B2 |
7094202 | Nobis et al. | Aug 2006 | B2 |
7094247 | Monassevitch et al. | Aug 2006 | B2 |
7097089 | Marczyk | Aug 2006 | B2 |
7097644 | Long | Aug 2006 | B2 |
7097650 | Weller et al. | Aug 2006 | B2 |
7098794 | Lindsay et al. | Aug 2006 | B2 |
7104741 | Krohn | Sep 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7108701 | Evens et al. | Sep 2006 | B2 |
7108709 | Cummins | Sep 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7112214 | Peterson et al. | Sep 2006 | B2 |
RE39358 | Goble | Oct 2006 | E |
7114642 | Whitman | Oct 2006 | B2 |
7118582 | Wang et al. | Oct 2006 | B1 |
7121446 | Arad et al. | Oct 2006 | B2 |
7122028 | Looper et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7126303 | Farritor et al. | Oct 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7128254 | Shelton, IV et al. | Oct 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7131445 | Amoah | Nov 2006 | B2 |
7133601 | Phillips et al. | Nov 2006 | B2 |
7134587 | Schwemberger et al. | Nov 2006 | B2 |
7137981 | Long | Nov 2006 | B2 |
7140527 | Ehrenfels et al. | Nov 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7143924 | Scirica et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7143926 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7147139 | Schwemberger et al. | Dec 2006 | B2 |
7147140 | Wukusick et al. | Dec 2006 | B2 |
7147637 | Goble | Dec 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7150748 | Ebbutt et al. | Dec 2006 | B2 |
7153300 | Goble | Dec 2006 | B2 |
7156863 | Sonnenschein et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7161036 | Oikawa et al. | Jan 2007 | B2 |
7168604 | Milliman et al. | Jan 2007 | B2 |
7172104 | Scirica et al. | Feb 2007 | B2 |
7172593 | Trieu et al. | Feb 2007 | B2 |
7179223 | Motoki et al. | Feb 2007 | B2 |
7179267 | Nolan et al. | Feb 2007 | B2 |
7182239 | Myers | Feb 2007 | B1 |
7182763 | Nardella | Feb 2007 | B2 |
7183737 | Kitagawa | Feb 2007 | B2 |
7188758 | Viola et al. | Mar 2007 | B2 |
7189207 | Viola | Mar 2007 | B2 |
7195627 | Amoah et al. | Mar 2007 | B2 |
7199537 | Okamura et al. | Apr 2007 | B2 |
7202653 | Pai | Apr 2007 | B2 |
7204835 | Latterell et al. | Apr 2007 | B2 |
7207233 | Wadge | Apr 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7207472 | Wukusick et al. | Apr 2007 | B2 |
7207556 | Saitoh et al. | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7210609 | Leiboff et | May 2007 | B2 |
7211081 | Goble | May 2007 | B2 |
7211084 | Goble et al. | May 2007 | B2 |
7211092 | Hughett | May 2007 | B2 |
7213736 | Wales et al. | May 2007 | B2 |
7214224 | Goble | May 2007 | B2 |
7217285 | Vargas et al. | May 2007 | B2 |
7220260 | Fleming et al. | May 2007 | B2 |
7220272 | Weadock | May 2007 | B2 |
7225963 | Scirica | Jun 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7234624 | Gresham et al. | Jun 2007 | B2 |
7235089 | McGuckin, Jr. | Jun 2007 | B1 |
7235302 | Jing et al. | Jun 2007 | B2 |
7237708 | Guy et al. | Jul 2007 | B1 |
7238195 | Viola | Jul 2007 | B2 |
7241288 | Braun | Jul 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7247161 | Johnston et al. | Jul 2007 | B2 |
7252660 | Kunz | Aug 2007 | B2 |
7255696 | Goble et al. | Aug 2007 | B2 |
7256695 | Hamel et al. | Aug 2007 | B2 |
7258262 | Mastri et al. | Aug 2007 | B2 |
7258546 | Beier et al. | Aug 2007 | B2 |
7260431 | Libbus et al. | Aug 2007 | B2 |
7265374 | Lee et al. | Sep 2007 | B2 |
7267679 | McGuckin, Jr. et al. | Sep 2007 | B2 |
7273483 | Wiener et al. | Sep 2007 | B2 |
7278562 | Mastri et al. | Oct 2007 | B2 |
7278563 | Green | Oct 2007 | B1 |
7278949 | Bader | Oct 2007 | B2 |
7278994 | Goble | Oct 2007 | B2 |
7282048 | Goble et al. | Oct 2007 | B2 |
7287682 | Ezzat et al. | Oct 2007 | B1 |
7293685 | Ehrenfels et al. | Nov 2007 | B2 |
7295907 | Lu et al. | Nov 2007 | B2 |
7296722 | Ivanko | Nov 2007 | B2 |
7296724 | Green et al. | Nov 2007 | B2 |
7297149 | Vitali et al. | Nov 2007 | B2 |
7300450 | Vleugels et al. | Nov 2007 | B2 |
7303106 | Milliman et al. | Dec 2007 | B2 |
7303107 | Milliman et al. | Dec 2007 | B2 |
7303108 | Shelton, IV | Dec 2007 | B2 |
7303502 | Thompson | Dec 2007 | B2 |
7303556 | Metzger | Dec 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7308998 | Mastri et al. | Dec 2007 | B2 |
7322975 | Goble et al. | Jan 2008 | B2 |
7322994 | Nicholas et al. | Jan 2008 | B2 |
7324572 | Chang | Jan 2008 | B2 |
7326203 | Papineau et al. | Feb 2008 | B2 |
7326213 | Benderev et al. | Feb 2008 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7328829 | Arad et al. | Feb 2008 | B2 |
7330004 | DeJonge et al. | Feb 2008 | B2 |
7331340 | Barney | Feb 2008 | B2 |
7334717 | Rethy et al. | Feb 2008 | B2 |
7334718 | McAlister et al. | Feb 2008 | B2 |
7335199 | Goble et al. | Feb 2008 | B2 |
7336048 | Lohr | Feb 2008 | B2 |
7336184 | Smith et al. | Feb 2008 | B2 |
7338513 | Lee et al. | Mar 2008 | B2 |
7341591 | Grinberg | Mar 2008 | B2 |
7343920 | Toby et al. | Mar 2008 | B2 |
7344532 | Goble et al. | Mar 2008 | B2 |
7348763 | Reinhart et al. | Mar 2008 | B1 |
RE40237 | Bilotti et al. | Apr 2008 | E |
7351258 | Ricotta et al. | Apr 2008 | B2 |
7354447 | Shelton, IV et al. | Apr 2008 | B2 |
7354502 | Polat et al. | Apr 2008 | B2 |
7357287 | Shelton, IV et al. | Apr 2008 | B2 |
7357806 | Rivera et al. | Apr 2008 | B2 |
7361195 | Schwartz et al. | Apr 2008 | B2 |
7364060 | Milliman | Apr 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7377918 | Amoah | May 2008 | B2 |
7377928 | Zubik et al. | May 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7386730 | Uchikubo | Jun 2008 | B2 |
7388217 | Buschbeck et al. | Jun 2008 | B2 |
7391173 | Schena | Jun 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
7397364 | Govari | Jul 2008 | B2 |
7398907 | Racenet et al. | Jul 2008 | B2 |
7398908 | Holsten et al. | Jul 2008 | B2 |
7400752 | Zacharias | Jul 2008 | B2 |
7401721 | Holsten et al. | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7404509 | Ortiz et al. | Jul 2008 | B2 |
7404822 | Viart et al. | Jul 2008 | B2 |
7407074 | Ortiz et al. | Aug 2008 | B2 |
7407075 | Holsten et al. | Aug 2008 | B2 |
7407076 | Racenet et al. | Aug 2008 | B2 |
7407077 | Ortiz et al. | Aug 2008 | B2 |
7407078 | Shelton, IV et al. | Aug 2008 | B2 |
7410086 | Ortiz et al. | Aug 2008 | B2 |
7413563 | Corcoran et al. | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7418078 | Blanz et al. | Aug 2008 | B2 |
RE40514 | Mastri et al. | Sep 2008 | E |
7419080 | Smith et al. | Sep 2008 | B2 |
7419081 | Ehrenfels et al. | Sep 2008 | B2 |
7419495 | Menn et al. | Sep 2008 | B2 |
7422136 | Marczyk | Sep 2008 | B1 |
7422138 | Bilotti et al. | Sep 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7424965 | Racenet et al. | Sep 2008 | B2 |
7427607 | Suzuki | Sep 2008 | B2 |
7431188 | Marczyk | Oct 2008 | B1 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7431694 | Stefanchik et al. | Oct 2008 | B2 |
7431730 | Viola | Oct 2008 | B2 |
7434715 | Shelton, IV et al. | Oct 2008 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7438718 | Milliman et al. | Oct 2008 | B2 |
7439354 | Lenges et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7441685 | Boudreaux | Oct 2008 | B1 |
7442201 | Pugsley et al. | Oct 2008 | B2 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7451904 | Shelton, IV | Nov 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7455676 | Holsten et al. | Nov 2008 | B2 |
7455682 | Viola | Nov 2008 | B2 |
7461767 | Viola et al. | Dec 2008 | B2 |
7462187 | Johnston et al. | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7467740 | Shelton, IV et al. | Dec 2008 | B2 |
7467849 | Silverbrook et al. | Dec 2008 | B2 |
7472814 | Mastri et al. | Jan 2009 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7472816 | Holsten et al. | Jan 2009 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7473263 | Johnston et al. | Jan 2009 | B2 |
7479608 | Smith | Jan 2009 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7481348 | Marczyk | Jan 2009 | B2 |
7481349 | Holsten et al. | Jan 2009 | B2 |
7481824 | Boudreaux et al. | Jan 2009 | B2 |
7485133 | Cannon et al. | Feb 2009 | B2 |
7485142 | Milo | Feb 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7490749 | Schall et al. | Feb 2009 | B2 |
7494039 | Racenet et al. | Feb 2009 | B2 |
7494499 | Nagase et al. | Feb 2009 | B2 |
7494501 | Ahlberg et al. | Feb 2009 | B2 |
7500979 | Hueil et al. | Mar 2009 | B2 |
7501198 | Barlev et al. | Mar 2009 | B2 |
7503474 | Hillstead et al. | Mar 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7507202 | Schoellhorn | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7510566 | Jacobs et al. | Mar 2009 | B2 |
7513408 | Shelton, IV et al. | Apr 2009 | B2 |
7517356 | Heinrich | Apr 2009 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7530984 | Sonnenschein et al. | May 2009 | B2 |
7530985 | Takemoto et al. | May 2009 | B2 |
7533906 | Luettgen et al. | May 2009 | B2 |
7534259 | Lashinski et al. | May 2009 | B2 |
7546939 | Adams et al. | Jun 2009 | B2 |
7546940 | Milliman et al. | Jun 2009 | B2 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7549563 | Mather et al. | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7549998 | Braun | Jun 2009 | B2 |
7552854 | Wixey et al. | Jun 2009 | B2 |
7556185 | Viola | Jul 2009 | B2 |
7556186 | Milliman | Jul 2009 | B2 |
7556647 | Drews et al. | Jul 2009 | B2 |
7559449 | Viola | Jul 2009 | B2 |
7559450 | Wales et al. | Jul 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7559937 | de la Torre et al. | Jul 2009 | B2 |
7563862 | Sieg et al. | Jul 2009 | B2 |
7565993 | Milliman et al. | Jul 2009 | B2 |
7566300 | Devierre et al. | Jul 2009 | B2 |
7567045 | Fristedt | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7568604 | Ehrenfels et al. | Aug 2009 | B2 |
7568619 | Todd et al. | Aug 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7588174 | Holsten et al. | Sep 2009 | B2 |
7588175 | Timm et al. | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7588177 | Racenet | Sep 2009 | B2 |
7591783 | Boulais et al. | Sep 2009 | B2 |
7597229 | Boudreaux et al. | Oct 2009 | B2 |
7597230 | Racenet et al. | Oct 2009 | B2 |
7600663 | Green | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7607557 | Shelton, IV et al. | Oct 2009 | B2 |
7611038 | Racenet et al. | Nov 2009 | B2 |
7611474 | Hibner et al. | Nov 2009 | B2 |
7615003 | Stefanchik et al. | Nov 2009 | B2 |
7615067 | Lee et al. | Nov 2009 | B2 |
7617961 | Viola | Nov 2009 | B2 |
7624902 | Marczyk et al. | Dec 2009 | B2 |
7624903 | Green et al. | Dec 2009 | B2 |
7625370 | Hart et al. | Dec 2009 | B2 |
7631793 | Rethy et al. | Dec 2009 | B2 |
7631794 | Rethy et al. | Dec 2009 | B2 |
7635074 | Olson et al. | Dec 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7637410 | Marczyk | Dec 2009 | B2 |
7638958 | Philipp et al. | Dec 2009 | B2 |
7641091 | Olson et al. | Jan 2010 | B2 |
7641092 | Kruszynski et al. | Jan 2010 | B2 |
7641093 | Doll et al. | Jan 2010 | B2 |
7641095 | Viola | Jan 2010 | B2 |
7644783 | Roberts et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7645230 | Mikkaichi et al. | Jan 2010 | B2 |
7648519 | Lee et al. | Jan 2010 | B2 |
7651017 | Ortiz et al. | Jan 2010 | B2 |
7651498 | Shifrin et al. | Jan 2010 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7655288 | Bauman et al. | Feb 2010 | B2 |
7656131 | Embrey et al. | Feb 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7658312 | Vidal et al. | Feb 2010 | B2 |
7659219 | Biran et al. | Feb 2010 | B2 |
7662161 | Briganti et al. | Feb 2010 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7669746 | Shelton, IV | Mar 2010 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7673780 | Shelton, IV et al. | Mar 2010 | B2 |
7673781 | Swayze et al. | Mar 2010 | B2 |
7673782 | Hess et al. | Mar 2010 | B2 |
7673783 | Morgan et al. | Mar 2010 | B2 |
7674253 | Fisher et al. | Mar 2010 | B2 |
7674255 | Braun | Mar 2010 | B2 |
7674263 | Ryan | Mar 2010 | B2 |
7674270 | Layer | Mar 2010 | B2 |
7682307 | Danitz et al. | Mar 2010 | B2 |
7686201 | Csiky | Mar 2010 | B2 |
7686826 | Lee et al. | Mar 2010 | B2 |
7688028 | Phillips et al. | Mar 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7691106 | Schenberger et al. | Apr 2010 | B2 |
7694865 | Scirica | Apr 2010 | B2 |
7695485 | Whitman et al. | Apr 2010 | B2 |
7699204 | Viola | Apr 2010 | B2 |
7699835 | Lee et al. | Apr 2010 | B2 |
7699844 | Utley et al. | Apr 2010 | B2 |
7699846 | Ryan | Apr 2010 | B2 |
7699856 | Van Wyk et al. | Apr 2010 | B2 |
7699859 | Bombard et al. | Apr 2010 | B2 |
7699860 | Huitema et al. | Apr 2010 | B2 |
7703653 | Shah et al. | Apr 2010 | B2 |
7708180 | Murray et al. | May 2010 | B2 |
7708181 | Cole et al. | May 2010 | B2 |
7708758 | Lee et al. | May 2010 | B2 |
7714239 | Smith | May 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7717846 | Zirps et al. | May 2010 | B2 |
7718180 | Karp | May 2010 | B2 |
7718556 | Matsuda et al. | May 2010 | B2 |
7721930 | McKenna et al. | May 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7721933 | Ehrenfels et al. | May 2010 | B2 |
7721934 | Shelton, IV et al. | May 2010 | B2 |
7721936 | Shalton, IV et al. | May 2010 | B2 |
7722527 | Bouchier et al. | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
7722610 | Viola et al. | May 2010 | B2 |
7726537 | Olson et al. | Jun 2010 | B2 |
7726538 | Holsten et al. | Jun 2010 | B2 |
7726539 | Holsten et al. | Jun 2010 | B2 |
7727954 | McKay | Jun 2010 | B2 |
7729742 | Govari | Jun 2010 | B2 |
7731072 | Timm et al. | Jun 2010 | B2 |
7731073 | Wixey et al. | Jun 2010 | B2 |
7731724 | Huitema et al. | Jun 2010 | B2 |
7735703 | Morgan et al. | Jun 2010 | B2 |
7736374 | Vaughan et al. | Jun 2010 | B2 |
7738971 | Swayze et al. | Jun 2010 | B2 |
7740159 | Shelton, IV et al. | Jun 2010 | B2 |
7743960 | Whitman et al. | Jun 2010 | B2 |
7744624 | Bettuchi | Jun 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7744628 | Viola | Jun 2010 | B2 |
7748587 | Haramiishi et al. | Jul 2010 | B2 |
7749204 | Dhanaraj et al. | Jul 2010 | B2 |
7751870 | Whitman | Jul 2010 | B2 |
7753245 | Boudreaux et al. | Jul 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7758612 | Shipp | Jul 2010 | B2 |
7766209 | Baxter, III et al. | Aug 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7766821 | Brunnen et al. | Aug 2010 | B2 |
7766894 | Weitzner et al. | Aug 2010 | B2 |
7770773 | Whitman et al. | Aug 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7770776 | Chen et al. | Aug 2010 | B2 |
7771396 | Stefanchik et al. | Aug 2010 | B2 |
7772720 | McGee et al. | Aug 2010 | B2 |
7776060 | Mooradian et al. | Aug 2010 | B2 |
7778004 | Nerheim et al. | Aug 2010 | B2 |
7780054 | Wales | Aug 2010 | B2 |
7780055 | Scirica et al. | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7780685 | Hunt et al. | Aug 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7789875 | Brock et al. | Sep 2010 | B2 |
7789883 | Takashino et al. | Sep 2010 | B2 |
7789889 | Zubik et al. | Sep 2010 | B2 |
7793812 | Moore et al. | Sep 2010 | B2 |
7794475 | Hess et al. | Sep 2010 | B2 |
7798386 | Schall et al. | Sep 2010 | B2 |
7799039 | Shelton, IV et al. | Sep 2010 | B2 |
7799044 | Johnston et al. | Sep 2010 | B2 |
7799965 | Patel et al. | Sep 2010 | B2 |
7803151 | Whitman | Sep 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7810690 | Bilotti et al. | Oct 2010 | B2 |
7810691 | Boyden et al. | Oct 2010 | B2 |
7810692 | Hall et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7815092 | Whitman et al. | Oct 2010 | B2 |
7815565 | Stefanchik et al. | Oct 2010 | B2 |
7819296 | Hueil et al. | Oct 2010 | B2 |
7819297 | Doll et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7819886 | Whitfield et al. | Oct 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7824401 | Manzo et al. | Nov 2010 | B2 |
7824426 | Racenet et al. | Nov 2010 | B2 |
7828189 | Holsten et al. | Nov 2010 | B2 |
7828794 | Sartor | Nov 2010 | B2 |
7828808 | Hinman et al. | Nov 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832611 | Boyden et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7833234 | Bailly et al. | Nov 2010 | B2 |
7836400 | May et al. | Nov 2010 | B2 |
7837079 | Holsten et al. | Nov 2010 | B2 |
7837080 | Schwemberger | Nov 2010 | B2 |
7837081 | Holsten et al. | Nov 2010 | B2 |
7837694 | Tethrake et al. | Nov 2010 | B2 |
7838789 | Stoffers et al. | Nov 2010 | B2 |
7841503 | Sonnenschein et al. | Nov 2010 | B2 |
7842025 | Coleman et al. | Nov 2010 | B2 |
7842028 | Lee | Nov 2010 | B2 |
7845533 | Marczyk et al. | Dec 2010 | B2 |
7845534 | Viola et al. | Dec 2010 | B2 |
7845535 | Scircia | Dec 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7846149 | Jankowski | Dec 2010 | B2 |
7850642 | Moll et al. | Dec 2010 | B2 |
7850982 | Stopek et al. | Dec 2010 | B2 |
7854736 | Ryan | Dec 2010 | B2 |
7857183 | Shelton, IV | Dec 2010 | B2 |
7857185 | Swayze et al. | Dec 2010 | B2 |
7857186 | Baxter, III et al. | Dec 2010 | B2 |
7857813 | Schmitz et al. | Dec 2010 | B2 |
7861906 | Doll et al. | Jan 2011 | B2 |
7862579 | Ortiz et al. | Jan 2011 | B2 |
7866525 | Scirica | Jan 2011 | B2 |
7866527 | Hall et al. | Jan 2011 | B2 |
7866528 | Olson et al. | Jan 2011 | B2 |
7870989 | Viola et al. | Jan 2011 | B2 |
7871418 | Thompson et al. | Jan 2011 | B2 |
7879070 | Ortiz et al. | Feb 2011 | B2 |
7883465 | Donofrio et al. | Feb 2011 | B2 |
7886951 | Hessler | Feb 2011 | B2 |
7886952 | Scirica et al. | Feb 2011 | B2 |
7887530 | Zemlok et al. | Feb 2011 | B2 |
7887535 | Lands et al. | Feb 2011 | B2 |
7891531 | Ward | Feb 2011 | B1 |
7891532 | Mastri et al. | Feb 2011 | B2 |
7893586 | West et al. | Feb 2011 | B2 |
7896214 | Farascioni | Mar 2011 | B2 |
7896215 | Adams et al. | Mar 2011 | B2 |
7896877 | Hall et al. | Mar 2011 | B2 |
7896895 | Boudreaux et al. | Mar 2011 | B2 |
7900805 | Shelton, IV et al. | Mar 2011 | B2 |
7905380 | Shelton, IV et al. | Mar 2011 | B2 |
7905381 | Baxter, III et al. | Mar 2011 | B2 |
7905889 | Catanese, III et al. | Mar 2011 | B2 |
7905902 | Huitema et al. | Mar 2011 | B2 |
7909191 | Baker et al. | Mar 2011 | B2 |
7909220 | Viola | Mar 2011 | B2 |
7909221 | Viola et al. | Mar 2011 | B2 |
7913891 | Doll et al. | Mar 2011 | B2 |
7913893 | Mastri et al. | Mar 2011 | B2 |
7914543 | Roth et al. | Mar 2011 | B2 |
7914551 | Ortiz et al. | Mar 2011 | B2 |
7918230 | Whitman | Apr 2011 | B2 |
7918376 | Knodel et al. | Apr 2011 | B1 |
7918377 | Measamer et al. | Apr 2011 | B2 |
7918848 | Lau et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922063 | Zemlok et al. | Apr 2011 | B2 |
7922743 | Heinrich et al. | Apr 2011 | B2 |
7926691 | Viola et al. | Apr 2011 | B2 |
7927328 | Orszulak et al. | Apr 2011 | B2 |
7928281 | Augustine | Apr 2011 | B2 |
7931660 | Aranyi et al. | Apr 2011 | B2 |
7931695 | Ringeisen | Apr 2011 | B2 |
7934630 | Shelton, IV et al. | May 2011 | B2 |
7934631 | Balbierz et al. | May 2011 | B2 |
7935773 | Hadba et al. | May 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7941865 | Seman, Jr. et al. | May 2011 | B2 |
7942303 | Shah | May 2011 | B2 |
7942890 | D'Agostino et al. | May 2011 | B2 |
7944175 | Mori et al. | May 2011 | B2 |
7950560 | Zemlok et al. | May 2011 | B2 |
7950561 | Aranyi | May 2011 | B2 |
7951071 | Whitman et al. | May 2011 | B2 |
7951166 | Orban et al. | May 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7954684 | Boudreaux | Jun 2011 | B2 |
7954686 | Baxter, III et al. | Jun 2011 | B2 |
7954687 | Zemlok et al. | Jun 2011 | B2 |
7955257 | Frasier et al. | Jun 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7959051 | Smith et al. | Jun 2011 | B2 |
7959052 | Sonnenschein et al. | Jun 2011 | B2 |
7963432 | Knodel et al. | Jun 2011 | B2 |
7963433 | Whitman et al. | Jun 2011 | B2 |
7963963 | Francischelli et al. | Jun 2011 | B2 |
7963964 | Santilli et al. | Jun 2011 | B2 |
7966799 | Morgan et al. | Jun 2011 | B2 |
7967178 | Scirica et al. | Jun 2011 | B2 |
7967179 | Olson et al. | Jun 2011 | B2 |
7967180 | Scirica | Jun 2011 | B2 |
7967181 | Viola et al. | Jun 2011 | B2 |
7967839 | Flock et al. | Jun 2011 | B2 |
7972298 | Wallace et al. | Jul 2011 | B2 |
7980443 | Scheib et al. | Jul 2011 | B2 |
7988026 | Knodel et al. | Aug 2011 | B2 |
7988027 | Olson et al. | Aug 2011 | B2 |
7988028 | Farascioni et al. | Aug 2011 | B2 |
7992757 | Wheeler et al. | Aug 2011 | B2 |
7997468 | Farascioni | Aug 2011 | B2 |
7997469 | Olson et al. | Aug 2011 | B2 |
8002696 | Suzuki | Aug 2011 | B2 |
8002784 | Jinno et al. | Aug 2011 | B2 |
8002785 | Weiss et al. | Aug 2011 | B2 |
8002795 | Beetel | Aug 2011 | B2 |
8006365 | Levin et al. | Aug 2011 | B2 |
8006885 | Marczyk | Aug 2011 | B2 |
8006889 | Adams et al. | Aug 2011 | B2 |
8011550 | Aranyi et al. | Sep 2011 | B2 |
8011551 | Marczyk et al. | Sep 2011 | B2 |
8011553 | Mastri et al. | Sep 2011 | B2 |
8011555 | Tarinelli et al. | Sep 2011 | B2 |
8016176 | Kasvikis et al. | Sep 2011 | B2 |
8016177 | Bettuchi et al. | Sep 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8016855 | Whitman et al. | Sep 2011 | B2 |
8016858 | Whitman | Sep 2011 | B2 |
8016881 | Furst | Sep 2011 | B2 |
8020742 | Marczyk | Sep 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8021375 | Aldrich et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8028883 | Stopek | Oct 2011 | B2 |
8028884 | Sniffin et al. | Oct 2011 | B2 |
8028885 | Smith et al. | Oct 2011 | B2 |
8034077 | Smith et al. | Oct 2011 | B2 |
8034363 | Li et al. | Oct 2011 | B2 |
8037591 | Spivey et al. | Oct 2011 | B2 |
8038045 | Bettuchi et al. | Oct 2011 | B2 |
8038046 | Smith et al. | Oct 2011 | B2 |
8038686 | Huitema et al. | Oct 2011 | B2 |
8043207 | Adams | Oct 2011 | B2 |
8043328 | Hahnen et al. | Oct 2011 | B2 |
8047236 | Perry | Nov 2011 | B2 |
8048503 | Farnsworth et al. | Nov 2011 | B2 |
8056787 | Boudreaux et al. | Nov 2011 | B2 |
8056788 | Mastri et al. | Nov 2011 | B2 |
8057508 | Shelton, IV | Nov 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
8061576 | Cappola | Nov 2011 | B2 |
8062330 | Prommersberger et al. | Nov 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
8066168 | Vidal et al. | Nov 2011 | B2 |
D650074 | Hunt et al. | Dec 2011 | S |
8070743 | Kagan et al. | Dec 2011 | B2 |
8075571 | Vitali et al. | Dec 2011 | B2 |
8083118 | Milliman et al. | Dec 2011 | B2 |
8083119 | Prommersberger | Dec 2011 | B2 |
8083120 | Shelton, IV et al. | Dec 2011 | B2 |
8084001 | Burns et al. | Dec 2011 | B2 |
8085013 | Wei et al. | Dec 2011 | B2 |
8091756 | Viola | Jan 2012 | B2 |
8092443 | Bischoff | Jan 2012 | B2 |
8092932 | Phillips et al. | Jan 2012 | B2 |
8096458 | Hessler | Jan 2012 | B2 |
8097017 | Viola | Jan 2012 | B2 |
8100310 | Zemlok | Jan 2012 | B2 |
8100872 | Patel | Jan 2012 | B2 |
8102278 | Deck et al. | Jan 2012 | B2 |
8105350 | Lee et al. | Jan 2012 | B2 |
8108072 | Zhao et al. | Jan 2012 | B2 |
8109426 | Milliman et al. | Feb 2012 | B2 |
8110208 | Hen | Feb 2012 | B1 |
8113405 | Milliman | Feb 2012 | B2 |
8113410 | Hall et al. | Feb 2012 | B2 |
8114100 | Smith et al. | Feb 2012 | B2 |
8123103 | Milliman | Feb 2012 | B2 |
8123766 | Bauman et al. | Feb 2012 | B2 |
8123767 | Bauman et al. | Feb 2012 | B2 |
8127975 | Olson et al. | Mar 2012 | B2 |
8127976 | Scirica et al. | Mar 2012 | B2 |
8128624 | Couture et al. | Mar 2012 | B2 |
8128643 | Aranyi et al. | Mar 2012 | B2 |
8128645 | Sonnenschein et al. | Mar 2012 | B2 |
8132703 | Milliman et al. | Mar 2012 | B2 |
8132706 | Marczyk et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8136713 | Hathaway et al. | Mar 2012 | B2 |
8140417 | Shibata | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8141763 | Milliman | Mar 2012 | B2 |
8146790 | Milliman | Apr 2012 | B2 |
8147485 | Wham et al. | Apr 2012 | B2 |
8152041 | Kostrzewski | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8157148 | Scirica | Apr 2012 | B2 |
8157151 | Ingmanson et al. | Apr 2012 | B2 |
8157152 | Holsten et al. | Apr 2012 | B2 |
8157153 | Shelton, IV et al. | Apr 2012 | B2 |
8157793 | Omori et al. | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8162138 | Bettenhausen et al. | Apr 2012 | B2 |
8162197 | Mastri et al. | Apr 2012 | B2 |
8167185 | Shelton, IV et al. | May 2012 | B2 |
8167895 | D'Agostino et al. | May 2012 | B2 |
8167898 | Schaller et al. | May 2012 | B1 |
8170241 | Roe et al. | May 2012 | B2 |
8172120 | Boyden et al. | May 2012 | B2 |
8172122 | Kasvikis et al. | May 2012 | B2 |
8172124 | Shelton, IV et al. | May 2012 | B2 |
8177797 | Shimoji et al. | May 2012 | B2 |
8180458 | Kane et al. | May 2012 | B2 |
8181840 | Milliman | May 2012 | B2 |
8186555 | Shelton, IV et al. | May 2012 | B2 |
8186560 | Hess et al. | May 2012 | B2 |
8191752 | Scirica | Jun 2012 | B2 |
8192460 | Orban, III et al. | Jun 2012 | B2 |
8196795 | Moore et al. | Jun 2012 | B2 |
8196796 | Shelton, IV et al. | Jun 2012 | B2 |
8201720 | Hessler | Jun 2012 | B2 |
8201721 | Zemlok | Jun 2012 | B2 |
8205779 | Ma | Jun 2012 | B2 |
8205780 | Sorrentino et al. | Jun 2012 | B2 |
8205781 | Baxter, III et al. | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8210414 | Bettuchi et al. | Jul 2012 | B2 |
8210415 | Ward | Jul 2012 | B2 |
8210416 | Milliman et al. | Jul 2012 | B2 |
8211125 | Spivey | Jul 2012 | B2 |
8214019 | Govari et al. | Jul 2012 | B2 |
8215531 | Shelton, IV et al. | Jul 2012 | B2 |
8215533 | Viola et al. | Jul 2012 | B2 |
8220468 | Cooper et al. | Jul 2012 | B2 |
8220688 | Laurent et al. | Jul 2012 | B2 |
8220690 | Hess et al. | Jul 2012 | B2 |
8221424 | Cha | Jul 2012 | B2 |
8225799 | Bettuchi | Jul 2012 | B2 |
8226715 | Hwang et al. | Jul 2012 | B2 |
8227946 | Kim | Jul 2012 | B2 |
8231040 | Zemlok et al. | Jul 2012 | B2 |
8231041 | Marczyk et al. | Jul 2012 | B2 |
8231042 | Hessler et al. | Jul 2012 | B2 |
8231043 | Tarinelli et al. | Jul 2012 | B2 |
8236010 | Ortiz et al. | Aug 2012 | B2 |
8241271 | Millman et al. | Aug 2012 | B2 |
8241308 | Kortenbach et al. | Aug 2012 | B2 |
8241322 | Whitman et al. | Aug 2012 | B2 |
8245594 | Rogers et al. | Aug 2012 | B2 |
8245898 | Smith et al. | Aug 2012 | B2 |
8245899 | Swensgard et al. | Aug 2012 | B2 |
8245900 | Scirica | Aug 2012 | B2 |
8245901 | Stopek | Aug 2012 | B2 |
8246637 | Viola et al. | Aug 2012 | B2 |
8256654 | Bettuchi et al. | Sep 2012 | B2 |
8256655 | Sniffin et al. | Sep 2012 | B2 |
8257251 | Shelton, IV et al. | Sep 2012 | B2 |
8257356 | Bleich et al. | Sep 2012 | B2 |
8257391 | Orban, III et al. | Sep 2012 | B2 |
8262655 | Ghabrial et al. | Sep 2012 | B2 |
8267300 | Boudreaux | Sep 2012 | B2 |
8267924 | Zemlok et al. | Sep 2012 | B2 |
8267946 | Whitfield et al. | Sep 2012 | B2 |
8267951 | Whayne et al. | Sep 2012 | B2 |
8269121 | Smith | Sep 2012 | B2 |
8272553 | Mastri et al. | Sep 2012 | B2 |
8272554 | Whitman et al. | Sep 2012 | B2 |
8273404 | Dave et al. | Sep 2012 | B2 |
8276801 | Zemlok et al. | Oct 2012 | B2 |
8276802 | Kostrzewski | Oct 2012 | B2 |
8281973 | Wenchell et al. | Oct 2012 | B2 |
8281974 | Hessler et al. | Oct 2012 | B2 |
8286845 | Perry et al. | Oct 2012 | B2 |
8287561 | Nunez et al. | Oct 2012 | B2 |
8292151 | Viola | Oct 2012 | B2 |
8292155 | Shelton, IV et al. | Oct 2012 | B2 |
8292157 | Smith et al. | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8298161 | Vargas | Oct 2012 | B2 |
8298677 | Wiesner et al. | Oct 2012 | B2 |
8302323 | Fortier et al. | Nov 2012 | B2 |
8308040 | Huang et al. | Nov 2012 | B2 |
8308042 | Aranyi | Nov 2012 | B2 |
8308046 | Prommersberger | Nov 2012 | B2 |
8308659 | Scheibe et al. | Nov 2012 | B2 |
8313496 | Sauer et al. | Nov 2012 | B2 |
8313509 | Kostrzewski | Nov 2012 | B2 |
8317070 | Hueil et al. | Nov 2012 | B2 |
8317071 | Knodel | Nov 2012 | B1 |
8317074 | Ortiz et al. | Nov 2012 | B2 |
8317790 | Bell et al. | Nov 2012 | B2 |
8319002 | Daniels et al. | Nov 2012 | B2 |
8322455 | Shelton, IV et al. | Dec 2012 | B2 |
8322589 | Boudreaux | Dec 2012 | B2 |
8322590 | Patel et al. | Dec 2012 | B2 |
8323789 | Rozhin et al. | Dec 2012 | B2 |
8328061 | Kasvikis | Dec 2012 | B2 |
8328062 | Viola | Dec 2012 | B2 |
8328063 | Milliman et al. | Dec 2012 | B2 |
8328064 | Racenet et al. | Dec 2012 | B2 |
8328802 | Deville et al. | Dec 2012 | B2 |
8328823 | Aranyi et al. | Dec 2012 | B2 |
8333313 | Boudreaux et al. | Dec 2012 | B2 |
8333764 | Francischelli et al. | Dec 2012 | B2 |
8336753 | Olson et al. | Dec 2012 | B2 |
8336754 | Cappola et al. | Dec 2012 | B2 |
8348123 | Scirica et al. | Jan 2013 | B2 |
8348127 | Marczyk | Jan 2013 | B2 |
8348129 | Bedi et al. | Jan 2013 | B2 |
8348130 | Shah et al. | Jan 2013 | B2 |
8348131 | Omaits et al. | Jan 2013 | B2 |
8348972 | Soltz et al. | Jan 2013 | B2 |
8353437 | Boudreaux | Jan 2013 | B2 |
8353438 | Baxter, III et al. | Jan 2013 | B2 |
8353439 | Baxter, III et al. | Jan 2013 | B2 |
8357144 | Whitman et al. | Jan 2013 | B2 |
8360296 | Zingman | Jan 2013 | B2 |
8360297 | Shelton, IV et al. | Jan 2013 | B2 |
8360298 | Farascioni et al. | Jan 2013 | B2 |
8360299 | Zemlok et al. | Jan 2013 | B2 |
8361501 | DiTizio et al. | Jan 2013 | B2 |
8365973 | White et al. | Feb 2013 | B1 |
8365975 | Manoux et al. | Feb 2013 | B1 |
8365976 | Hess et al. | Feb 2013 | B2 |
8366559 | Papenfuss et al. | Feb 2013 | B2 |
8371491 | Huitema et al. | Feb 2013 | B2 |
8371492 | Aranyi et al. | Feb 2013 | B2 |
8371493 | Aranyi et al. | Feb 2013 | B2 |
8372094 | Bettuchi et al. | Feb 2013 | B2 |
8376865 | Forster et al. | Feb 2013 | B2 |
8377044 | Coe et al. | Feb 2013 | B2 |
8388633 | Rousseau et al. | Mar 2013 | B2 |
8393513 | Jankowski | Mar 2013 | B2 |
8393514 | Shelton, IV et al. | Mar 2013 | B2 |
8397971 | Yates et al. | Mar 2013 | B2 |
8398673 | Hinchliffe et al. | Mar 2013 | B2 |
8403138 | Weisshaupt et al. | Mar 2013 | B2 |
8403198 | Sorrentino et al. | Mar 2013 | B2 |
8403945 | Whitfield et al. | Mar 2013 | B2 |
8408439 | Huang et al. | Apr 2013 | B2 |
8408442 | Racenet et al. | Apr 2013 | B2 |
8409079 | Okamoto et al. | Apr 2013 | B2 |
8409174 | Omori | Apr 2013 | B2 |
8409222 | Whitfield et al. | Apr 2013 | B2 |
8409223 | Sorrentino et al. | Apr 2013 | B2 |
8413870 | Pastorelli et al. | Apr 2013 | B2 |
8413871 | Racenet et al. | Apr 2013 | B2 |
8413872 | Patel | Apr 2013 | B2 |
8414577 | Boudreaux et al. | Apr 2013 | B2 |
8418909 | Kostrzewski | Apr 2013 | B2 |
8424737 | Scirica | Apr 2013 | B2 |
8424739 | Racenet et al. | Apr 2013 | B2 |
8424740 | Shelton, IV et al. | Apr 2013 | B2 |
8424741 | Mcguckin, Jr. et al. | Apr 2013 | B2 |
8425600 | Maxwell | Apr 2013 | B2 |
8430292 | Patel et al. | Apr 2013 | B2 |
8430892 | Bindra et al. | Apr 2013 | B2 |
8430898 | Wiener et al. | Apr 2013 | B2 |
8439246 | Knodel et al. | May 2013 | B1 |
8444036 | Shelton, IV | May 2013 | B2 |
8444549 | Viola et al. | May 2013 | B2 |
8453904 | Eskaros et al. | Jun 2013 | B2 |
8453906 | Huang et al. | Jun 2013 | B2 |
8453907 | Laurent et al. | Jun 2013 | B2 |
8453908 | Bedi et al. | Jun 2013 | B2 |
8453912 | Mastri et al. | Jun 2013 | B2 |
8453914 | Laurent et al. | Jun 2013 | B2 |
8454628 | Smith et al. | Jun 2013 | B2 |
8457757 | Cauller et al. | Jun 2013 | B2 |
8459520 | Giordano et al. | Jun 2013 | B2 |
8459525 | Yates et al. | Jun 2013 | B2 |
8464922 | Marczyk | Jun 2013 | B2 |
8464923 | Shelton, IV | Jun 2013 | B2 |
8464924 | Gresham et al. | Jun 2013 | B2 |
8464925 | Hull et al. | Jun 2013 | B2 |
8465502 | Zergiebel | Jun 2013 | B2 |
8469973 | Meade et al. | Jun 2013 | B2 |
8474677 | Woodard, Jr. et al. | Jul 2013 | B2 |
8475453 | Marczyk et al. | Jul 2013 | B2 |
8475474 | Bombard et al. | Jul 2013 | B2 |
8479969 | Shelton, IV | Jul 2013 | B2 |
8480703 | Nicholas et al. | Jul 2013 | B2 |
8485412 | Shelton, IV et al. | Jul 2013 | B2 |
8485413 | Scheib et al. | Jul 2013 | B2 |
8490853 | Criscuolo et al. | Jul 2013 | B2 |
8496156 | Sniffin et al. | Jul 2013 | B2 |
8496683 | Prommersberger et al. | Jul 2013 | B2 |
8499992 | Whitman et al. | Aug 2013 | B2 |
8499993 | Shelton, IV et al. | Aug 2013 | B2 |
8500762 | Sholev et al. | Aug 2013 | B2 |
8506557 | Zemlok et al. | Aug 2013 | B2 |
8506580 | Zergiebel et al. | Aug 2013 | B2 |
8506581 | Wingardner, III et al. | Aug 2013 | B2 |
8512359 | Whitman et al. | Aug 2013 | B2 |
8517239 | Scheib et al. | Aug 2013 | B2 |
8517241 | Nicholas et al. | Aug 2013 | B2 |
8517243 | Giordano et al. | Aug 2013 | B2 |
8517244 | Shelton, IV et al. | Aug 2013 | B2 |
8521273 | Kliman | Aug 2013 | B2 |
8523881 | Cabiri et al. | Sep 2013 | B2 |
8529588 | Ahlberg et al. | Sep 2013 | B2 |
8529600 | Woodard, Jr. et al. | Sep 2013 | B2 |
8529819 | Ostapoff et al. | Sep 2013 | B2 |
8534528 | Shelton, IV | Sep 2013 | B2 |
8535304 | Sklar et al. | Sep 2013 | B2 |
8540128 | Shelton, IV et al. | Sep 2013 | B2 |
8540129 | Baxter, III et al. | Sep 2013 | B2 |
8540130 | Moore et al. | Sep 2013 | B2 |
8540131 | Swayze | Sep 2013 | B2 |
8540133 | Bedi et al. | Sep 2013 | B2 |
8540733 | Whitman et al. | Sep 2013 | B2 |
8551076 | Duval et al. | Oct 2013 | B2 |
8556151 | Viola | Oct 2013 | B2 |
8556918 | Bauman et al. | Oct 2013 | B2 |
8561870 | Baxter, III et al. | Oct 2013 | B2 |
8561873 | Ingmanson et al. | Oct 2013 | B2 |
8567656 | Shelton, IV et al. | Oct 2013 | B2 |
8573461 | Shelton, IV et al. | Nov 2013 | B2 |
8573465 | Shelton, IV et al. | Nov 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
8579937 | Gresham | Nov 2013 | B2 |
8584919 | Hueil et al. | Nov 2013 | B2 |
8585721 | Kirsch | Nov 2013 | B2 |
8590762 | Hess et al. | Nov 2013 | B2 |
8602287 | Yates et al. | Dec 2013 | B2 |
8602288 | Shelton, IV et al. | Dec 2013 | B2 |
8603135 | Mueller | Dec 2013 | B2 |
8608044 | Hueil et al. | Dec 2013 | B2 |
8608045 | Smith et al. | Dec 2013 | B2 |
8608046 | Laurent et al. | Dec 2013 | B2 |
8608745 | Guzman et al. | Dec 2013 | B2 |
8613383 | Beckman et al. | Dec 2013 | B2 |
8616431 | Timm et al. | Dec 2013 | B2 |
8622274 | Yates et al. | Jan 2014 | B2 |
8622275 | Baxter, III et al. | Jan 2014 | B2 |
8628518 | Blumenkranz et al. | Jan 2014 | B2 |
8631987 | Shelton, IV et al. | Jan 2014 | B2 |
8632462 | Yoo et al. | Jan 2014 | B2 |
8632525 | Kerr et al. | Jan 2014 | B2 |
8632535 | Shelton, IV et al. | Jan 2014 | B2 |
8632563 | Nagase et al. | Jan 2014 | B2 |
8636187 | Hueil et al. | Jan 2014 | B2 |
8636736 | Yates et al. | Jan 2014 | B2 |
8647258 | Aranyi et al. | Feb 2014 | B2 |
8652120 | Giordano et al. | Feb 2014 | B2 |
8652151 | Lehman et al. | Feb 2014 | B2 |
8657174 | Yates et al. | Feb 2014 | B2 |
8657176 | Shelton, IV et al. | Feb 2014 | B2 |
8657177 | Scirica et al. | Feb 2014 | B2 |
8657178 | Hueil et al. | Feb 2014 | B2 |
8662370 | Takei | Mar 2014 | B2 |
8663192 | Hester et al. | Mar 2014 | B2 |
8668129 | Olson | Mar 2014 | B2 |
8668130 | Hess et al. | Mar 2014 | B2 |
8672206 | Aranyi et al. | Mar 2014 | B2 |
8672207 | Shelton, IV et al. | Mar 2014 | B2 |
8672208 | Hess et al. | Mar 2014 | B2 |
8678263 | Viola | Mar 2014 | B2 |
8679093 | Farra | Mar 2014 | B2 |
8679137 | Bauman et al. | Mar 2014 | B2 |
8679454 | Guire et al. | Mar 2014 | B2 |
8684250 | Bettuchi et al. | Apr 2014 | B2 |
8684253 | Giordano et al. | Apr 2014 | B2 |
8685020 | Weizman et al. | Apr 2014 | B2 |
8695866 | Leimbach et al. | Apr 2014 | B2 |
8696665 | Hunt et al. | Apr 2014 | B2 |
8701958 | Shelton, IV et al. | Apr 2014 | B2 |
8701959 | Shah | Apr 2014 | B2 |
8708211 | Zemlok et al. | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8720766 | Hess et al. | May 2014 | B2 |
8721630 | Ortiz et al. | May 2014 | B2 |
8721666 | Schroeder et al. | May 2014 | B2 |
8727197 | Hess et al. | May 2014 | B2 |
8728119 | Cummins | May 2014 | B2 |
8733613 | Huitema et al. | May 2014 | B2 |
8733614 | Ross et al. | May 2014 | B2 |
8734478 | Widenhouse et al. | May 2014 | B2 |
8740034 | Morgan et al. | Jun 2014 | B2 |
8740037 | Shelton, IV et al. | Jun 2014 | B2 |
8740038 | Shelton, IV et al. | Jun 2014 | B2 |
8746529 | Shelton, IV et al. | Jun 2014 | B2 |
8746530 | Giordano et al. | Jun 2014 | B2 |
8746535 | Shelton, IV et al. | Jun 2014 | B2 |
8747238 | Shelton, IV et al. | Jun 2014 | B2 |
8752699 | Morgan et al. | Jun 2014 | B2 |
8752747 | Shelton, IV et al. | Jun 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8757465 | Woodard, Jr. et al. | Jun 2014 | B2 |
8758235 | Jaworek | Jun 2014 | B2 |
8758391 | Swayze et al. | Jun 2014 | B2 |
8758438 | Boyce et al. | Jun 2014 | B2 |
8763875 | Morgan et al. | Jul 2014 | B2 |
8763877 | Schall et al. | Jul 2014 | B2 |
8763879 | Shelton, IV et al. | Jul 2014 | B2 |
8771169 | Whitman et al. | Jul 2014 | B2 |
8777004 | Shelton, IV et al. | Jul 2014 | B2 |
8783541 | Shelton, IV et al. | Jul 2014 | B2 |
8783542 | Riestenberg et al. | Jul 2014 | B2 |
8783543 | Shelton, IV et al. | Jul 2014 | B2 |
8784404 | Doyle et al. | Jul 2014 | B2 |
8784415 | Malackowski et al. | Jul 2014 | B2 |
8789737 | Hodgkinson et al. | Jul 2014 | B2 |
8789739 | Swensgard | Jul 2014 | B2 |
8789740 | Baxter, III et al. | Jul 2014 | B2 |
8789741 | Baxter, III et al. | Jul 2014 | B2 |
8790684 | Dave et al. | Jul 2014 | B2 |
8794496 | Scirica | Aug 2014 | B2 |
8794497 | Zingman | Aug 2014 | B2 |
8795276 | Dietz et al. | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8800841 | Ellerhorst et al. | Aug 2014 | B2 |
8801734 | Shelton, IV et al. | Aug 2014 | B2 |
8801735 | Shelton, IV et al. | Aug 2014 | B2 |
8808294 | Fox et al. | Aug 2014 | B2 |
8808311 | Heinrich et al. | Aug 2014 | B2 |
8814024 | Woodard, Jr. et al. | Aug 2014 | B2 |
8814025 | Miller et al. | Aug 2014 | B2 |
8820603 | Shelton, IV et al. | Sep 2014 | B2 |
8820605 | Shelton, IV | Sep 2014 | B2 |
8820606 | Hodgkinson | Sep 2014 | B2 |
8827133 | Shelton, IV et al. | Sep 2014 | B2 |
8827903 | Shelton, IV et al. | Sep 2014 | B2 |
8833632 | Swensgard | Sep 2014 | B2 |
8840003 | Morgan et al. | Sep 2014 | B2 |
8840603 | Shelton, IV et al. | Sep 2014 | B2 |
8844789 | Shelton, IV et al. | Sep 2014 | B2 |
8851354 | Swensgard et al. | Oct 2014 | B2 |
8857693 | Schuckmann et al. | Oct 2014 | B2 |
8857694 | Shelton, IV et al. | Oct 2014 | B2 |
8858571 | Shelton, IV et al. | Oct 2014 | B2 |
8858590 | Shelton, IV et al. | Oct 2014 | B2 |
8864007 | Widenhouse et al. | Oct 2014 | B2 |
8864009 | Shelton, IV et al. | Oct 2014 | B2 |
8870050 | Hodgkinson | Oct 2014 | B2 |
8875971 | Hall et al. | Nov 2014 | B2 |
8875972 | Weisenburgh, II et al. | Nov 2014 | B2 |
8893946 | Boudreaux et al. | Nov 2014 | B2 |
8893949 | Shelton, IV et al. | Nov 2014 | B2 |
8899463 | Schall et al. | Dec 2014 | B2 |
8899464 | Hueil et al. | Dec 2014 | B2 |
8899465 | Shelton, IV et al. | Dec 2014 | B2 |
8899466 | Baxter, III et al. | Dec 2014 | B2 |
8911426 | Coppeta et al. | Dec 2014 | B2 |
8911471 | Spivey et al. | Dec 2014 | B2 |
8920438 | Aranyi et al. | Dec 2014 | B2 |
8925782 | Shelton, IV | Jan 2015 | B2 |
8925788 | Hess et al. | Jan 2015 | B2 |
8926598 | Mollere et al. | Jan 2015 | B2 |
8931682 | Timm et al. | Jan 2015 | B2 |
8936614 | Allen, IV | Jan 2015 | B2 |
8939343 | Milliman et al. | Jan 2015 | B2 |
8939344 | Olson et al. | Jan 2015 | B2 |
8960521 | Kostrzewski | Feb 2015 | B2 |
8967443 | McCuen | Mar 2015 | B2 |
8967446 | Beardsley et al. | Mar 2015 | B2 |
8968337 | Whitfield et al. | Mar 2015 | B2 |
8973803 | Hall et al. | Mar 2015 | B2 |
8973804 | Hess et al. | Mar 2015 | B2 |
8978954 | Shelton, IV et al. | Mar 2015 | B2 |
8978955 | Aronhalt et al. | Mar 2015 | B2 |
8978956 | Schall et al. | Mar 2015 | B2 |
8979890 | Boudreaux | Mar 2015 | B2 |
8982195 | Claus et al. | Mar 2015 | B2 |
8991676 | Hess et al. | Mar 2015 | B2 |
8991677 | Moore et al. | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
8996165 | Wang et al. | Mar 2015 | B2 |
8998058 | Moore et al. | Apr 2015 | B2 |
9005230 | Yates et al. | Apr 2015 | B2 |
9016542 | Shelton, IV et al. | Apr 2015 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9028495 | Mueller et al. | May 2015 | B2 |
9028519 | Yates et al. | May 2015 | B2 |
9033203 | Woodard, Jr. et al. | May 2015 | B2 |
9033204 | Shelton, IV et al. | May 2015 | B2 |
9038881 | Schaller et al. | May 2015 | B1 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9044228 | Woodard, Jr. et al. | Jun 2015 | B2 |
9044230 | Morgan et al. | Jun 2015 | B2 |
9050083 | Yates et al. | Jun 2015 | B2 |
9050084 | Schmid et al. | Jun 2015 | B2 |
9055941 | Schmid et al. | Jun 2015 | B2 |
9060770 | Shelton, IV et al. | Jun 2015 | B2 |
9072515 | Hall et al. | Jul 2015 | B2 |
9072535 | Shelton, IV et al. | Jul 2015 | B2 |
9072536 | Shelton, IV et al. | Jul 2015 | B2 |
9078653 | Leimbach et al. | Jul 2015 | B2 |
9084601 | Moore et al. | Jul 2015 | B2 |
9084602 | Gleiman | Jul 2015 | B2 |
9089330 | Widenhouse et al. | Jul 2015 | B2 |
9095339 | Moore et al. | Aug 2015 | B2 |
9096033 | Holop et al. | Aug 2015 | B2 |
9101358 | Kerr et al. | Aug 2015 | B2 |
9101385 | Shelton, IV et al. | Aug 2015 | B2 |
9107663 | Swensgard | Aug 2015 | B2 |
9113862 | Morgan et al. | Aug 2015 | B2 |
9113864 | Morgan et al. | Aug 2015 | B2 |
9113865 | Shelton, IV et al. | Aug 2015 | B2 |
9113874 | Shelton, IV et al. | Aug 2015 | B2 |
9113880 | Zemlok et al. | Aug 2015 | B2 |
9113883 | Aronhalt et al. | Aug 2015 | B2 |
9113884 | Shelton, IV et al. | Aug 2015 | B2 |
9119957 | Shelton, IV et al. | Sep 2015 | B2 |
9123286 | Park | Sep 2015 | B2 |
9125654 | Aronhalt et al. | Sep 2015 | B2 |
9125662 | Shelton, IV | Sep 2015 | B2 |
9131940 | Huitema et al. | Sep 2015 | B2 |
9138225 | Huang et al. | Sep 2015 | B2 |
9149274 | Spivey et al. | Oct 2015 | B2 |
9168038 | Shelton, IV et al. | Oct 2015 | B2 |
9186143 | Timm et al. | Nov 2015 | B2 |
20010025183 | Shahidi | Sep 2001 | A1 |
20010044637 | Jacobs et al. | Nov 2001 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020029036 | Goble et al. | Mar 2002 | A1 |
20020095175 | Brock et al. | Jul 2002 | A1 |
20020103494 | Pacey | Aug 2002 | A1 |
20020117534 | Green et al. | Aug 2002 | A1 |
20020127265 | Bowman et al. | Sep 2002 | A1 |
20020128552 | Nowlin et al. | Sep 2002 | A1 |
20020134811 | Napier et al. | Sep 2002 | A1 |
20020143340 | Kaneko | Oct 2002 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20020193808 | Belef et al. | Dec 2002 | A1 |
20030023316 | Brown et al. | Jan 2003 | A1 |
20030078647 | Vallana et al. | Apr 2003 | A1 |
20030084983 | Rangachari et al. | May 2003 | A1 |
20030093103 | Malackowski et al. | May 2003 | A1 |
20030096158 | Takano et al. | May 2003 | A1 |
20030105478 | Whitman et al. | Jun 2003 | A1 |
20030130677 | Whitman et al. | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030153908 | Goble et al. | Aug 2003 | A1 |
20030163085 | Tanner et al. | Aug 2003 | A1 |
20030181900 | Long | Sep 2003 | A1 |
20030195387 | Kortenbach et al. | Oct 2003 | A1 |
20030205029 | Chapolini et al. | Nov 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030220660 | Kortenbach et al. | Nov 2003 | A1 |
20030236505 | Bonadio et al. | Dec 2003 | A1 |
20040002726 | Nunez et al. | Jan 2004 | A1 |
20040006335 | Garrison | Jan 2004 | A1 |
20040006340 | Latterell et al. | Jan 2004 | A1 |
20040006372 | Racenet et al. | Jan 2004 | A1 |
20040006861 | Haytayan | Jan 2004 | A1 |
20040030333 | Goble | Feb 2004 | A1 |
20040034357 | Beane et al. | Feb 2004 | A1 |
20040034369 | Sauer et al. | Feb 2004 | A1 |
20040044364 | DeVries et al. | Mar 2004 | A1 |
20040068161 | Couvillon, Jr. | Apr 2004 | A1 |
20040068224 | Couvillon, Jr. et al. | Apr 2004 | A1 |
20040068307 | Goble | Apr 2004 | A1 |
20040070369 | Sakahibara | Apr 2004 | A1 |
20040073195 | Cucin | Apr 2004 | A1 |
20040073222 | Koseki | Apr 2004 | A1 |
20040078037 | Batchelor et al. | Apr 2004 | A1 |
20040093024 | Lousararian et al. | May 2004 | A1 |
20040094597 | Whitman et al. | May 2004 | A1 |
20040097987 | Pugsley et al. | May 2004 | A1 |
20040098040 | Taniguchi et al. | May 2004 | A1 |
20040101822 | Wiesner et al. | May 2004 | A1 |
20040102783 | Sutterlin, III et al. | May 2004 | A1 |
20040108357 | Milliman et al. | Jun 2004 | A1 |
20040110439 | Chaikof et al. | Jun 2004 | A1 |
20040111081 | Whitman et al. | Jun 2004 | A1 |
20040115022 | Albertson et al. | Jun 2004 | A1 |
20040116952 | Sakurai et al. | Jun 2004 | A1 |
20040147909 | Johnston et al. | Jul 2004 | A1 |
20040164123 | Racenet et al. | Aug 2004 | A1 |
20040167572 | Roth et al. | Aug 2004 | A1 |
20040173659 | Green et al. | Sep 2004 | A1 |
20040181219 | Goble et al. | Sep 2004 | A1 |
20040186470 | Goble et al. | Sep 2004 | A1 |
20040193189 | Kortenbach et al. | Sep 2004 | A1 |
20040199181 | Knodel et al. | Oct 2004 | A1 |
20040222268 | Bilotti et al. | Nov 2004 | A1 |
20040225186 | Horne, Jr. et al. | Nov 2004 | A1 |
20040230214 | Donofrio et al. | Nov 2004 | A1 |
20040232201 | Wenchell et al. | Nov 2004 | A1 |
20040236352 | Wang et al. | Nov 2004 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040243151 | Demmy et al. | Dec 2004 | A1 |
20040243163 | Casiano et al. | Dec 2004 | A1 |
20040243176 | Hahnen et al. | Dec 2004 | A1 |
20040247415 | Mangone, Jr. | Dec 2004 | A1 |
20040254566 | Plicchi et al. | Dec 2004 | A1 |
20040254590 | Hoffman et al. | Dec 2004 | A1 |
20040254608 | Huitema et al. | Dec 2004 | A1 |
20040260315 | Dell et al. | Dec 2004 | A1 |
20040267310 | Racenet et al. | Dec 2004 | A1 |
20050010213 | Stad et al. | Jan 2005 | A1 |
20050032511 | Malone et al. | Feb 2005 | A1 |
20050033352 | Zeph et al. | Feb 2005 | A1 |
20050033357 | Braun | Feb 2005 | A1 |
20050054946 | Krzyzanowski | Mar 2005 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050070929 | Dalessandro et al. | Mar 2005 | A1 |
20050075561 | Golden | Apr 2005 | A1 |
20050080454 | Drews et al. | Apr 2005 | A1 |
20050085693 | Belson et al. | Apr 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050096683 | Ellins et al. | May 2005 | A1 |
20050103819 | Racenet et al. | May 2005 | A1 |
20050107814 | Johnston et al. | May 2005 | A1 |
20050107824 | Hillstead et al. | May 2005 | A1 |
20050113820 | Goble et al. | May 2005 | A1 |
20050119525 | Takemoto | Jun 2005 | A1 |
20050119669 | Demmy | Jun 2005 | A1 |
20050124855 | Jaffe et al. | Jun 2005 | A1 |
20050125009 | Perry et al. | Jun 2005 | A1 |
20050125897 | Wyslucha et al. | Jun 2005 | A1 |
20050131173 | McDaniel et al. | Jun 2005 | A1 |
20050131211 | Bayley et al. | Jun 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050131436 | Johnston et al. | Jun 2005 | A1 |
20050131437 | Johnston et al. | Jun 2005 | A1 |
20050131457 | Douglas et al. | Jun 2005 | A1 |
20050137454 | Saadat et al. | Jun 2005 | A1 |
20050137455 | Ewers et al. | Jun 2005 | A1 |
20050143759 | Kelly | Jun 2005 | A1 |
20050143769 | White et al. | Jun 2005 | A1 |
20050145675 | Hartwick et al. | Jul 2005 | A1 |
20050154258 | Tartaglia et al. | Jul 2005 | A1 |
20050154406 | Bombard et al. | Jul 2005 | A1 |
20050165419 | Sauer et al. | Jul 2005 | A1 |
20050165435 | Johnston et al. | Jul 2005 | A1 |
20050169974 | Tenerz et al. | Aug 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050177181 | Kagan et al. | Aug 2005 | A1 |
20050182298 | Ikeda et al. | Aug 2005 | A1 |
20050187545 | Hooven et al. | Aug 2005 | A1 |
20050187572 | Johnston et al. | Aug 2005 | A1 |
20050187576 | Whitman et al. | Aug 2005 | A1 |
20050189397 | Jankowski | Sep 2005 | A1 |
20050192609 | Whitman et al. | Sep 2005 | A1 |
20050192628 | Viola | Sep 2005 | A1 |
20050203550 | Laufer et al. | Sep 2005 | A1 |
20050216055 | Scirica et al. | Sep 2005 | A1 |
20050228224 | Okada et al. | Oct 2005 | A1 |
20050240178 | Morley et al. | Oct 2005 | A1 |
20050240222 | Shipp | Oct 2005 | A1 |
20050245965 | Orban, III et al. | Nov 2005 | A1 |
20050251128 | Amoah | Nov 2005 | A1 |
20050256452 | DeMarchi et al. | Nov 2005 | A1 |
20050256522 | Francischelli et al. | Nov 2005 | A1 |
20050261676 | Hall et al. | Nov 2005 | A1 |
20050261677 | Hall et al. | Nov 2005 | A1 |
20050263563 | Racenet et al. | Dec 2005 | A1 |
20050267455 | Eggers et al. | Dec 2005 | A1 |
20050274768 | Cummins et al. | Dec 2005 | A1 |
20050283188 | Loshakove et al. | Dec 2005 | A1 |
20060004407 | Hiles et al. | Jan 2006 | A1 |
20060008787 | Hayman et al. | Jan 2006 | A1 |
20060011699 | Olson et al. | Jan 2006 | A1 |
20060015009 | Jaffe et al. | Jan 2006 | A1 |
20060020247 | Kagan et al. | Jan 2006 | A1 |
20060020258 | Strauss et al. | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060025811 | Shelton, IV | Feb 2006 | A1 |
20060025812 | Shelton, IV | Feb 2006 | A1 |
20060025813 | Shelton et al. | Feb 2006 | A1 |
20060041188 | Dirusso et al. | Feb 2006 | A1 |
20060047275 | Goble | Mar 2006 | A1 |
20060047303 | Ortiz et al. | Mar 2006 | A1 |
20060047307 | Ortiz et al. | Mar 2006 | A1 |
20060049229 | Milliman et al. | Mar 2006 | A1 |
20060052825 | Ransick et al. | Mar 2006 | A1 |
20060060630 | Shelton, IV et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060079115 | Aranyi et al. | Apr 2006 | A1 |
20060079735 | Martone et al. | Apr 2006 | A1 |
20060085031 | Bettuchi | Apr 2006 | A1 |
20060085033 | Criscuolo et al. | Apr 2006 | A1 |
20060086032 | Valencic et al. | Apr 2006 | A1 |
20060087746 | Lipow | Apr 2006 | A1 |
20060089535 | Raz et al. | Apr 2006 | A1 |
20060100643 | Laufer et al. | May 2006 | A1 |
20060108393 | Heinrich et al. | May 2006 | A1 |
20060111711 | Goble | May 2006 | A1 |
20060111723 | Chapolini et al. | May 2006 | A1 |
20060122636 | Bailly et al. | Jun 2006 | A1 |
20060142772 | Ralph et al. | Jun 2006 | A1 |
20060149163 | Hibner et al. | Jul 2006 | A1 |
20060161185 | Saadat et al. | Jul 2006 | A1 |
20060167471 | Phillips | Jul 2006 | A1 |
20060173470 | Oray et al. | Aug 2006 | A1 |
20060178556 | Hasser et al. | Aug 2006 | A1 |
20060180634 | Shelton, IV et al. | Aug 2006 | A1 |
20060185682 | Marczyk | Aug 2006 | A1 |
20060200123 | Ryan | Sep 2006 | A1 |
20060201989 | Ojeda | Sep 2006 | A1 |
20060212069 | Shelton, IV | Sep 2006 | A1 |
20060217729 | Eskridge et al. | Sep 2006 | A1 |
20060226196 | Hueil et al. | Oct 2006 | A1 |
20060235368 | Oz | Oct 2006 | A1 |
20060235469 | Viola | Oct 2006 | A1 |
20060241655 | Viola | Oct 2006 | A1 |
20060241692 | McGuckin, Jr. et al. | Oct 2006 | A1 |
20060244460 | Weaver | Nov 2006 | A1 |
20060252993 | Freed et al. | Nov 2006 | A1 |
20060253069 | Li et al. | Nov 2006 | A1 |
20060258904 | Stefanchik et al. | Nov 2006 | A1 |
20060258910 | Stefanchik et al. | Nov 2006 | A1 |
20060259073 | Miyamoto et al. | Nov 2006 | A1 |
20060264927 | Ryan | Nov 2006 | A1 |
20060264929 | Goble et al. | Nov 2006 | A1 |
20060271042 | Latterell et al. | Nov 2006 | A1 |
20060271102 | Bosshard et al. | Nov 2006 | A1 |
20060278680 | Viola et al. | Dec 2006 | A1 |
20060278681 | Viola et al. | Dec 2006 | A1 |
20060284730 | Schmid et al. | Dec 2006 | A1 |
20060287576 | Tsuji et al. | Dec 2006 | A1 |
20060289602 | Wales et al. | Dec 2006 | A1 |
20060291981 | Viola et al. | Dec 2006 | A1 |
20070010838 | Shelton, IV et al. | Jan 2007 | A1 |
20070023476 | Whitman et al. | Feb 2007 | A1 |
20070023477 | Whitman et al. | Feb 2007 | A1 |
20070026039 | Drumheller et al. | Feb 2007 | A1 |
20070026040 | Crawley et al. | Feb 2007 | A1 |
20070027468 | Wales et al. | Feb 2007 | A1 |
20070027472 | Hiles et al. | Feb 2007 | A1 |
20070027551 | Farnsworth et al. | Feb 2007 | A1 |
20070034668 | Holsten et al. | Feb 2007 | A1 |
20070049951 | Menn | Mar 2007 | A1 |
20070049966 | Bonadio et al. | Mar 2007 | A1 |
20070051375 | Milliman | Mar 2007 | A1 |
20070055219 | Whitman et al. | Mar 2007 | A1 |
20070066981 | Meagher | Mar 2007 | A1 |
20070070574 | Nerheim et al. | Mar 2007 | A1 |
20070073341 | Smith | Mar 2007 | A1 |
20070078484 | Talarico et al. | Apr 2007 | A1 |
20070083193 | Werneth et al. | Apr 2007 | A1 |
20070084897 | Shelton, IV et al. | Apr 2007 | A1 |
20070093869 | Bloom et al. | Apr 2007 | A1 |
20070102472 | Shelton, IV | May 2007 | A1 |
20070106113 | Ravo | May 2007 | A1 |
20070106317 | Shelton, IV et al. | May 2007 | A1 |
20070118175 | Butler et al. | May 2007 | A1 |
20070129605 | Schaaf | Jun 2007 | A1 |
20070135686 | Pruitt, Jr. et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070155010 | Farnsworth et al. | Jul 2007 | A1 |
20070158358 | Mason, II et al. | Jul 2007 | A1 |
20070170225 | Shelton, IV et al. | Jul 2007 | A1 |
20070173687 | Shima et al. | Jul 2007 | A1 |
20070173806 | Orszulak et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070175950 | Shelton, IV et al. | Aug 2007 | A1 |
20070175951 | Shelton, IV et al. | Aug 2007 | A1 |
20070175955 | Shelton, IV et al. | Aug 2007 | A1 |
20070179528 | Soltz et al. | Aug 2007 | A1 |
20070181632 | Milliman | Aug 2007 | A1 |
20070190110 | Pameijer et al. | Aug 2007 | A1 |
20070191868 | Theroux et al. | Aug 2007 | A1 |
20070194079 | Hueil et al. | Aug 2007 | A1 |
20070194082 | Morgan et al. | Aug 2007 | A1 |
20070203510 | Bettuchi | Aug 2007 | A1 |
20070213750 | Weadock | Sep 2007 | A1 |
20070219571 | Balbierz et al. | Sep 2007 | A1 |
20070225562 | Spivey et al. | Sep 2007 | A1 |
20070233163 | Bombard et al. | Oct 2007 | A1 |
20070239028 | Houser et al. | Oct 2007 | A1 |
20070243227 | Gertner | Oct 2007 | A1 |
20070244471 | Malackowski | Oct 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20070249999 | Sklar et al. | Oct 2007 | A1 |
20070260278 | Wheeler et al. | Nov 2007 | A1 |
20070270784 | Smith et al. | Nov 2007 | A1 |
20070270884 | Smith et al. | Nov 2007 | A1 |
20070275035 | Herman et al. | Nov 2007 | A1 |
20070276409 | Ortiz et al. | Nov 2007 | A1 |
20070279011 | Jones et al. | Dec 2007 | A1 |
20070286892 | Herzberg et al. | Dec 2007 | A1 |
20070287993 | Hinman et al. | Dec 2007 | A1 |
20070288044 | Jinno et al. | Dec 2007 | A1 |
20070299427 | Yeung et al. | Dec 2007 | A1 |
20080003196 | Jonn et al. | Jan 2008 | A1 |
20080015598 | Prommersberger | Jan 2008 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080030170 | Dacquay et al. | Feb 2008 | A1 |
20080035701 | Racenet et al. | Feb 2008 | A1 |
20080041916 | Milliman et al. | Feb 2008 | A1 |
20080041917 | Racenet et al. | Feb 2008 | A1 |
20080051833 | Gramuglia et al. | Feb 2008 | A1 |
20080065153 | Allard et al. | Mar 2008 | A1 |
20080078802 | Hess et al. | Apr 2008 | A1 |
20080082114 | McKenna et al. | Apr 2008 | A1 |
20080082125 | Murray et al. | Apr 2008 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080083808 | Scirica | Apr 2008 | A1 |
20080083813 | Zemlok et al. | Apr 2008 | A1 |
20080085296 | Powell et al. | Apr 2008 | A1 |
20080086078 | Powell et al. | Apr 2008 | A1 |
20080091072 | Omori et al. | Apr 2008 | A1 |
20080114315 | Voegele et al. | May 2008 | A1 |
20080114385 | Byrum et al. | May 2008 | A1 |
20080128469 | Dalessandro et al. | Jun 2008 | A1 |
20080129253 | Shiue et al. | Jun 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080154299 | Livneh | Jun 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080172087 | Fuchs et al. | Jul 2008 | A1 |
20080172088 | Smith et al. | Jul 2008 | A1 |
20080183193 | Omori et al. | Jul 2008 | A1 |
20080185419 | Smith et al. | Aug 2008 | A1 |
20080190989 | Crews et al. | Aug 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080200762 | Stokes et al. | Aug 2008 | A1 |
20080200835 | Monson et al. | Aug 2008 | A1 |
20080200933 | Bakos et al. | Aug 2008 | A1 |
20080200949 | Hiles et al. | Aug 2008 | A1 |
20080228029 | Mikkaichi et al. | Sep 2008 | A1 |
20080245841 | Smith et al. | Oct 2008 | A1 |
20080251568 | Zemlok et al. | Oct 2008 | A1 |
20080251569 | Smith et al. | Oct 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080255607 | Zemlok | Oct 2008 | A1 |
20080262654 | Omori et al. | Oct 2008 | A1 |
20080283570 | Boyden et al. | Nov 2008 | A1 |
20080287944 | Pearson et al. | Nov 2008 | A1 |
20080287988 | Smith et al. | Nov 2008 | A1 |
20080290134 | Bettuchi et al. | Nov 2008 | A1 |
20080294179 | Balbierz et al. | Nov 2008 | A1 |
20080296346 | Shelton, IV et al. | Dec 2008 | A1 |
20080297287 | Shachar et al. | Dec 2008 | A1 |
20080308602 | Timm et al. | Dec 2008 | A1 |
20080308603 | Shelton, IV et al. | Dec 2008 | A1 |
20080308608 | Prommersberger | Dec 2008 | A1 |
20080314960 | Marczyk et al. | Dec 2008 | A1 |
20080315829 | Jones et al. | Dec 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001122 | Prommersberger et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090004455 | Gravagna et al. | Jan 2009 | A1 |
20090005809 | Hess et al. | Jan 2009 | A1 |
20090012534 | Madhani et al. | Jan 2009 | A1 |
20090018553 | McLean et al. | Jan 2009 | A1 |
20090020958 | Soul | Jan 2009 | A1 |
20090047329 | Stucky et al. | Feb 2009 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090048612 | Farritor et al. | Feb 2009 | A1 |
20090054908 | Zand et al. | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090078736 | Van Lue | Mar 2009 | A1 |
20090082789 | Milliman et al. | Mar 2009 | A1 |
20090088774 | Swarup et al. | Apr 2009 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20090092651 | Shah et al. | Apr 2009 | A1 |
20090093728 | Hyde et al. | Apr 2009 | A1 |
20090099579 | Nentwick et al. | Apr 2009 | A1 |
20090099876 | Whitman | Apr 2009 | A1 |
20090108048 | Zemlok et al. | Apr 2009 | A1 |
20090112229 | Omori et al. | Apr 2009 | A1 |
20090114701 | Zemlok et al. | May 2009 | A1 |
20090119011 | Kondo et al. | May 2009 | A1 |
20090137952 | Ramamurthy et al. | May 2009 | A1 |
20090143805 | Palmer et al. | Jun 2009 | A1 |
20090143855 | Weber et al. | Jun 2009 | A1 |
20090149871 | Kagan et al. | Jun 2009 | A9 |
20090157067 | Kane et al. | Jun 2009 | A1 |
20090157087 | Wei et al. | Jun 2009 | A1 |
20090171147 | Lee et al. | Jul 2009 | A1 |
20090177226 | Reinprecht et al. | Jul 2009 | A1 |
20090188964 | Orlov | Jul 2009 | A1 |
20090198272 | Kerver et al. | Aug 2009 | A1 |
20090204108 | Steffen | Aug 2009 | A1 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090206131 | Weisenburgh, II et al. | Aug 2009 | A1 |
20090206133 | Morgan et al. | Aug 2009 | A1 |
20090206137 | Hall et al. | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090213685 | Mak et al. | Aug 2009 | A1 |
20090242610 | Shelton, IV et al. | Oct 2009 | A1 |
20090247901 | Zimmer | Oct 2009 | A1 |
20090248038 | Blumenkranz et al. | Oct 2009 | A1 |
20090255974 | Viola | Oct 2009 | A1 |
20090255975 | Zemlok et al. | Oct 2009 | A1 |
20090255976 | Marczyk et al. | Oct 2009 | A1 |
20090255977 | Zemlok | Oct 2009 | A1 |
20090255978 | Viola et al. | Oct 2009 | A1 |
20090270895 | Churchill et al. | Oct 2009 | A1 |
20090277949 | Viola et al. | Nov 2009 | A1 |
20090292283 | Odom | Nov 2009 | A1 |
20090308907 | Nalagatla et al. | Dec 2009 | A1 |
20100010511 | Harris et al. | Jan 2010 | A1 |
20100012704 | Racenet et al. | Jan 2010 | A1 |
20100016852 | Manzo et al. | Jan 2010 | A1 |
20100016888 | Calabrese et al. | Jan 2010 | A1 |
20100023024 | Zeiner et al. | Jan 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100049084 | Nock et al. | Feb 2010 | A1 |
20100057087 | Cha | Mar 2010 | A1 |
20100057107 | Sorrentino et al. | Mar 2010 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100072254 | Aranyi et al. | Mar 2010 | A1 |
20100076483 | Imuta | Mar 2010 | A1 |
20100076489 | Stopek et al. | Mar 2010 | A1 |
20100087840 | Ebersole et al. | Apr 2010 | A1 |
20100094289 | Taylor et al. | Apr 2010 | A1 |
20100096431 | Smith et al. | Apr 2010 | A1 |
20100100124 | Calabrese et al. | Apr 2010 | A1 |
20100108740 | Pastorelli et al. | May 2010 | A1 |
20100108741 | Hessler et al. | May 2010 | A1 |
20100133317 | Shelton, IV et al. | Jun 2010 | A1 |
20100145146 | Melder | Jun 2010 | A1 |
20100147921 | Olson | Jun 2010 | A1 |
20100147922 | Olson | Jun 2010 | A1 |
20100147923 | D'Agostino et al. | Jun 2010 | A1 |
20100163598 | Belzer | Jul 2010 | A1 |
20100179022 | Shirokoshi | Jul 2010 | A1 |
20100179540 | Marczyk et al. | Jul 2010 | A1 |
20100186219 | Smith | Jul 2010 | A1 |
20100193566 | Scheib et al. | Aug 2010 | A1 |
20100200637 | Beetel | Aug 2010 | A1 |
20100204717 | Knodel | Aug 2010 | A1 |
20100222901 | Swayze et al. | Sep 2010 | A1 |
20100230465 | Smith et al. | Sep 2010 | A1 |
20100243707 | Olson et al. | Sep 2010 | A1 |
20100243708 | Aranyi et al. | Sep 2010 | A1 |
20100249519 | Park et al. | Sep 2010 | A1 |
20100258611 | Smith et al. | Oct 2010 | A1 |
20100267662 | Fielder et al. | Oct 2010 | A1 |
20100268030 | Viola et al. | Oct 2010 | A1 |
20100274160 | Yachi et al. | Oct 2010 | A1 |
20100276471 | Whitman | Nov 2010 | A1 |
20100292540 | Hess et al. | Nov 2010 | A1 |
20100294827 | Boyden et al. | Nov 2010 | A1 |
20100298636 | Casto et al. | Nov 2010 | A1 |
20100305552 | Shelton, IV et al. | Dec 2010 | A1 |
20100312261 | Suzuki et al. | Dec 2010 | A1 |
20100320252 | Viola et al. | Dec 2010 | A1 |
20100331856 | Carlson et al. | Dec 2010 | A1 |
20100331880 | Stopek | Dec 2010 | A1 |
20110003528 | Lam | Jan 2011 | A1 |
20110006101 | Hall et al. | Jan 2011 | A1 |
20110011916 | Levine | Jan 2011 | A1 |
20110017799 | Whitman et al. | Jan 2011 | A1 |
20110017801 | Zemlok et al. | Jan 2011 | A1 |
20110022032 | Zemlok et al. | Jan 2011 | A1 |
20110024477 | Hall | Feb 2011 | A1 |
20110024478 | Shelton, IV | Feb 2011 | A1 |
20110034918 | Reschke | Feb 2011 | A1 |
20110036887 | Zemlok et al. | Feb 2011 | A1 |
20110036890 | Ma | Feb 2011 | A1 |
20110036891 | Zemlok et al. | Feb 2011 | A1 |
20110045047 | Bennett et al. | Feb 2011 | A1 |
20110046666 | Sorrentino et al. | Feb 2011 | A1 |
20110046667 | Culligan et al. | Feb 2011 | A1 |
20110060363 | Hess et al. | Mar 2011 | A1 |
20110084112 | Kostrzewski | Apr 2011 | A1 |
20110087276 | Bedi et al. | Apr 2011 | A1 |
20110087279 | Shah et al. | Apr 2011 | A1 |
20110095068 | Patel | Apr 2011 | A1 |
20110101065 | Milliman | May 2011 | A1 |
20110114697 | Baxter, III et al. | May 2011 | A1 |
20110118754 | Dachs, II et al. | May 2011 | A1 |
20110118778 | Burbank | May 2011 | A1 |
20110125176 | Yates et al. | May 2011 | A1 |
20110144640 | Heinrich et al. | Jun 2011 | A1 |
20110147433 | Shelton, IV et al. | Jun 2011 | A1 |
20110155786 | Shelton, IV | Jun 2011 | A1 |
20110155787 | Baxter, III et al. | Jun 2011 | A1 |
20110163146 | Ortiz et al. | Jul 2011 | A1 |
20110174099 | Ross et al. | Jul 2011 | A1 |
20110174861 | Shelton, IV et al. | Jul 2011 | A1 |
20110178536 | Kostrzewski | Jul 2011 | A1 |
20110184459 | Malkowski et al. | Jul 2011 | A1 |
20110192882 | Hess et al. | Aug 2011 | A1 |
20110204119 | McCuen | Aug 2011 | A1 |
20110210156 | Smith et al. | Sep 2011 | A1 |
20110253765 | Nicholas et al. | Oct 2011 | A1 |
20110264119 | Bayon et al. | Oct 2011 | A1 |
20110275901 | Shelton, IV | Nov 2011 | A1 |
20110276083 | Shelton, IV et al. | Nov 2011 | A1 |
20110278343 | Knodel et al. | Nov 2011 | A1 |
20110282446 | Schulte et al. | Nov 2011 | A1 |
20110288573 | Yates et al. | Nov 2011 | A1 |
20110290851 | Shelton, IV | Dec 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20110293690 | Griffin et al. | Dec 2011 | A1 |
20110295269 | Swensgard et al. | Dec 2011 | A1 |
20110295295 | Shelton, IV et al. | Dec 2011 | A1 |
20110313894 | Dye et al. | Dec 2011 | A1 |
20110315413 | Fisher et al. | Dec 2011 | A1 |
20120004636 | Lo | Jan 2012 | A1 |
20120018326 | Racenet et al. | Jan 2012 | A1 |
20120022523 | Smith et al. | Jan 2012 | A1 |
20120022630 | Wübbeling | Jan 2012 | A1 |
20120029272 | Shelton, IV et al. | Feb 2012 | A1 |
20120046692 | Smith et al. | Feb 2012 | A1 |
20120071711 | Shelton, IV et al. | Mar 2012 | A1 |
20120074200 | Schmid et al. | Mar 2012 | A1 |
20120080336 | Shelton, IV et al. | Apr 2012 | A1 |
20120080338 | Shelton, IV et al. | Apr 2012 | A1 |
20120080340 | Shelton, IV et al. | Apr 2012 | A1 |
20120080344 | Shelton, IV | Apr 2012 | A1 |
20120080475 | Smith et al. | Apr 2012 | A1 |
20120080478 | Morgan et al. | Apr 2012 | A1 |
20120080488 | Shelton, IV et al. | Apr 2012 | A1 |
20120080498 | Shelton, IV et al. | Apr 2012 | A1 |
20120089131 | Zemlok et al. | Apr 2012 | A1 |
20120110810 | Houser et al. | May 2012 | A1 |
20120116395 | Madan et al. | May 2012 | A1 |
20120125792 | Cassivi | May 2012 | A1 |
20120138658 | Ullrich et al. | Jun 2012 | A1 |
20120150192 | Dachs, II et al. | Jun 2012 | A1 |
20120175398 | Sandborn et al. | Jul 2012 | A1 |
20120187179 | Gleiman | Jul 2012 | A1 |
20120199632 | Spivey et al. | Aug 2012 | A1 |
20120209289 | Duque et al. | Aug 2012 | A1 |
20120223123 | Baxter, III et al. | Sep 2012 | A1 |
20120234895 | O'Connor et al. | Sep 2012 | A1 |
20120234897 | Shelton, IV et al. | Sep 2012 | A1 |
20120234899 | Scheib et al. | Sep 2012 | A1 |
20120238823 | Hagerty et al. | Sep 2012 | A1 |
20120241491 | Aldridge et al. | Sep 2012 | A1 |
20120241492 | Shelton, IV et al. | Sep 2012 | A1 |
20120241493 | Baxter, III et al. | Sep 2012 | A1 |
20120241496 | Vasudevan et al. | Sep 2012 | A1 |
20120241497 | Vasudevan et al. | Sep 2012 | A1 |
20120241498 | Gonzalez et al. | Sep 2012 | A1 |
20120241499 | Baxter, III et al. | Sep 2012 | A1 |
20120241500 | Timmer et al. | Sep 2012 | A1 |
20120241501 | Swayze et al. | Sep 2012 | A1 |
20120241502 | Aldridge et al. | Sep 2012 | A1 |
20120241503 | Baxter, III et al. | Sep 2012 | A1 |
20120241505 | Alexander, III et al. | Sep 2012 | A1 |
20120248169 | Widenhouse et al. | Oct 2012 | A1 |
20120253298 | Henderson et al. | Oct 2012 | A1 |
20120253329 | Zemlok et al. | Oct 2012 | A1 |
20120265176 | Braun | Oct 2012 | A1 |
20120271285 | Sholev et al. | Oct 2012 | A1 |
20120273550 | Scirica | Nov 2012 | A1 |
20120283707 | Giordano et al. | Nov 2012 | A1 |
20120283748 | Ortiz et al. | Nov 2012 | A1 |
20120286021 | Kostrzewski et al. | Nov 2012 | A1 |
20120289979 | Eskaros et al. | Nov 2012 | A1 |
20120292367 | Morgan et al. | Nov 2012 | A1 |
20120296333 | Twomey | Nov 2012 | A1 |
20120298722 | Hess et al. | Nov 2012 | A1 |
20120310255 | Brisson et al. | Dec 2012 | A1 |
20120310256 | Brisson | Dec 2012 | A1 |
20120312860 | Ming et al. | Dec 2012 | A1 |
20120318842 | Anim et al. | Dec 2012 | A1 |
20120318843 | Henderson et al. | Dec 2012 | A1 |
20120318844 | Shelton, IV et al. | Dec 2012 | A1 |
20120323226 | Chowaniec | Dec 2012 | A1 |
20120325892 | Kostrzewski | Dec 2012 | A1 |
20130012983 | Kleyman | Jan 2013 | A1 |
20130018361 | Bryant | Jan 2013 | A1 |
20130020375 | Shelton, IV et al. | Jan 2013 | A1 |
20130020376 | Shelton, IV et al. | Jan 2013 | A1 |
20130023861 | Shelton, IV et al. | Jan 2013 | A1 |
20130026208 | Shelton, IV et al. | Jan 2013 | A1 |
20130026210 | Shelton, IV et al. | Jan 2013 | A1 |
20130032626 | Smith et al. | Feb 2013 | A1 |
20130037596 | Bear et al. | Feb 2013 | A1 |
20130048697 | Shelton, IV et al. | Feb 2013 | A1 |
20130056518 | Swensgard | Mar 2013 | A1 |
20130060278 | Bozung | Mar 2013 | A1 |
20130062391 | Boudreaux et al. | Mar 2013 | A1 |
20130075446 | Wang et al. | Mar 2013 | A1 |
20130075449 | Schmid et al. | Mar 2013 | A1 |
20130079814 | Hess et al. | Mar 2013 | A1 |
20130087597 | Shelton, IV et al. | Apr 2013 | A1 |
20130087599 | Krumanaker et al. | Apr 2013 | A1 |
20130087602 | Olson et al. | Apr 2013 | A1 |
20130098970 | Racenet et al. | Apr 2013 | A1 |
20130103024 | Monson et al. | Apr 2013 | A1 |
20130116668 | Shelton, IV et al. | May 2013 | A1 |
20130116669 | Shelton, IV et al. | May 2013 | A1 |
20130119108 | Altman et al. | May 2013 | A1 |
20130123822 | Wellman et al. | May 2013 | A1 |
20130126582 | Shelton, IV et al. | May 2013 | A1 |
20130131651 | Strobl et al. | May 2013 | A1 |
20130146641 | Shelton, IV et al. | Jun 2013 | A1 |
20130146642 | Shelton, IV et al. | Jun 2013 | A1 |
20130146643 | Schmid et al. | Jun 2013 | A1 |
20130150832 | Belson et al. | Jun 2013 | A1 |
20130153633 | Casasanta, Jr. et al. | Jun 2013 | A1 |
20130153634 | Carter et al. | Jun 2013 | A1 |
20130153636 | Shelton, IV et al. | Jun 2013 | A1 |
20130153638 | Carter et al. | Jun 2013 | A1 |
20130153641 | Shelton, IV et al. | Jun 2013 | A1 |
20130161374 | Swayze et al. | Jun 2013 | A1 |
20130168431 | Zemlok et al. | Jul 2013 | A1 |
20130172929 | Hess et al. | Jul 2013 | A1 |
20130175317 | Yates et al. | Jul 2013 | A1 |
20130175322 | Yates et al. | Jul 2013 | A1 |
20130181033 | Shelton, IV et al. | Jul 2013 | A1 |
20130181034 | Shelton, IV et al. | Jul 2013 | A1 |
20130184718 | Smith et al. | Jul 2013 | A1 |
20130184719 | Shelton, IV et al. | Jul 2013 | A1 |
20130186932 | Shelton, IV et al. | Jul 2013 | A1 |
20130186933 | Shelton, IV et al. | Jul 2013 | A1 |
20130186934 | Shelton, IV et al. | Jul 2013 | A1 |
20130186936 | Shelton, IV | Jul 2013 | A1 |
20130190733 | Giordano et al. | Jul 2013 | A1 |
20130190757 | Yates et al. | Jul 2013 | A1 |
20130193188 | Shelton, IV et al. | Aug 2013 | A1 |
20130193189 | Swensgard et al. | Aug 2013 | A1 |
20130197556 | Shelton, IV et al. | Aug 2013 | A1 |
20130214025 | Zemlok et al. | Aug 2013 | A1 |
20130214030 | Aronhalt et al. | Aug 2013 | A1 |
20130221059 | Racenet et al. | Aug 2013 | A1 |
20130221063 | Aronhalt et al. | Aug 2013 | A1 |
20130221064 | Aronhalt et al. | Aug 2013 | A1 |
20130221065 | Aronhalt et al. | Aug 2013 | A1 |
20130233906 | Hess et al. | Sep 2013 | A1 |
20130233908 | Knodel et al. | Sep 2013 | A1 |
20130248576 | Laurent et al. | Sep 2013 | A1 |
20130256365 | Shelton, IV et al. | Oct 2013 | A1 |
20130256366 | Shelton, IV et al. | Oct 2013 | A1 |
20130256367 | Scheib et al. | Oct 2013 | A1 |
20130256368 | Timm et al. | Oct 2013 | A1 |
20130256369 | Schmid et al. | Oct 2013 | A1 |
20130256371 | Shelton, IV et al. | Oct 2013 | A1 |
20130256372 | Baxter, III et al. | Oct 2013 | A1 |
20130256373 | Schmid et al. | Oct 2013 | A1 |
20130256374 | Shelton, IV et al. | Oct 2013 | A1 |
20130256375 | Shelton, IV et al. | Oct 2013 | A1 |
20130256376 | Barton et al. | Oct 2013 | A1 |
20130256377 | Schmid et al. | Oct 2013 | A1 |
20130256378 | Schmid et al. | Oct 2013 | A1 |
20130256379 | Schmid et al. | Oct 2013 | A1 |
20130256380 | Schmid et al. | Oct 2013 | A1 |
20130256382 | Swayze et al. | Oct 2013 | A1 |
20130256383 | Aronhalt et al. | Oct 2013 | A1 |
20130261648 | Laurent et al. | Oct 2013 | A1 |
20130270322 | Scheib et al. | Oct 2013 | A1 |
20130277412 | Gresham et al. | Oct 2013 | A1 |
20130310873 | Stopek et al. | Nov 2013 | A1 |
20130313303 | Shelton, IV et al. | Nov 2013 | A1 |
20130313304 | Shelton, IV et al. | Nov 2013 | A1 |
20130313306 | Shelton, IV et al. | Nov 2013 | A1 |
20130319706 | Nicholas et al. | Dec 2013 | A1 |
20130324981 | Smith et al. | Dec 2013 | A1 |
20130324982 | Smith et al. | Dec 2013 | A1 |
20130327809 | Shelton, IV et al. | Dec 2013 | A1 |
20130327810 | Swayze et al. | Dec 2013 | A1 |
20130334283 | Swayze et al. | Dec 2013 | A1 |
20130334284 | Swayze et al. | Dec 2013 | A1 |
20130334285 | Swayze et al. | Dec 2013 | A1 |
20130334286 | Swayze et al. | Dec 2013 | A1 |
20130334287 | Shelton, IV | Dec 2013 | A1 |
20130334288 | Shelton, IV | Dec 2013 | A1 |
20130341374 | Shelton, IV et al. | Dec 2013 | A1 |
20140001231 | Shelton, IV et al. | Jan 2014 | A1 |
20140001234 | Shelton, IV et al. | Jan 2014 | A1 |
20140001235 | Shelton, IV | Jan 2014 | A1 |
20140001236 | Shelton, IV et al. | Jan 2014 | A1 |
20140001237 | Shelton, IV et al. | Jan 2014 | A1 |
20140001238 | Shelton, IV et al. | Jan 2014 | A1 |
20140001239 | Shelton, IV et al. | Jan 2014 | A1 |
20140001240 | Shelton, IV et al. | Jan 2014 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140005653 | Shelton, IV et al. | Jan 2014 | A1 |
20140005678 | Shelton, IV et al. | Jan 2014 | A1 |
20140005679 | Shelton, IV et al. | Jan 2014 | A1 |
20140005693 | Shelton, IV et al. | Jan 2014 | A1 |
20140005694 | Shelton, IV et al. | Jan 2014 | A1 |
20140005695 | Shelton, IV | Jan 2014 | A1 |
20140005702 | Timm et al. | Jan 2014 | A1 |
20140005703 | Stulen et al. | Jan 2014 | A1 |
20140005708 | Shelton, IV | Jan 2014 | A1 |
20140005718 | Shelton, IV et al. | Jan 2014 | A1 |
20140008414 | Shelton, IV et al. | Jan 2014 | A1 |
20140012237 | Pribanic et al. | Jan 2014 | A1 |
20140014705 | Baxter, III | Jan 2014 | A1 |
20140015782 | Kim et al. | Jan 2014 | A1 |
20140018832 | Shelton, IV | Jan 2014 | A1 |
20140042205 | Baxter, III et al. | Feb 2014 | A1 |
20140048582 | Shelton, IV et al. | Feb 2014 | A1 |
20140061279 | Laurent et al. | Mar 2014 | A1 |
20140061280 | Ingmanson et al. | Mar 2014 | A1 |
20140097227 | Aronhalt et al. | Apr 2014 | A1 |
20140103093 | Koch, Jr. et al. | Apr 2014 | A1 |
20140107640 | Yates et al. | Apr 2014 | A1 |
20140110455 | Ingmanson et al. | Apr 2014 | A1 |
20140128850 | Kerr et al. | May 2014 | A1 |
20140151431 | Hodgkinson et al. | Jun 2014 | A1 |
20140151433 | Shelton, IV et al. | Jun 2014 | A1 |
20140151434 | Shelton, IV et al. | Jun 2014 | A1 |
20140166722 | Hess et al. | Jun 2014 | A1 |
20140166724 | Schellin et al. | Jun 2014 | A1 |
20140166725 | Schellin et al. | Jun 2014 | A1 |
20140166726 | Schellin et al. | Jun 2014 | A1 |
20140171966 | Giordano et al. | Jun 2014 | A1 |
20140175152 | Hess et al. | Jun 2014 | A1 |
20140175155 | Shelton, IV et al. | Jun 2014 | A1 |
20140191014 | Shelton, IV | Jul 2014 | A1 |
20140191015 | Shelton, IV | Jul 2014 | A1 |
20140205637 | Widenhouse et al. | Jul 2014 | A1 |
20140207166 | Shelton, IV et al. | Jul 2014 | A1 |
20140224686 | Aronhalt et al. | Aug 2014 | A1 |
20140224857 | Schmid | Aug 2014 | A1 |
20140236184 | Leimbach et al. | Aug 2014 | A1 |
20140239036 | Zerkle et al. | Aug 2014 | A1 |
20140243865 | Swayze et al. | Aug 2014 | A1 |
20140246471 | Jaworek et al. | Sep 2014 | A1 |
20140246472 | Kimsey et al. | Sep 2014 | A1 |
20140246473 | Auld | Sep 2014 | A1 |
20140246474 | Hall et al. | Sep 2014 | A1 |
20140246475 | Hall et al. | Sep 2014 | A1 |
20140246476 | Hall et al. | Sep 2014 | A1 |
20140246477 | Koch, Jr. et al. | Sep 2014 | A1 |
20140246478 | Baber et al. | Sep 2014 | A1 |
20140246479 | Baber et al. | Sep 2014 | A1 |
20140249557 | Koch, Jr. et al. | Sep 2014 | A1 |
20140252066 | Shelton, IV et al. | Sep 2014 | A1 |
20140252068 | Shelton, IV et al. | Sep 2014 | A1 |
20140259591 | Shelton, IV et al. | Sep 2014 | A1 |
20140263537 | Leimbach et al. | Sep 2014 | A1 |
20140263538 | Leimbach et al. | Sep 2014 | A1 |
20140263539 | Leimbach et al. | Sep 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140263542 | Leimbach et al. | Sep 2014 | A1 |
20140263551 | Hall et al. | Sep 2014 | A1 |
20140263552 | Hall et al. | Sep 2014 | A1 |
20140263553 | Leimbach et al. | Sep 2014 | A1 |
20140263554 | Leimbach et al. | Sep 2014 | A1 |
20140263558 | Hausen et al. | Sep 2014 | A1 |
20140263562 | Patel et al. | Sep 2014 | A1 |
20140263564 | Leimbach et al. | Sep 2014 | A1 |
20140263565 | Lytle, IV et al. | Sep 2014 | A1 |
20140263571 | Morgan et al. | Sep 2014 | A1 |
20140263572 | Shelton, IV et al. | Sep 2014 | A1 |
20140277017 | Leimbach et al. | Sep 2014 | A1 |
20140284371 | Morgan et al. | Sep 2014 | A1 |
20140284373 | Shelton, IV et al. | Sep 2014 | A1 |
20140291378 | Shelton, IV et al. | Oct 2014 | A1 |
20140291379 | Schellin et al. | Oct 2014 | A1 |
20140291380 | Weaner et al. | Oct 2014 | A1 |
20140291381 | Weaner et al. | Oct 2014 | A1 |
20140291382 | Lloyd et al. | Oct 2014 | A1 |
20140291383 | Spivey et al. | Oct 2014 | A1 |
20140296873 | Morgan et al. | Oct 2014 | A1 |
20140296874 | Morgan et al. | Oct 2014 | A1 |
20140299648 | Shelton, IV et al. | Oct 2014 | A1 |
20140303645 | Morgan et al. | Oct 2014 | A1 |
20140303646 | Morgan et al. | Oct 2014 | A1 |
20140305987 | Parihar et al. | Oct 2014 | A1 |
20140305988 | Boudreaux et al. | Oct 2014 | A1 |
20140305989 | Parihar et al. | Oct 2014 | A1 |
20140305990 | Shelton, IV et al. | Oct 2014 | A1 |
20140305991 | Parihar et al. | Oct 2014 | A1 |
20140305992 | Kimsey et al. | Oct 2014 | A1 |
20140305994 | Parihar et al. | Oct 2014 | A1 |
20140305995 | Shelton, IV et al. | Oct 2014 | A1 |
20140309665 | Parihar et al. | Oct 2014 | A1 |
20140309666 | Shelton, IV et al. | Oct 2014 | A1 |
20140326777 | Zingman | Nov 2014 | A1 |
20140330161 | Swayze et al. | Nov 2014 | A1 |
20140339286 | Motooka et al. | Nov 2014 | A1 |
20140352463 | Parihar | Dec 2014 | A1 |
20140353358 | Shelton, IV et al. | Dec 2014 | A1 |
20140353359 | Hall et al. | Dec 2014 | A1 |
20140367447 | Woodard, Jr. et al. | Dec 2014 | A1 |
20150008248 | Giordano et al. | Jan 2015 | A1 |
20150034696 | Shelton, IV et al. | Feb 2015 | A1 |
20150038986 | Swensgard et al. | Feb 2015 | A1 |
20150041518 | Shelton, IV et al. | Feb 2015 | A1 |
20150053737 | Leimbach et al. | Feb 2015 | A1 |
20150053738 | Morgan et al. | Feb 2015 | A1 |
20150053739 | Morgan et al. | Feb 2015 | A1 |
20150053740 | Shelton, IV | Feb 2015 | A1 |
20150053741 | Shelton, IV et al. | Feb 2015 | A1 |
20150053742 | Shelton, IV et al. | Feb 2015 | A1 |
20150053743 | Yates et al. | Feb 2015 | A1 |
20150053744 | Swayze et al. | Feb 2015 | A1 |
20150053745 | Yates et al. | Feb 2015 | A1 |
20150053746 | Shelton, IV et al. | Feb 2015 | A1 |
20150053748 | Yates et al. | Feb 2015 | A1 |
20150053749 | Shelton, IV et al. | Feb 2015 | A1 |
20150054753 | Morgan et al. | Feb 2015 | A1 |
20150060518 | Shelton, IV et al. | Mar 2015 | A1 |
20150060519 | Shelton, IV et al. | Mar 2015 | A1 |
20150060520 | Shelton, IV et al. | Mar 2015 | A1 |
20150060521 | Weisenburgh, II et al. | Mar 2015 | A1 |
20150076207 | Boudreaux et al. | Mar 2015 | A1 |
20150076208 | Shelton, IV | Mar 2015 | A1 |
20150076209 | Shelton, IV et al. | Mar 2015 | A1 |
20150076210 | Shelton, IV et al. | Mar 2015 | A1 |
20150076212 | Shelton, IV | Mar 2015 | A1 |
20150080868 | Kerr | Mar 2015 | A1 |
20150083780 | Shelton, IV et al. | Mar 2015 | A1 |
20150083781 | Giordano et al. | Mar 2015 | A1 |
20150083782 | Scheib et al. | Mar 2015 | A1 |
20150083783 | Shelton, IV et al. | Mar 2015 | A1 |
20150090759 | Spivey et al. | Apr 2015 | A1 |
20150090760 | Giordano et al. | Apr 2015 | A1 |
20150090761 | Giordano et al. | Apr 2015 | A1 |
20150090762 | Giordano et al. | Apr 2015 | A1 |
20150090763 | Murray et al. | Apr 2015 | A1 |
20150090765 | Hess et al. | Apr 2015 | A1 |
20150108199 | Shelton, IV et al. | Apr 2015 | A1 |
20150122869 | Aronhalt et al. | May 2015 | A1 |
20150136830 | Baxter, III et al. | May 2015 | A1 |
20150136831 | Baxter, III et al. | May 2015 | A1 |
20150136832 | Baxter, III et al. | May 2015 | A1 |
20150136833 | Shelton, IV et al. | May 2015 | A1 |
20150136835 | Shelton, IV et al. | May 2015 | A1 |
20150144678 | Hall et al. | May 2015 | A1 |
20150173744 | Shelton, IV et al. | Jun 2015 | A1 |
20150173745 | Baxter, III et al. | Jun 2015 | A1 |
20150173746 | Baxter, III et al. | Jun 2015 | A1 |
20150173747 | Baxter, III et al. | Jun 2015 | A1 |
20150173749 | Shelton, IV et al. | Jun 2015 | A1 |
20150173750 | Shelton, IV et al. | Jun 2015 | A1 |
20150173751 | Shelton, IV et al. | Jun 2015 | A1 |
20150173755 | Baxter, III et al. | Jun 2015 | A1 |
20150173756 | Baxter, III et al. | Jun 2015 | A1 |
20150173760 | Shelton, IV et al. | Jun 2015 | A1 |
20150173761 | Shelton, IV et al. | Jun 2015 | A1 |
20150173762 | Shelton, IV et al. | Jun 2015 | A1 |
20150173789 | Baxter, III et al. | Jun 2015 | A1 |
20150182220 | Yates et al. | Jul 2015 | A1 |
20150182222 | Swayze et al. | Jul 2015 | A1 |
20150196295 | Shelton, IV et al. | Jul 2015 | A1 |
20150196296 | Swayze et al. | Jul 2015 | A1 |
20150196299 | Swayze et al. | Jul 2015 | A1 |
20150196347 | Yates et al. | Jul 2015 | A1 |
20150196348 | Yates et al. | Jul 2015 | A1 |
20150201932 | Swayze et al. | Jul 2015 | A1 |
20150201935 | Weisenburgh, II et al. | Jul 2015 | A1 |
20150201936 | Swayze et al. | Jul 2015 | A1 |
20150201937 | Swayze et al. | Jul 2015 | A1 |
20150201938 | Swayze et al. | Jul 2015 | A1 |
20150201939 | Swayze et al. | Jul 2015 | A1 |
20150201940 | Swayze et al. | Jul 2015 | A1 |
20150201941 | Swayze et al. | Jul 2015 | A1 |
20150209031 | Shelton, IV et al. | Jul 2015 | A1 |
20150209038 | Shelton, IV et al. | Jul 2015 | A1 |
20150209039 | Shelton, IV et al. | Jul 2015 | A1 |
20150223809 | Scheib et al. | Aug 2015 | A1 |
20150223816 | Morgan et al. | Aug 2015 | A1 |
20150230783 | Shelton, IV et al. | Aug 2015 | A1 |
20150230784 | Shelton, IV et al. | Aug 2015 | A1 |
20150231409 | Racenet et al. | Aug 2015 | A1 |
20150238185 | Schellin et al. | Aug 2015 | A1 |
20150238186 | Aronhalt et al. | Aug 2015 | A1 |
20150238187 | Schellin et al. | Aug 2015 | A1 |
20150238188 | Vendely et al. | Aug 2015 | A1 |
20150238191 | Schellin et al. | Aug 2015 | A1 |
20150239180 | Schellin et al. | Aug 2015 | A1 |
20150265276 | Huitema et al. | Sep 2015 | A1 |
20150265357 | Shelton, IV et al. | Sep 2015 | A1 |
20150272557 | Overmyer et al. | Oct 2015 | A1 |
20150272569 | Leimbach et al. | Oct 2015 | A1 |
20150272570 | Lytle, IV et al. | Oct 2015 | A1 |
20150272571 | Leimbach et al. | Oct 2015 | A1 |
20150272572 | Overmyer et al. | Oct 2015 | A1 |
20150272574 | Leimbach et al. | Oct 2015 | A1 |
20150272575 | Leimbach et al. | Oct 2015 | A1 |
20150272578 | Leimbach et al. | Oct 2015 | A1 |
20150272579 | Leimbach et al. | Oct 2015 | A1 |
20150272580 | Leimbach et al. | Oct 2015 | A1 |
20150272581 | Leimbach et al. | Oct 2015 | A1 |
20150272582 | Leimbach et al. | Oct 2015 | A1 |
20150272583 | Leimbach et al. | Oct 2015 | A1 |
20150277471 | Leimbach et al. | Oct 2015 | A1 |
20150280384 | Leimbach et al. | Oct 2015 | A1 |
20150280424 | Leimbach et al. | Oct 2015 | A1 |
20150282809 | Shelton, IV et al. | Oct 2015 | A1 |
20150282810 | Shelton, IV et al. | Oct 2015 | A1 |
20150289870 | Shelton, IV et al. | Oct 2015 | A1 |
20150289873 | Shelton, IV et al. | Oct 2015 | A1 |
20150289874 | Leimbach et al. | Oct 2015 | A1 |
20150297210 | Widenhouse et al. | Oct 2015 | A1 |
20150297217 | Huitema et al. | Oct 2015 | A1 |
20150297218 | Shelton, IV et al. | Oct 2015 | A1 |
20150297219 | Shelton, IV et al. | Oct 2015 | A1 |
20150297221 | Kerr et al. | Oct 2015 | A1 |
20150297222 | Huitema et al. | Oct 2015 | A1 |
20150297223 | Huitema et al. | Oct 2015 | A1 |
20150297224 | Hall et al. | Oct 2015 | A1 |
20150297225 | Huitema et al. | Oct 2015 | A1 |
20150297226 | Hall et al. | Oct 2015 | A1 |
20150297227 | Huitema et al. | Oct 2015 | A1 |
20150297228 | Huitema et al. | Oct 2015 | A1 |
20150297229 | Schellin et al. | Oct 2015 | A1 |
20150297230 | Schellin et al. | Oct 2015 | A1 |
20150297231 | Huitema et al. | Oct 2015 | A1 |
20150297232 | Huitema et al. | Oct 2015 | A1 |
20150297233 | Huitema et al. | Oct 2015 | A1 |
20150297234 | Schellin et al. | Oct 2015 | A1 |
20150297235 | Harris et al. | Oct 2015 | A1 |
20150297236 | Harris et al. | Oct 2015 | A1 |
20150305744 | Moore et al. | Oct 2015 | A1 |
20150305745 | Baxter, III et al. | Oct 2015 | A1 |
20150313591 | Baxter, III et al. | Nov 2015 | A1 |
20150313594 | Shelton, IV et al. | Nov 2015 | A1 |
20150327853 | Aronhalt et al. | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
2008207624 | Mar 2009 | AU |
2010214687 | Sep 2010 | AU |
2012200178 | Jul 2013 | AU |
2458946 | Mar 2003 | CA |
2477181 | Apr 2004 | CA |
2512960 | Jan 2006 | CA |
2514274 | Jan 2006 | CA |
2639177 | Feb 2009 | CA |
1163558 | Oct 1997 | CN |
2488482 | May 2002 | CN |
1523725 | Aug 2004 | CN |
1545154 | Nov 2004 | CN |
1634601 | Jul 2005 | CN |
2716900 | Aug 2005 | CN |
2738962 | Nov 2005 | CN |
1726874 | Feb 2006 | CN |
1868411 | Nov 2006 | CN |
1915180 | Feb 2007 | CN |
2868212 | Feb 2007 | CN |
1960679 | May 2007 | CN |
101011286 | Aug 2007 | CN |
101095621 | Jan 2008 | CN |
101541251 | Sep 2009 | CN |
101675898 | Mar 2010 | CN |
101683280 | Mar 2010 | CN |
102188270 | Sep 2011 | CN |
101534723 | Jan 2012 | CN |
101507633 | Feb 2013 | CN |
101023879 | Mar 2013 | CN |
101401736 | Jun 2013 | CN |
273689 | May 1914 | DE |
1775926 | Jan 1972 | DE |
3036217 | Apr 1982 | DE |
3212828 | Nov 1982 | DE |
3210466 | Sep 1983 | DE |
3709067 | Sep 1988 | DE |
9412228 | Sep 1994 | DE |
19509116 | Sep 1996 | DE |
19851291 | Jan 2000 | DE |
19924311 | Nov 2000 | DE |
69328576 | Jan 2001 | DE |
20016423 | Feb 2001 | DE |
10052679 | May 2001 | DE |
20112837 | Oct 2001 | DE |
20121753 | Apr 2003 | DE |
10314072 | Oct 2004 | DE |
202007003114 | Jun 2007 | DE |
0000756 | Feb 1979 | EP |
0122046 | Oct 1984 | EP |
0070230 | Oct 1985 | EP |
0156774 | Oct 1985 | EP |
0033548 | May 1986 | EP |
0077262 | Aug 1986 | EP |
0129442 | Nov 1987 | EP |
0276104 | Jul 1988 | EP |
0379721 | Aug 1990 | EP |
0178940 | Jan 1991 | EP |
0178941 | Jan 1991 | EP |
0169044 | Jun 1991 | EP |
0248844 | Jan 1993 | EP |
0539762 | May 1993 | EP |
0545029 | Jun 1993 | EP |
0548998 | Jun 1993 | EP |
0277959 | Oct 1993 | EP |
0591946 | Oct 1993 | EP |
0233940 | Nov 1993 | EP |
0261230 | Nov 1993 | EP |
0639349 | Feb 1994 | EP |
0324636 | Mar 1994 | EP |
0593920 | Apr 1994 | EP |
0594148 | Apr 1994 | EP |
0427949 | Jun 1994 | EP |
0523174 | Jun 1994 | EP |
0600182 | Jun 1994 | EP |
0310431 | Nov 1994 | EP |
0375302 | Nov 1994 | EP |
0376562 | Nov 1994 | EP |
0630612 | Dec 1994 | EP |
0630614 | Dec 1994 | EP |
0634144 | Jan 1995 | EP |
0646356 | Apr 1995 | EP |
0646357 | Apr 1995 | EP |
0505036 | May 1995 | EP |
0653189 | May 1995 | EP |
0669104 | Aug 1995 | EP |
0387980 | Oct 1995 | EP |
0511470 | Oct 1995 | EP |
0674876 | Oct 1995 | EP |
0679367 | Nov 1995 | EP |
0392547 | Dec 1995 | EP |
0685204 | Dec 1995 | EP |
0364216 | Jan 1996 | EP |
0699418 | Mar 1996 | EP |
0702937 | Mar 1996 | EP |
0488768 | Apr 1996 | EP |
0705571 | Apr 1996 | EP |
0711611 | May 1996 | EP |
0484677 | Jun 1996 | EP |
0541987 | Jul 1996 | EP |
0667119 | Jul 1996 | EP |
0737446 | Oct 1996 | EP |
0748614 | Dec 1996 | EP |
0708618 | Mar 1997 | EP |
0770355 | May 1997 | EP |
0503662 | Jun 1997 | EP |
0447121 | Jul 1997 | EP |
0621009 | Jul 1997 | EP |
0625077 | Jul 1997 | EP |
0633749 | Aug 1997 | EP |
0710090 | Aug 1997 | EP |
0578425 | Sep 1997 | EP |
0625335 | Nov 1997 | EP |
0552423 | Jan 1998 | EP |
0592244 | Jan 1998 | EP |
0648476 | Jan 1998 | EP |
0649290 | Mar 1998 | EP |
0598618 | Sep 1998 | EP |
0676173 | Sep 1998 | EP |
0678007 | Sep 1998 | EP |
0869104 | Oct 1998 | EP |
0603472 | Nov 1998 | EP |
0605351 | Nov 1998 | EP |
0878169 | Nov 1998 | EP |
0879742 | Nov 1998 | EP |
0695144 | Dec 1998 | EP |
0722296 | Dec 1998 | EP |
0760230 | Feb 1999 | EP |
0623316 | Mar 1999 | EP |
0650701 | Mar 1999 | EP |
0537572 | Jun 1999 | EP |
0923907 | Jun 1999 | EP |
0640317 | Sep 1999 | EP |
0843906 | Mar 2000 | EP |
0552050 | May 2000 | EP |
0833592 | May 2000 | EP |
0832605 | Jun 2000 | EP |
0830094 | Sep 2000 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
0694290 | Nov 2000 | EP |
1050278 | Nov 2000 | EP |
1053719 | Nov 2000 | EP |
1053720 | Nov 2000 | EP |
1055399 | Nov 2000 | EP |
1055400 | Nov 2000 | EP |
1058177 | Dec 2000 | EP |
1080694 | Mar 2001 | EP |
1090592 | Apr 2001 | EP |
1095627 | May 2001 | EP |
1256318 | May 2001 | EP |
0806914 | Sep 2001 | EP |
0768840 | Dec 2001 | EP |
0908152 | Jan 2002 | EP |
0717959 | Feb 2002 | EP |
0872213 | May 2002 | EP |
0862386 | Jun 2002 | EP |
0949886 | Sep 2002 | EP |
1238634 | Sep 2002 | EP |
0858295 | Dec 2002 | EP |
0656188 | Jan 2003 | EP |
0717960 | Feb 2003 | EP |
1284120 | Feb 2003 | EP |
1287788 | Mar 2003 | EP |
0717966 | Apr 2003 | EP |
0869742 | May 2003 | EP |
0829235 | Jun 2003 | EP |
0887046 | Jul 2003 | EP |
1323384 | Jul 2003 | EP |
0852480 | Aug 2003 | EP |
0891154 | Sep 2003 | EP |
0813843 | Oct 2003 | EP |
0873089 | Oct 2003 | EP |
0856326 | Nov 2003 | EP |
1374788 | Jan 2004 | EP |
0741996 | Feb 2004 | EP |
0814712 | Feb 2004 | EP |
1402837 | Mar 2004 | EP |
0705570 | Apr 2004 | EP |
0959784 | Apr 2004 | EP |
1407719 | Apr 2004 | EP |
1086713 | May 2004 | EP |
0996378 | Jun 2004 | EP |
1426012 | Jun 2004 | EP |
0833593 | Jul 2004 | EP |
1442694 | Aug 2004 | EP |
0888749 | Sep 2004 | EP |
0959786 | Sep 2004 | EP |
1459695 | Sep 2004 | EP |
1254636 | Oct 2004 | EP |
1473819 | Nov 2004 | EP |
1477119 | Nov 2004 | EP |
1479345 | Nov 2004 | EP |
1479347 | Nov 2004 | EP |
1479348 | Nov 2004 | EP |
0754437 | Dec 2004 | EP |
1025807 | Dec 2004 | EP |
1001710 | Jan 2005 | EP |
1496805 | Jan 2005 | EP |
1520521 | Apr 2005 | EP |
1520522 | Apr 2005 | EP |
1520523 | Apr 2005 | EP |
1520525 | Apr 2005 | EP |
1522264 | Apr 2005 | EP |
1523942 | Apr 2005 | EP |
1550408 | Jul 2005 | EP |
1557129 | Jul 2005 | EP |
1064883 | Aug 2005 | EP |
1067876 | Aug 2005 | EP |
0870473 | Sep 2005 | EP |
1157666 | Sep 2005 | EP |
0880338 | Oct 2005 | EP |
1158917 | Nov 2005 | EP |
1344498 | Nov 2005 | EP |
0906764 | Dec 2005 | EP |
1330989 | Dec 2005 | EP |
0771176 | Jan 2006 | EP |
1621138 | Feb 2006 | EP |
1621139 | Feb 2006 | EP |
1621141 | Feb 2006 | EP |
1621145 | Feb 2006 | EP |
1621151 | Feb 2006 | EP |
1034746 | Mar 2006 | EP |
1201196 | Mar 2006 | EP |
1632191 | Mar 2006 | EP |
1647231 | Apr 2006 | EP |
1065981 | May 2006 | EP |
1082944 | May 2006 | EP |
1230899 | May 2006 | EP |
1652481 | May 2006 | EP |
1382303 | Jun 2006 | EP |
1253866 | Jul 2006 | EP |
1032318 | Aug 2006 | EP |
1045672 | Aug 2006 | EP |
1617768 | Aug 2006 | EP |
1693015 | Aug 2006 | EP |
1400214 | Sep 2006 | EP |
1702567 | Sep 2006 | EP |
1129665 | Nov 2006 | EP |
1400206 | Nov 2006 | EP |
1721568 | Nov 2006 | EP |
1256317 | Dec 2006 | EP |
1285633 | Dec 2006 | EP |
1728473 | Dec 2006 | EP |
1728475 | Dec 2006 | EP |
1736105 | Dec 2006 | EP |
1011494 | Jan 2007 | EP |
1479346 | Jan 2007 | EP |
1484024 | Jan 2007 | EP |
1749485 | Feb 2007 | EP |
1754445 | Feb 2007 | EP |
1759812 | Mar 2007 | EP |
1767157 | Mar 2007 | EP |
1767163 | Mar 2007 | EP |
1769756 | Apr 2007 | EP |
1769758 | Apr 2007 | EP |
1581128 | May 2007 | EP |
1780825 | May 2007 | EP |
1785097 | May 2007 | EP |
1790293 | May 2007 | EP |
1790294 | May 2007 | EP |
1563793 | Jun 2007 | EP |
1800610 | Jun 2007 | EP |
1300117 | Aug 2007 | EP |
1813199 | Aug 2007 | EP |
1813200 | Aug 2007 | EP |
1813201 | Aug 2007 | EP |
1813202 | Aug 2007 | EP |
1813203 | Aug 2007 | EP |
1813207 | Aug 2007 | EP |
1813209 | Aug 2007 | EP |
1815950 | Aug 2007 | EP |
1330991 | Sep 2007 | EP |
1806103 | Sep 2007 | EP |
1837041 | Sep 2007 | EP |
0922435 | Oct 2007 | EP |
1487359 | Oct 2007 | EP |
1599146 | Oct 2007 | EP |
1839596 | Oct 2007 | EP |
2110083 | Oct 2007 | EP |
1679096 | Nov 2007 | EP |
1857057 | Nov 2007 | EP |
1402821 | Dec 2007 | EP |
1872727 | Jan 2008 | EP |
1550410 | Feb 2008 | EP |
1671593 | Feb 2008 | EP |
1897502 | Mar 2008 | EP |
1611856 | Apr 2008 | EP |
1908417 | Apr 2008 | EP |
1917929 | May 2008 | EP |
1330201 | Jun 2008 | EP |
1702568 | Jul 2008 | EP |
1943955 | Jul 2008 | EP |
1943957 | Jul 2008 | EP |
1943959 | Jul 2008 | EP |
1943962 | Jul 2008 | EP |
1943964 | Jul 2008 | EP |
1943976 | Jul 2008 | EP |
1593337 | Aug 2008 | EP |
1970014 | Sep 2008 | EP |
1974678 | Oct 2008 | EP |
1980213 | Oct 2008 | EP |
1759645 | Nov 2008 | EP |
1987780 | Nov 2008 | EP |
1990014 | Nov 2008 | EP |
1552795 | Dec 2008 | EP |
1693008 | Dec 2008 | EP |
1759640 | Dec 2008 | EP |
1997439 | Dec 2008 | EP |
2000102 | Dec 2008 | EP |
2005894 | Dec 2008 | EP |
2005901 | Dec 2008 | EP |
2008595 | Dec 2008 | EP |
1736104 | Mar 2009 | EP |
1749486 | Mar 2009 | EP |
1782743 | Mar 2009 | EP |
2039302 | Mar 2009 | EP |
2039308 | Mar 2009 | EP |
2039316 | Mar 2009 | EP |
1721576 | Apr 2009 | EP |
1733686 | Apr 2009 | EP |
2044890 | Apr 2009 | EP |
2055243 | May 2009 | EP |
1550409 | Jun 2009 | EP |
1550413 | Jun 2009 | EP |
1719461 | Jun 2009 | EP |
1834594 | Jun 2009 | EP |
1709911 | Jul 2009 | EP |
2077093 | Jul 2009 | EP |
1745748 | Aug 2009 | EP |
2090231 | Aug 2009 | EP |
2090237 | Aug 2009 | EP |
2090241 | Aug 2009 | EP |
2090244 | Aug 2009 | EP |
2090245 | Aug 2009 | EP |
2090254 | Aug 2009 | EP |
2090256 | Aug 2009 | EP |
2095777 | Sep 2009 | EP |
2098170 | Sep 2009 | EP |
2110082 | Oct 2009 | EP |
2110084 | Oct 2009 | EP |
2111803 | Oct 2009 | EP |
1762190 | Nov 2009 | EP |
1813208 | Nov 2009 | EP |
1908426 | Nov 2009 | EP |
2116195 | Nov 2009 | EP |
2116197 | Nov 2009 | EP |
1607050 | Dec 2009 | EP |
1815804 | Dec 2009 | EP |
1875870 | Dec 2009 | EP |
1878395 | Jan 2010 | EP |
2151204 | Feb 2010 | EP |
1813211 | Mar 2010 | EP |
2165656 | Mar 2010 | EP |
2165660 | Mar 2010 | EP |
1566150 | Apr 2010 | EP |
1813206 | Apr 2010 | EP |
1769754 | Jun 2010 | EP |
1854416 | Jun 2010 | EP |
1911408 | Jun 2010 | EP |
2198787 | Jun 2010 | EP |
1647286 | Sep 2010 | EP |
1825821 | Sep 2010 | EP |
1535565 | Oct 2010 | EP |
1702570 | Oct 2010 | EP |
1785098 | Oct 2010 | EP |
2005896 | Oct 2010 | EP |
2030578 | Nov 2010 | EP |
2036505 | Nov 2010 | EP |
2245993 | Nov 2010 | EP |
1627605 | Dec 2010 | EP |
2027811 | Dec 2010 | EP |
2130498 | Dec 2010 | EP |
2263568 | Dec 2010 | EP |
1994890 | Jan 2011 | EP |
2005900 | Jan 2011 | EP |
2283780 | Feb 2011 | EP |
2286738 | Feb 2011 | EP |
1690502 | Mar 2011 | EP |
2292153 | Mar 2011 | EP |
1769755 | Apr 2011 | EP |
2090240 | Apr 2011 | EP |
2305135 | Apr 2011 | EP |
2308388 | Apr 2011 | EP |
2314254 | Apr 2011 | EP |
2316345 | May 2011 | EP |
2316366 | May 2011 | EP |
1813205 | Jun 2011 | EP |
2090243 | Jun 2011 | EP |
2329773 | Jun 2011 | EP |
2090239 | Jul 2011 | EP |
2340771 | Jul 2011 | EP |
2353545 | Aug 2011 | EP |
2361562 | Aug 2011 | EP |
1836986 | Nov 2011 | EP |
1908414 | Nov 2011 | EP |
2153781 | Nov 2011 | EP |
2389928 | Nov 2011 | EP |
1847225 | Dec 2011 | EP |
2399538 | Dec 2011 | EP |
1785102 | Jan 2012 | EP |
2090253 | Mar 2012 | EP |
2430986 | Mar 2012 | EP |
2446834 | May 2012 | EP |
2455007 | May 2012 | EP |
2457519 | May 2012 | EP |
2462878 | Jun 2012 | EP |
2462880 | Jun 2012 | EP |
1813204 | Jul 2012 | EP |
2189121 | Jul 2012 | EP |
2005895 | Aug 2012 | EP |
2090248 | Aug 2012 | EP |
2481359 | Aug 2012 | EP |
2486862 | Aug 2012 | EP |
1908412 | Sep 2012 | EP |
1935351 | Sep 2012 | EP |
2497431 | Sep 2012 | EP |
1616549 | Oct 2012 | EP |
2030579 | Oct 2012 | EP |
2090252 | Oct 2012 | EP |
2517637 | Oct 2012 | EP |
2517638 | Oct 2012 | EP |
2517642 | Oct 2012 | EP |
2517645 | Oct 2012 | EP |
2517649 | Oct 2012 | EP |
2517651 | Oct 2012 | EP |
1884206 | Mar 2013 | EP |
2090238 | Apr 2013 | EP |
1982657 | Jul 2013 | EP |
2614782 | Jul 2013 | EP |
2090234 | Sep 2013 | EP |
2633830 | Sep 2013 | EP |
2644124 | Oct 2013 | EP |
2644209 | Oct 2013 | EP |
2649948 | Oct 2013 | EP |
2649949 | Oct 2013 | EP |
2700367 | Feb 2014 | EP |
1772105 | May 2014 | EP |
2446835 | Jan 2015 | EP |
2396594 | Feb 2013 | ES |
459743 | Nov 1913 | FR |
999646 | Feb 1952 | FR |
1112936 | Mar 1956 | FR |
2598905 | Nov 1987 | FR |
2765794 | Jan 1999 | FR |
2815842 | Oct 2000 | FR |
939929 | Oct 1963 | GB |
1210522 | Oct 1970 | GB |
1217159 | Dec 1970 | GB |
1339394 | Dec 1973 | GB |
2024012 | Jan 1980 | GB |
2109241 | Jun 1983 | GB |
2272159 | May 1994 | GB |
2284242 | May 1995 | GB |
2286435 | Aug 1995 | GB |
2336214 | Oct 1999 | GB |
2425903 | Nov 2006 | GB |
2423199 | May 2009 | GB |
93100110 | Nov 1993 | GR |
50-33988 | Apr 1975 | JP |
S58500053 | Jan 1983 | JP |
S58-501360 | Aug 1983 | JP |
S59-174920 | Mar 1984 | JP |
60-100955 | Jun 1985 | JP |
60-212152 | Oct 1985 | JP |
61-98249 | May 1986 | JP |
S61502036 | Sep 1986 | JP |
S62-170011 | Oct 1987 | JP |
S63-59764 | Mar 1988 | JP |
S63-147449 | Jun 1988 | JP |
63-203149 | Aug 1988 | JP |
H02-279149 | Nov 1990 | JP |
3-12126 | Jan 1991 | JP |
H04-215747 | Aug 1992 | JP |
H4-131860 | Dec 1992 | JP |
H05-084252 | Apr 1993 | JP |
H05-123325 | May 1993 | JP |
5-212039 | Aug 1993 | JP |
6007357 | Jan 1994 | JP |
H6-30945 | Feb 1994 | JP |
H06-54857 | Mar 1994 | JP |
H06-26812 | Apr 1994 | JP |
H6-121798 | May 1994 | JP |
H6-125913 | May 1994 | JP |
H06-197901 | Jul 1994 | JP |
H06-237937 | Aug 1994 | JP |
H06-327684 | Nov 1994 | JP |
7-31623 | Feb 1995 | JP |
7051273 | Feb 1995 | JP |
H7-47070 | Feb 1995 | JP |
7-124166 | May 1995 | JP |
H7-163574 | Jun 1995 | JP |
07-171163 | Jul 1995 | JP |
7-255735 | Oct 1995 | JP |
H7-285089 | Oct 1995 | JP |
8-33642 | Feb 1996 | JP |
8033641 | Feb 1996 | JP |
8-164141 | Jun 1996 | JP |
H08-182684 | Jul 1996 | JP |
H08-507708 | Aug 1996 | JP |
8229050 | Sep 1996 | JP |
H8-336540 | Dec 1996 | JP |
H08-336544 | Dec 1996 | JP |
H09-501081 | Feb 1997 | JP |
H09-501577 | Feb 1997 | JP |
H09-164144 | Jun 1997 | JP |
H10-113352 | May 1998 | JP |
H10-118090 | May 1998 | JP |
10-512469 | Dec 1998 | JP |
2000-14632 | Jan 2000 | JP |
2000033071 | Feb 2000 | JP |
2000-112002 | Apr 2000 | JP |
2000-166932 | Jun 2000 | JP |
2000171730 | Jun 2000 | JP |
2000287987 | Oct 2000 | JP |
2000325303 | Nov 2000 | JP |
2001-046384 | Feb 2001 | JP |
2001-87272 | Apr 2001 | JP |
2001-514541 | Sep 2001 | JP |
2001-276091 | Oct 2001 | JP |
2001-517473 | Oct 2001 | JP |
2001286477 | Oct 2001 | JP |
2002-51974 | Feb 2002 | JP |
2002-085415 | Mar 2002 | JP |
2002143078 | May 2002 | JP |
2002-204801 | Jul 2002 | JP |
2002-528161 | Sep 2002 | JP |
2002-314298 | Oct 2002 | JP |
2002369820 | Dec 2002 | JP |
2003-500153 | Jan 2003 | JP |
2003000603 | Jan 2003 | JP |
2003-504104 | Feb 2003 | JP |
2003-135473 | May 2003 | JP |
2003-148903 | May 2003 | JP |
2003-164066 | Jun 2003 | JP |
2003-521301 | Jul 2003 | JP |
2003-523251 | Aug 2003 | JP |
2003-523254 | Aug 2003 | JP |
2004-147701 | May 2004 | JP |
2004-162035 | Jun 2004 | JP |
2004-229976 | Aug 2004 | JP |
2004-524076 | Aug 2004 | JP |
2004-531280 | Oct 2004 | JP |
2004-532084 | Oct 2004 | JP |
2004-532676 | Oct 2004 | JP |
2004-329624 | Nov 2004 | JP |
2004-337617 | Dec 2004 | JP |
2004-344663 | Dec 2004 | JP |
2005-028147 | Feb 2005 | JP |
2005-28148 | Feb 2005 | JP |
2005-028149 | Feb 2005 | JP |
2005-505309 | Feb 2005 | JP |
2005-505334 | Feb 2005 | JP |
2005505322 | Feb 2005 | JP |
2005-80702 | Mar 2005 | JP |
2005-103280 | Apr 2005 | JP |
2005-103281 | Apr 2005 | JP |
2005-511131 | Apr 2005 | JP |
2005-511137 | Apr 2005 | JP |
2005103293 | Apr 2005 | JP |
2005131163 | May 2005 | JP |
2005131164 | May 2005 | JP |
2005131173 | May 2005 | JP |
2005131211 | May 2005 | JP |
2005131212 | May 2005 | JP |
2005-137919 | Jun 2005 | JP |
2005-144183 | Jun 2005 | JP |
2005-516714 | Jun 2005 | JP |
2005137423 | Jun 2005 | JP |
2005152416 | Jun 2005 | JP |
2005-521109 | Jul 2005 | JP |
2005-523105 | Aug 2005 | JP |
4461008 | Aug 2005 | JP |
2005524474 | Aug 2005 | JP |
2005-296412 | Oct 2005 | JP |
2005-328882 | Dec 2005 | JP |
2005-335432 | Dec 2005 | JP |
2005-342267 | Dec 2005 | JP |
2006-034975 | Feb 2006 | JP |
2006-34977 | Feb 2006 | JP |
2006-034978 | Feb 2006 | JP |
2006-034980 | Feb 2006 | JP |
2006-506106 | Feb 2006 | JP |
2006-510879 | Mar 2006 | JP |
2006-187649 | Jul 2006 | JP |
2006-218297 | Aug 2006 | JP |
2006-223872 | Aug 2006 | JP |
2006-281405 | Oct 2006 | JP |
2006-289064 | Oct 2006 | JP |
2006-334412 | Dec 2006 | JP |
2006-334417 | Dec 2006 | JP |
2006-346445 | Dec 2006 | JP |
2007-61628 | Mar 2007 | JP |
2007-083051 | Apr 2007 | JP |
2007-098130 | Apr 2007 | JP |
2007-105481 | Apr 2007 | JP |
3906843 | Apr 2007 | JP |
2007-117725 | May 2007 | JP |
2007-130471 | May 2007 | JP |
2007-222615 | Jun 2007 | JP |
3934161 | Jun 2007 | JP |
2007-203049 | Aug 2007 | JP |
2007-203051 | Aug 2007 | JP |
2007-203057 | Aug 2007 | JP |
2007-524435 | Aug 2007 | JP |
2007-229448 | Sep 2007 | JP |
4001860 | Oct 2007 | JP |
2007-325922 | Dec 2007 | JP |
2008-68073 | Mar 2008 | JP |
2008-206967 | Sep 2008 | JP |
2008-212637 | Sep 2008 | JP |
2008-212638 | Sep 2008 | JP |
2008-220956 | Sep 2008 | JP |
2008-259860 | Oct 2008 | JP |
2008-264535 | Nov 2008 | JP |
2008-283459 | Nov 2008 | JP |
2009-502351 | Jan 2009 | JP |
2009-506799 | Feb 2009 | JP |
2009-507526 | Feb 2009 | JP |
2009-72599 | Apr 2009 | JP |
2009-090113 | Apr 2009 | JP |
2009-106752 | May 2009 | JP |
2009-189836 | Aug 2009 | JP |
2009-189837 | Aug 2009 | JP |
2009-189838 | Aug 2009 | JP |
2009-536082 | Oct 2009 | JP |
2009-261944 | Nov 2009 | JP |
2009-539420 | Nov 2009 | JP |
2009-291604 | Dec 2009 | JP |
2010-504808 | Feb 2010 | JP |
2010-504809 | Feb 2010 | JP |
2010-505524 | Feb 2010 | JP |
2010-069310 | Apr 2010 | JP |
2010-088876 | Apr 2010 | JP |
2010-098844 | Apr 2010 | JP |
4549018 | Sep 2010 | JP |
2010-540192 | Dec 2010 | JP |
4783373 | Jul 2011 | JP |
5140421 | Feb 2013 | JP |
5162595 | Mar 2013 | JP |
2013-128791 | Jul 2013 | JP |
5333899 | Nov 2013 | JP |
20110003229 | Jan 2011 | KR |
2008830 | Mar 1994 | RU |
2052979 | Jan 1996 | RU |
2098025 | Dec 1997 | RU |
2141279 | Nov 1999 | RU |
2144791 | Jan 2000 | RU |
2181566 | Apr 2002 | RU |
2187249 | Aug 2002 | RU |
2189091 | Sep 2002 | RU |
32984 | Oct 2003 | RU |
2225170 | Mar 2004 | RU |
42750 | Dec 2004 | RU |
61114 | Feb 2007 | RU |
189517 | Jan 1967 | SU |
328636 | Sep 1972 | SU |
674747 | Jul 1979 | SU |
886900 | Dec 1981 | SU |
1009439 | Apr 1983 | SU |
1022703 | Jun 1983 | SU |
1333319 | Aug 1987 | SU |
1377053 | Feb 1988 | SU |
1509051 | Sep 1989 | SU |
1561964 | May 1990 | SU |
1708312 | Jan 1992 | SU |
1722476 | Mar 1992 | SU |
1752361 | Aug 1992 | SU |
1814161 | May 1993 | SU |
WO 8202824 | Sep 1982 | WO |
WO 8602254 | Apr 1986 | WO |
WO 9115157 | Oct 1991 | WO |
WO 9220295 | Nov 1992 | WO |
WO 9221300 | Dec 1992 | WO |
WO 9308755 | May 1993 | WO |
WO 9313718 | Jul 1993 | WO |
WO 9314690 | Aug 1993 | WO |
WO 9315648 | Aug 1993 | WO |
WO 9315850 | Aug 1993 | WO |
WO 9319681 | Oct 1993 | WO |
WO 9400060 | Jan 1994 | WO |
WO 9411057 | May 1994 | WO |
WO 9412108 | Jun 1994 | WO |
WO 9418893 | Sep 1994 | WO |
WO 9420030 | Sep 1994 | WO |
WO 9422378 | Oct 1994 | WO |
WO 9423659 | Oct 1994 | WO |
WO 9424943 | Nov 1994 | WO |
WO 9424947 | Nov 1994 | WO |
WO 9502369 | Jan 1995 | WO |
WO 9503743 | Feb 1995 | WO |
WO 9506817 | Mar 1995 | WO |
WO 9509576 | Apr 1995 | WO |
WO 9509577 | Apr 1995 | WO |
WO 9514436 | Jun 1995 | WO |
WO 9517855 | Jul 1995 | WO |
WO 9518383 | Jul 1995 | WO |
WO 9518572 | Jul 1995 | WO |
WO 9519739 | Jul 1995 | WO |
WO 9520360 | Aug 1995 | WO |
WO 9523557 | Sep 1995 | WO |
WO 9524865 | Sep 1995 | WO |
WO 9525471 | Sep 1995 | WO |
WO 9526562 | Oct 1995 | WO |
WO 9529639 | Nov 1995 | WO |
WO 9604858 | Feb 1996 | WO |
WO 9618344 | Jun 1996 | WO |
WO 9619151 | Jun 1996 | WO |
WO 9619152 | Jun 1996 | WO |
WO 9620652 | Jul 1996 | WO |
WO 9621119 | Jul 1996 | WO |
WO 9622055 | Jul 1996 | WO |
WO 9623448 | Aug 1996 | WO |
WO 9624301 | Aug 1996 | WO |
WO 9627337 | Sep 1996 | WO |
WO 9631155 | Oct 1996 | WO |
WO 9635464 | Nov 1996 | WO |
WO 9639085 | Dec 1996 | WO |
WO 9639086 | Dec 1996 | WO |
WO 9639087 | Dec 1996 | WO |
WO 9639088 | Dec 1996 | WO |
WO 9639089 | Dec 1996 | WO |
WO 9700646 | Jan 1997 | WO |
WO 9700647 | Jan 1997 | WO |
WO 9701989 | Jan 1997 | WO |
WO 9706582 | Feb 1997 | WO |
WO 9710763 | Mar 1997 | WO |
WO 9710764 | Mar 1997 | WO |
WO 9711648 | Apr 1997 | WO |
WO 9711649 | Apr 1997 | WO |
WO 9715237 | May 1997 | WO |
WO 9724073 | Jul 1997 | WO |
WO 9724993 | Jul 1997 | WO |
WO 9730644 | Aug 1997 | WO |
WO 9734533 | Sep 1997 | WO |
WO 9737598 | Oct 1997 | WO |
WO 9739688 | Oct 1997 | WO |
WO 9801080 | Jan 1998 | WO |
WO 9817180 | Apr 1998 | WO |
WO 9822154 | May 1998 | WO |
WO 9827880 | Jul 1998 | WO |
WO 9830153 | Jul 1998 | WO |
WO 9847436 | Oct 1998 | WO |
WO 9858589 | Dec 1998 | WO |
WO 9902090 | Jan 1999 | WO |
WO 9903407 | Jan 1999 | WO |
WO 9903408 | Jan 1999 | WO |
WO 9903409 | Jan 1999 | WO |
WO 9912483 | Mar 1999 | WO |
WO 9912487 | Mar 1999 | WO |
WO 9912488 | Mar 1999 | WO |
WO 9915086 | Apr 1999 | WO |
WO 9915091 | Apr 1999 | WO |
WO 9923933 | May 1999 | WO |
WO 9923959 | May 1999 | WO |
WO 9925261 | May 1999 | WO |
WO 9929244 | Jun 1999 | WO |
WO 9934744 | Jul 1999 | WO |
WO 9945849 | Sep 1999 | WO |
WO 9948430 | Sep 1999 | WO |
WO 9951158 | Oct 1999 | WO |
WO 0024322 | May 2000 | WO |
WO 0024330 | May 2000 | WO |
WO 0041638 | Jul 2000 | WO |
WO 0048506 | Aug 2000 | WO |
WO 0053112 | Sep 2000 | WO |
WO 0054653 | Sep 2000 | WO |
WO 0057796 | Oct 2000 | WO |
WO 0064365 | Nov 2000 | WO |
WO 0072762 | Dec 2000 | WO |
WO 0072765 | Dec 2000 | WO |
WO 0078222 | Dec 2000 | WO |
WO 0103587 | Jan 2001 | WO |
WO 0105702 | Jan 2001 | WO |
WO 0110482 | Feb 2001 | WO |
WO 0135845 | May 2001 | WO |
WO 0154594 | Aug 2001 | WO |
WO 0158371 | Aug 2001 | WO |
WO 0162158 | Aug 2001 | WO |
WO 0162161 | Aug 2001 | WO |
WO 0162162 | Aug 2001 | WO |
WO 0162163 | Aug 2001 | WO |
WO 0162164 | Aug 2001 | WO |
WO 0162169 | Aug 2001 | WO |
WO 0178605 | Oct 2001 | WO |
WO 0180757 | Nov 2001 | WO |
WO 0191646 | Dec 2001 | WO |
WO 0200121 | Jan 2002 | WO |
WO 0207608 | Jan 2002 | WO |
WO 0207618 | Jan 2002 | WO |
WO 0217799 | Mar 2002 | WO |
WO 0219920 | Mar 2002 | WO |
WO 0219932 | Mar 2002 | WO |
WO 0226143 | Apr 2002 | WO |
WO 0230297 | Apr 2002 | WO |
WO 0232322 | Apr 2002 | WO |
WO 0236028 | May 2002 | WO |
WO 0243571 | Jun 2002 | WO |
WO 02058568 | Aug 2002 | WO |
WO 02060328 | Aug 2002 | WO |
WO 02065933 | Aug 2002 | WO |
WO 02067785 | Sep 2002 | WO |
WO 02080781 | Oct 2002 | WO |
WO 02085218 | Oct 2002 | WO |
WO 02087586 | Nov 2002 | WO |
WO 02098302 | Dec 2002 | WO |
WO 03000138 | Jan 2003 | WO |
WO 03001329 | Jan 2003 | WO |
WO 03001986 | Jan 2003 | WO |
WO 03013363 | Feb 2003 | WO |
WO 03013372 | Feb 2003 | WO |
WO 03015604 | Feb 2003 | WO |
WO 03020106 | Mar 2003 | WO |
WO 03020139 | Mar 2003 | WO |
WO 03024339 | Mar 2003 | WO |
WO 2003079909 | Mar 2003 | WO |
WO 03030743 | Apr 2003 | WO |
WO 03037193 | May 2003 | WO |
WO 2003047436 | Jun 2003 | WO |
WO 03055402 | Jul 2003 | WO |
WO 03057048 | Jul 2003 | WO |
WO 03057058 | Jul 2003 | WO |
WO 2003063694 | Aug 2003 | WO |
WO 03077769 | Sep 2003 | WO |
WO 03079911 | Oct 2003 | WO |
WO 03082126 | Oct 2003 | WO |
WO 03086206 | Oct 2003 | WO |
WO 03088845 | Oct 2003 | WO |
WO 03090630 | Nov 2003 | WO |
WO 03094743 | Nov 2003 | WO |
WO 03094745 | Nov 2003 | WO |
WO 2003094746 | Nov 2003 | WO |
WO 2003094747 | Nov 2003 | WO |
WO 03101313 | Dec 2003 | WO |
WO 03105698 | Dec 2003 | WO |
WO 03105702 | Dec 2003 | WO |
WO 2004006980 | Jan 2004 | WO |
WO 2004011037 | Feb 2004 | WO |
WO 2004014238 | Feb 2004 | WO |
WO 2004019769 | Mar 2004 | WO |
WO 2004019803 | Mar 2004 | WO |
WO 2004021868 | Mar 2004 | WO |
WO 2004028585 | Apr 2004 | WO |
WO 2004030554 | Apr 2004 | WO |
WO 2004032754 | Apr 2004 | WO |
WO 2004032760 | Apr 2004 | WO |
WO 2004032762 | Apr 2004 | WO |
WO 2004032763 | Apr 2004 | WO |
WO 2004032783 | Apr 2004 | WO |
WO 2004034875 | Apr 2004 | WO |
WO 2004047626 | Jun 2004 | WO |
WO 2004047653 | Jun 2004 | WO |
WO 2004049956 | Jun 2004 | WO |
WO 2004050971 | Jun 2004 | WO |
WO 2004052426 | Jun 2004 | WO |
WO 2004056276 | Jul 2004 | WO |
WO 2004056277 | Jul 2004 | WO |
WO 2004062516 | Jul 2004 | WO |
WO 2004064600 | Aug 2004 | WO |
WO 2004078050 | Sep 2004 | WO |
WO 2004078051 | Sep 2004 | WO |
WO 2004078236 | Sep 2004 | WO |
WO 2004086987 | Oct 2004 | WO |
WO 2004096015 | Nov 2004 | WO |
WO 2004096057 | Nov 2004 | WO |
WO 2004103157 | Dec 2004 | WO |
WO 2004105593 | Dec 2004 | WO |
WO 2004105621 | Dec 2004 | WO |
WO 2004112618 | Dec 2004 | WO |
WO 2004112652 | Dec 2004 | WO |
WO 2005027983 | Mar 2005 | WO |
WO 2005037329 | Apr 2005 | WO |
WO 2005042041 | May 2005 | WO |
WO 2005044078 | May 2005 | WO |
WO 2005055846 | Jun 2005 | WO |
WO 2005072634 | Aug 2005 | WO |
WO 2005078892 | Aug 2005 | WO |
WO 2005079675 | Sep 2005 | WO |
WO 2005087128 | Sep 2005 | WO |
WO 2005096954 | Oct 2005 | WO |
WO 2005112806 | Dec 2005 | WO |
WO 2005112808 | Dec 2005 | WO |
WO 2005115251 | Dec 2005 | WO |
WO 2005115253 | Dec 2005 | WO |
WO 2005117735 | Dec 2005 | WO |
WO 2005122936 | Dec 2005 | WO |
WO 2006023486 | Mar 2006 | WO |
WO 2006023578 | Mar 2006 | WO |
WO 2006027014 | Mar 2006 | WO |
WO 2006028314 | Mar 2006 | WO |
WO 2006044490 | Apr 2006 | WO |
WO 2006044581 | Apr 2006 | WO |
WO 2006044810 | Apr 2006 | WO |
WO 2006051252 | May 2006 | WO |
WO 2006059067 | Jun 2006 | WO |
WO 2006083748 | Aug 2006 | WO |
WO 2006085389 | Aug 2006 | WO |
WO 2006092563 | Sep 2006 | WO |
WO 2006092565 | Sep 2006 | WO |
WO 2006115958 | Nov 2006 | WO |
WO 2006125940 | Nov 2006 | WO |
WO 2006132992 | Dec 2006 | WO |
WO 2007002180 | Jan 2007 | WO |
WO 2007016290 | Feb 2007 | WO |
WO 2007018898 | Feb 2007 | WO |
WO 2007059233 | May 2007 | WO |
WO 2007089603 | Aug 2007 | WO |
WO 2007098220 | Aug 2007 | WO |
WO 2007121579 | Nov 2007 | WO |
WO 2007131110 | Nov 2007 | WO |
WO 2007137304 | Nov 2007 | WO |
WO 2007139734 | Dec 2007 | WO |
WO 2007142625 | Dec 2007 | WO |
WO 2007145825 | Dec 2007 | WO |
WO 2007146987 | Dec 2007 | WO |
WO 2007147439 | Dec 2007 | WO |
WO 2008020964 | Feb 2008 | WO |
WO 2008021969 | Feb 2008 | WO |
WO 2008039249 | Apr 2008 | WO |
WO 2008039270 | Apr 2008 | WO |
WO 2008045383 | Apr 2008 | WO |
WO 2008057281 | May 2008 | WO |
WO 2008070763 | Jun 2008 | WO |
WO 2008089404 | Jul 2008 | WO |
WO 2008101080 | Aug 2008 | WO |
WO 2008101228 | Aug 2008 | WO |
WO 2008103797 | Aug 2008 | WO |
WO 2008109125 | Sep 2008 | WO |
WO 2008124748 | Oct 2008 | WO |
WO 2009022614 | Feb 2009 | WO |
WO 2009023851 | Feb 2009 | WO |
WO 2009033057 | Mar 2009 | WO |
WO 2009039506 | Mar 2009 | WO |
WO 2009046394 | Apr 2009 | WO |
WO 2009067649 | May 2009 | WO |
WO 2009091497 | Jul 2009 | WO |
WO 2009120944 | Oct 2009 | WO |
WO 2009137761 | Nov 2009 | WO |
WO 2009143092 | Nov 2009 | WO |
WO 2009143331 | Nov 2009 | WO |
WO 2009150650 | Dec 2009 | WO |
WO 2010028332 | Mar 2010 | WO |
WO 2010030434 | Mar 2010 | WO |
WO 2010050771 | May 2010 | WO |
WO 2010054404 | May 2010 | WO |
WO 2010063795 | Jun 2010 | WO |
WO 2010093333 | Aug 2010 | WO |
WO 2010098871 | Sep 2010 | WO |
WO 2011008672 | Jan 2011 | WO |
WO 2011044343 | Apr 2011 | WO |
WO 2011060311 | May 2011 | WO |
WO 2012006306 | Jan 2012 | WO |
WO 2012021671 | Feb 2012 | WO |
WO 2012040438 | Mar 2012 | WO |
WO 2012044551 | Apr 2012 | WO |
WO 2012044554 | Apr 2012 | WO |
WO 2012044597 | Apr 2012 | WO |
WO 2012044606 | Apr 2012 | WO |
WO 2012044820 | Apr 2012 | WO |
WO 2012044844 | Apr 2012 | WO |
WO 2012044853 | Apr 2012 | WO |
WO 2012058213 | May 2012 | WO |
WO 2012068156 | May 2012 | WO |
WO 2012143913 | Oct 2012 | WO |
WO 2012148667 | Nov 2012 | WO |
WO 2012148703 | Nov 2012 | WO |
WO 2013009699 | Jan 2013 | WO |
WO 2013036409 | Mar 2013 | WO |
WO 2013043707 | Mar 2013 | WO |
WO 2013043717 | Mar 2013 | WO |
WO 2013043721 | Mar 2013 | WO |
WO 2013148762 | Oct 2013 | WO |
WO 2013167427 | Nov 2013 | WO |
Entry |
---|
European Search Report for Application No. 14160127.8, dated Oct. 10, 2014 (7 pages). |
U.S. Appl. No. 12/031,573, filed Feb. 14, 2008. |
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008. |
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20, pp. 1744-1748. |
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages). |
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, (2000), 3 pages. |
“Biomedical Coatings,” Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page). |
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005). |
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005). |
D. Tuite, Ed., “Get the Lowdown on Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages). |
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages. |
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000). |
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010). |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 1 page. |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology and Endo GIA™ Ultra Universal Staplers,” (2010), 2 pages. |
Covidien Brochure, “Endo GIA™ Black Reload with Tri-Staple™ Technology,” (2012), 2 pages. |
Covidien Brochure, “Endo GIA™ Curved Tip Reload with Tri-Staple™ Technology,” (2012), 2 pages. |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 2 pages. |
Covidien Brochure, “Endo GIA™ Ultra Universal Stapler,” (2010), 2 pages. |
Miyata et al., “Biomolecule-Sensitive Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 79-98. |
Jeong et al., “Thermosensitive Sol-Gel Reversible Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 37-51. |
Byrne et al., “Molecular Imprinting Within Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 149-161. |
Qiu et al., “Environment-Sensitive Hydrogels for Drug Delivery,” Advanced Drug Delivery Reviews, 53 (2001) pp. 321-339. |
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 43 (2002) pp. 3-12. |
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 54 (2002) pp. 3-12. |
Peppas, “Physiologically Responsive Hydrogels,” Journal of Bioactive and Compatible Polymers, vol. 6 (Jul. 1991) pp. 241-246. |
Ebara, “Carbohydrate-Derived Hydrogels and Microgels,” Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaes, Dendrimers, Nanoparticles, and Hydrogels, Edited by Ravin Narain, 2011, pp. 337-345. |
Peppas, Editor “Hydrogels in Medicine and Pharmacy,” vol. I, Fundamentals, CRC Press, 1986. |
Matsuda, “Thermodynamics of Formation of Porous Polymeric Membrane from Solutions,” Polymer Journal, vol. 23, No. 5, pp. 435-444 (1991). |
Young, “Microcellular foams via phase separation,” Journal of Vacuum Science & Technology A 4(3), (May/Jun. 1986). |
Chen et al., “Elastomeric Biomaterials for Tissue Engineering,” Progress in Polymer Science 38 (2013), pp. 584-671. |
Pitt et al., “Attachment of Hyaluronan to Metallic Surfaces,” J. Biomed. Mater. Res. 68A: pp. 95-106, 2004. |
Schellhammer et al., “Poly-Lactic-Acid for Coating of Endovascular Stents: Preliminary Results in Canine Experimental Av-Fistulae,” Mat.-wiss. u. Werkstofftech., 32, pp. 193-199 (2001). |
Solorio et al., “Gelatin Microspheres Crosslinked with Genipin for Local Delivery of Growth Factors,” J. Tissue Eng. Regen. Med. (2010), 4(7): pp. 514-523. |
http://ninpgan.net/publications/51-100/89.pdf; 2004, Ning Pan, on Uniqueness of Fibrous Materials, Design & Nature II. Eds: Colins, M. And Brebbia, C. Wit Press, Boston, 493-504. |
Covidien iDrive™ Ultra in Service Reference Card, “iDrive™ Ultra Powered Stapling Device,” (4 pages). |
Covidien iDrive™ Ultra Powered Stapling System ibrochure, “The Power of iDrive™ Ultra Powered Stapling System and Tri-Staple™ Technology,” (23 pages). |
Seils et al., Covidien Summary: Clinical Study “UCONN Biodynamics: Final Report on Results,” (2 pages). |
Covidien “iDrive™ Ultra Powered Stapling System, A Guide for Surgeons,” (6 pages). |
Covidien “iDrive™ Ultra Powered Stapling System, Cleaning and Sterilization Guide,” (2 pages). |
Covidien brochure “iDrive™ Ultra Powered Stapling System,” (6 pages). |
“Indian Standard: Automotive Vehicles—Brakes and Braking Systems (IS 11852-1:2001)”, Mar. 1, 2001. |
U.S. Appl. No. 14/498,070, filed Sep. 26, 2014. |
U.S. Appl. No. 14/498,087, filed Sep. 26, 2014. |
U.S. Appl. No. 14/498,105, filed Sep. 26, 2014. |
U.S. Appl. No. 14/498,107, filed Sep. 26, 2014. |
U.S. Appl. No. 14/498,121, filed Sep. 26, 2014. |
U.S. Appl. No. 14/498,145, filed Sep. 26, 2014. |
U.S. Appl. No. 14/847,804, filed Sep. 8, 2015. |
U.S. Appl. No. 14/848,591, filed Sep. 9, 2015. |
U.S. Appl. No. 14/850,570, filed Sep. 10, 2015. |
Number | Date | Country | |
---|---|---|---|
20140263543 A1 | Sep 2014 | US |